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Abstract. In this paper we give a non-existence theorem for Hopf hypersurfaces M in

complex two-plane Grassmannians G2(Cm+2) whose normal Jacobi operator R̄N is parallel

on the distribution F defined by F = [ξ]∪D⊥, where [ξ] = Span{ξ}, D⊥ = Span{ξ1, ξ2, ξ3}
and TxM = D⊕D⊥, x ∈ M .

1. Introduction

The geometry of real hypersurfaces in complex space forms or in quaternionic
space forms is one of interesting parts in the field of differential geometry. Until
now there have been many characterizations for homogeneous hypersurfaces of type
(A1), (A2), (B), (C), (D) and (E) in complex projective space CPm, of type (A1),
(A2) and (B) in quaternionic projective space HPm, or of type (A) and (B) in com-
plex two-plane Grassmannians G2(Cm+2). Each corresponding geometric features
are classified and investigated by Berndt [2], Pérez, Santos and Suh [13], Ki and
Suh [9], Kimura [10], Berndt and Suh [3] and [4], respectively.

Let (M̄, ḡ) be a Riemannian manifold. A vector field U along a geodesic γ in
a Riemannian manifold M̄ is said to be a Jacobi field if it satisfies a differential
equation

∇̄2
γ̇U + R̄(U(t), γ̇(t))γ̇(t) = 0,

where ∇̄γ̇U and R̄ respectively denotes the covariant derivative of the vector field
U along the curve γ in M̄ and the curvature tensor of the Riemannian manifold
(M̄, ḡ). Then this equation is called the Jacobi equation.
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The Jacobi operator R̄X for any tangent vector field X at x ∈ M̄ , is defined by

(R̄XY )(x) = (R̄(Y,X)X)(x)

for any Y ∈ TxM̄ , becomes a self adjoint endomorphism of the tangent bundle TM̄
of M̄ . That is, the Jacobi operator satisfies R̄X ∈ End(TxM̄) and is symmetric in
the sense of ḡ(R̄XY,Z) = ḡ(R̄XZ, Y ) for any vector fields Y and Z on M̄ .

The almost contact structure vector fields {ξ1, ξ2, ξ3} are defined by ξi = −JiN ,
i = 1, 2, 3, where {J1, J2, J3} denote a canonical local basis of a quaternionic Kähler
structure J of HPm and N a unit normal field of M in HPm. In a quaternionic
projective space HPm, Pérez and Suh [11] have classified real hypersurfaces in
HPm with D⊥-parallel curvature tensor, that is, ∇ξiR = 0, i = 1, 2, 3, where
R denotes the curvature tensor of M in HPm and D⊥ a distribution defined by
D⊥ = Span{ξ1, ξ2, ξ3}. In such a case they are congruent to a tube of radius π

4 over
a totally geodesic HP k in HPm, 0 ≤ k ≤ m− 1.

Kimura [10] proved that any tube M around a complex submanifold in complex
projective space CPm are characterized by the invariant of Aξ = αξ, where the
Reeb vector ξ is defined by ξ = −JN for a Kähler structure J and a unit normal
N to hypersurfaces M in CPm. Moreover, the corresponding geometrical feature
for hypersurfaces in HPm is the invariant of the distribution D⊥ = Span{ξ1, ξ2, ξ3}
by the shape operator, where ξi = −JiN , Ji ∈ J. In fact, every tube around
a quaternionic submanifold HPm satisfies such kind of geometrical feature (See
Alekseevskii [1]).

The complex two-plane Grassmannians G2(Cm+2) which consists of all complex
two dimensional linear subspaces in Cm+2 has a remarkable geometric structure.
It is known to be the unique compact irreducible Riemannian symmetric space
equipped with both a Kähler structure J and a quaternionic Kähler structure J (See
Berndt and Suh [3]). From such a view point, Berndt and Suh [3] considered two
natural geometric conditions for real hypersurfaces in G2(Cm+2) that [ξ] = Span{ξ}
and D⊥ = Span{ξ1, ξ2, ξ3} are invariant under the shape operator. By using such
conditions and the result in Alekseevskii [1], Berndt and Suh [3] proved the following

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3. Then
both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

The structure vector field ξ of a real hypersurface M in G2(Cm+2) is said to be
a Reeb vector field. If the Reeb vector field ξ of a real hypersurface M in G2(Cm+2)
is invariant by the shape operator, M is said to be a Hopf hypersurface. In such
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a case the integral curves of the Reeb vector field ξ are geodesics (See Berndt and
Suh [4]). Moreover, the flow generated by the integral curves of the structure vector
field ξ for Hopf hypersurfaces in G2(Cm+2) is said to be a geodesic Reeb flow. And
the corresponding principal curvature α is non-vanishing we say that M is with
non-vanishing geodesic Reeb flow.

