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Range of Operators and an Application to
Existence of a Periodic Solution

JoNG Sook BAE AND Nak So Sung*

ABSTRACT. In this paper, we calculate the precise estimation
of range of a Gateaux differentiable operator, and apply to the
existence of a periodic solution of the second order nonlinear
differential equation

2" + Az' + G(2) = e(t) = e(t + 2m).

1. Introduction

Let X and Y be two Banach spaces and T : X — Y a nonlinear
mapping. There are many approaches to studying solvability of the
equation Tz = y for y € Y, a considerable number of which involve
local or infinitesimal assumptions on the mapping 7', by showing that
T is surjective. In particular, in [2], it was shown that if T' is a Gateaux
differentiable mapping having closed graph such that for each z in X,

dT.(B(0:1)) 2 B(0: ¢(||z]]))

where ¢ : [0,00) — (0,00) is a continuous function, then for any
K

K > 0 (possibly K = o), T(B(0 : K)) contains B(T'(0) : / c(s) ds).

0
This fact implies that T' is an open mapping, therefore for any y in
K

B(T(0): / ¢(s)ds) CY, Tz = y has a solution z in B(0: K) C X.

0
In the present paper we will give an application of the above theo-
rem. Consider the second order nonlinear differentiable equation

(1) 2" + A2 + G(2) = e(t) = e(t + 27)
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where e € C(R,R™), G : R® — R" is a function such that its partial
derivatives are exist and its differential is symmetric but its partial
derivatives need not be continuous and A is a constant symmetric
matrix. In [6] it was shown that if there exist an integer N > 0 and
positive constants r; and r9 such that

(2) N2 <r <ry <(N41)?
and for any u € R",
rI < D*G(u) < rol

where G € C*(R", R), with G = VG, D*G(u) denotes the Hessian of
G at u € R™ and I is the n X n identity matrix, then the differential
equation

2" + Az + grad G(z) = e(t) = e(t + 27)

has a unique 27-periodic solution. Also the uniqueness and existence
of a 2w-periodic solution for the case A = 0 has been proved in [1]
and [5]. In fact to prove the theorem in [6], the theorem 1.22 of [7]
and theorem 5.4.4 of [3] are necessary, but our proof will be based on
the theorem 3.1 of [2].

Now we give some definitions. Let X and Y be Banach spaces and
T mapping from an open subset D of X to Y. We say that T is
Gateauz differentiable if, for each z € D, there is a linear function
dT, : X =Y satisfying

T+ ty) = T(z)
t—0 t

= dT,(y), y € X.

Note that = + ty € D for small ¢ since D is open. A Gateaux differ-
entiable mapping, even from R? to R!, need not be continuous. Also
note that

d
ATo(y) = ZT(= + ty)] o>

thus dT;(y) may be considered as a directional derivative.

We say that a mapping T : D — Y has closed graph if {z,} C D
with 2, — 2 € D and Tz, — y as n — oo, it follows that Tz = y.
We denote by B(z : r) the set {y : |ly — z|| < r}, and B(z : r) its
closure.
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2. Appication
We will start this section with some preliminary results.
PROPOSITION 1. Let E and F be two Banach spaces and T : E —
F a Gateaux differentiable mapping with closed graph. If
dT.(B(0:1))2B(0:¢), =z€E,

where ¢ is a positive constant, then T' is onto.

PROOF: It is clear from the theorem 3.1 of [2].

Note that the linearity of dT; is not necessary in the proof of Propo-
sition 1. Using Proposition 1, we will prove the next proposition which
will be needed in the proof of our theorem.

PROPOSITION 2. Let H be a real Hilbert space and X and Y two
closed subspace of H such that H = X ®Y. Let T: H — H be a
Gateaux differentiable mapping with closed graph, and assume there
exist two positive constants my and mq such that

(3)  (dTu(z),z) < —mq||z||®, Vu€H, VzelX,
(4)  (dTu(y),y) 2 mollyl®,  Yue H, Vyey,
(5) (dTu(z),y) = (z,dT.(y)), Yu€e H, VzeX, VyeY.

Then under these condition we have T is onto.

PrOOF. Let u € Handv e Hyv=z+y,z € X,y €Y. By
linearity of dT,, we have

(dTu(v)a Yy— .’L')
= (dTu(2),y) — (dTu(),z) + (dTu(y),y) — (dTu(y), 2) -

From (3), (4), and (5) we have that
(6) (dTu(v),y — z) > mallz||* + ma|ly|®.
On the other hand it is clear that

(7) e £ y]I> <2 {ll=l* + llyl|*] -
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Thus, first applying the Cauchy-Schwartz inequality to the left hand
side of (6), taking the square of both sides of the resulting inequality,
and then applying (7), we obtain

(®) 2¢* [ll2]* + lyll*] < ldTu(v)]|?

where ¢ = 1/2min{m;, m,}. Applying again (7) to the left hand side
of (8) we have

(9) clloll < [|[dTu(v)ll.

Following a straightforward argument it also follows from (9) that
dT,(H) is a closed subspace of H. We will prove next that for each
u € H, dT,(H) = H. To do this let us assume there exists a z in
[dT.(H)]*, z # 0. Then (z,dTy(v)) = 0, Vo € H. We have that z can
be decomposed as z = h+k, where h € X and k € Y. Takev = k—h,
then by linearity of dT,, we have

0 = (z,dTy(v))

From (3), (4) and (5) it follows that
0 = (2,dTu(v)) > ma|[hl|* + ma|[k]|*,

which is a contradiction. Thus [dT,(H)]" = 0 and dT,, is onto H for
each u € H. Finally we claim that dT,(B(0:1)) 2 B(0:¢), u € H,
¢ = £ min{my,m2} > 0. Using (9) and the surjectivity of dT,, u € H,
it is trivial. Therefore by proposition 1, T is onto and we complete
the proof.

Note that for each v € H, dT, : H — H is one to one mapping,.
Now at this point, we are ready to prove our theorem. Let ( , ) and
| | denote the euclidean inner product and norm in R", respectively.
Using Proposition 2 we can prove the followings.

THEOREM. Let G : R® — R™ be a function such that its partial
derivatives are exist and its differential is symmetric but its partial
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derivatives need not be continuous. If there exist two positive con-
stants ry and ry satisfying the condition (2) such that for allu € R",
v € R",

(10) rifof? < (dGu(v),v) < r2fof?,
then there exists a 2w-periodic solution of (1).

Before proving, we give a function G : R — R satisfying the condi-
tions in the Theorem. Define a function G : R — R by

0, ifz=0
G(z)={ z(zsinl/z+ M), if|z|<a

a(asinl/a+ M), if|z|> a,
where M is any given real number and a is the zero of the equation
2asinl/a—cosa = 0 satisfying 0 < a < 1. Then the function G : R —
R is differentiable but G'(z) is not continuous at 0 and by choosing
suitable M > 0, it can be proved that the function G satisfy the
conditions (2) and (10).

PROOF. Let us say v € P, if (a) v : R — R" is 2m-periodic and
2

absolutely continuous, (b) / [v'(¢)|? dt < oo. It is known that P,

0
is a real Hilbert space for the following inner product

woh= [ lo!) + (o)l d

Let us define now two subspaces of P, as follows, X consists of the

N

z € P, such that z(t) = (ao/2) + Z(ak cos kt + bisinkt) and Y
k=1

consists of the y € P, such that y(t) = Y77 v, (ax cos kt + b sin kt),

where ag, by € R™ and z:(k2 +1)(Jax|? + |bx]*) < 0o. Then we have

k=1
that X and Y are two closed subspaces of P, such that P, = X @Y.
Next using the Riesz representation theorem let us define a mapping
T:P,— P, by

T = [ (' 0') = (A, 0) — (Glu),v)] dt
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for all v € P,. We observe that T is defined implicity. From (11)
and from the definition of G it can be proved that T is Gateaux
differentiable having closed graph and that

(12 (dw))= [ (o)~ (4w',0) - (@6u(w),v)]

for all w, v, u € P,. We note that in general dT,, u € P,, is not a
self-adjoint operator. Again using the Riesz representation theorem
let d be the unique element in P, such that

(o) =- [ " (e(), v(t)) dt,

for all v € P,. It can be proved that u is a 2r-periodic solution of (1)
if and only if u satisfies the operator equation

T(u) =d.

We will next show that T satisfies the conditions of Proposition 2.
This in turn will imply that (1) has a 27-periodic solution.

Let x € X, y € Y and let u be any element in P,. Using sym-
metricity of dG, we have

(dTu(CB), y) - (3"? dTu(y)>

27 27

= | (ae'@@)dtt [ @0, 49 1) dt =0

since Az’ is orthogonal to y and z is orthogonal to Ay' in L%[0, 2~].
Thus (5) of Proposition 2 is satisfied. Next let us note that for v € P,
we have

27

(13) [ vya = %(Av(t),v(t))lz” ~0.

From (12) and (13) and for any u € P,, any z € X and any y € ¥
we have that

(14) (dTy(z),z) = /0 ) [(z',2") — (dGu(z),2)] dt

and
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(15) (@) = [ ") — (dGa(y), ) dt.

We also have that for z € X and y € Y the following inequalities are
true

(16) /0 "l (D) dt < N? /0 " e dt

(7) [ woraserp [Cuopae

From (2), (10), (14), (15), (16) and (17) it is possible to prove the
existence of two positive constants m;, mg, such that (3) and (4) of
Proposition 2 are satisfied. Hence we complete the proof.

Finally we remark the followings. Let H be a real Hilbert space
and f : H — R of class C?. We denote by D?f the Hessian of f. It is
known that if there exists a constant m > 0 such that for any u € H
and any w € H we have

(D?f(u)w, w) 2 mlJwl|?

then there exists a unique ug € H such that grad f(up) = 0 and
f(uo) = min{f(u) : v € H}. Furthermore, these results are extended
as the following version. Let X and Y be two colsed subspace of H,
such that H = X @Y, X is finite dimensional and X and Y are not
necessarily orthogonal. Let T' = grad f, then T': H — H and is a C?!
mapping. Its Frechet derivative at u € H is given by T"(u) = D? f(u).
Let m; and my be two positive constants such that for any u € H,
any ¢ € X, and y € Y we have
(T'(u)z, z) < —my|z||*

(T'(w)y, y) > ma|ly||.

Under these conditions, in [4], it can be proved that there exists a
unique ug € H, such that T(uo) = 0 and that uy satisfies

f(uo) = maxmin f(z +y).

Here we note that the existence of ug € H such that T'(ug) = 0 also
derive from Proposition 2.
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