Now by putting a unit normal vector N into the curvature tensor R̄ of the
ambient space G2(Cm+2), we calculate the normal Jacobi operator R̄N in such a
way that

R̄NX = R̄(X,N)N

= X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)(ϕνϕX − η(X)ξν)− ην(ϕX)ϕνξ

}
for any tangent vector field X on M in G2(Cm+2) (See [5]).

In papers [5] and [6] due to Jeong, Pérez and Suh we have introduced a notion
of normal Jacobi operator R̄N for hypersurfaces in G2(Cm+2) in such a way that

R̄N = R̄(X,N)N ∈ End(TxM), x ∈ M,

where R̄ denotes the curvature tensor of G2(Cm+2). They [5] have also classified
real hypersurfaces in G2(Cm+2) with commuting normal Jacobi operator, that is,
R̄N ◦ ϕ = ϕ ◦ R̄N or otherwise R̄N ◦ A = A ◦ R̄N and proved that the commuting
normal Jacobi operator R̄N with the shape operator A is equivalent to the fact
that the distributions D and D⊥ are invariant by the shape operator A for Hopf
hypersurfaces M in G2(Cm+2), where TxM = D⊕D⊥, x ∈ M . Moreover, a normal
Jacobi operator for hypersurface M in G2(Cm+2) is said to be parallel if ∇XR̄N = 0
for any X in TxM , x ∈ M (See [7]). And in paper [7], the present authors and
Kim proved a non-existence theorem for Hopf hypersurfaces in complex two-plane
Grassmannians G2(Cm+2), m ≥ 3, with parallel normal Jacobi operator as follows:

Theorem B. There do not exist any connected Hopf hypersurfaces in G2(Cm+2),
m ≥ 3, with parallel normal Jacobi operator.

On the other hand, Suh [15] obtained a non-existence theorem for Hopf hyper-
surfaces in G2(Cm+2) with parallel shape operator on the distribution F defined by
F = [ξ] ∪ D⊥, where [ξ] = Span{ξ}, D⊥ = Span{ξ1, ξ2, ξ3} and TxM = D ⊕ D⊥,
x ∈ M .

As a generalization of parallel normal Jacobi operator, let us introduce the
notion of parallel normal Jacobi operator along the distribution F, that is, ∇XR̄N =
0 for any X in F, defined by F = [ξ] ∪D⊥ on M in G2(Cm+2).



398 Imsoon Jeong and Young Jin Suh

A F-parallel normal Jacobi operator means that the normal Jacobi operator
R̄N is parallel along the distribution F of M in G2(Cm+2), that is, the eigenspaces
of the normal Jacobi operator R̄N is parallel along the distribution F of M . Here
the eigenspaces of the normal Jacobi operator R̄N are said to be parallel along the
distribution F if they are invariant with respect to any parallel displacement along
the distribution F.

As a generalization of Theorem B, we prove a non-existence theorem for Hopf
hypersurfaces in G2(Cm+2), m≥3, with F-parallel normal Jacobi operator as fol-
lows:

Main Theorem. There do not exist any connected Hopf hypersurfaces in
G2(Cm+2), m ≥ 3, with F-parallel normal Jacobi operator, where F = [ξ] ∪ D⊥.

2. Riemannian geometry of Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we
refer to [3], [4], [16] and [17].

By G2(Cm+2) we denote the set of all complex two-dimensional linear subspaces
in Cm+2. The special unitary group G = SU(m+2) acts transitively on G2(Cm+2)
with stabilizer isomorphic to K = S(U(2) × U(m)) ⊂ G. Then G2(Cm+2) can
be identified with the homogeneous space G/K, which we equip with the unique
analytic structure for which the natural action of G on G2(Cm+2) becomes analytic.
Denote by g and k the Lie algebra of G and K, respectively, and by m the orthogonal
complement of k in g with respect to the Cartan-Killing form B of g. Then g = k⊕m
is an Ad(K)-invariant reductive decomposition of g.

We put o = eK and identify ToG2(Cm+2) with m in the usual manner. Since B
is negative definite on g, its negative restricted to m × m yields a positive definite
inner product on m. By Ad(K)-invariance of B this inner product can be extended
to a G-invariant Riemannian metric ḡ on G2(Cm+2).

In this way G2(Cm+2) becomes a Riemannian homogeneous space, even a Rie-
mannian symmetric space. For computational reasons we normalize ḡ such that the
maximal sectional curvature of (G2(Cm+2), ḡ) is eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective
space CP 2 with constant holomorphic sectional curvature eight.

When m = 2, we note that the isomorphism Spin(6) ≃ SU(4) yields an isom-
etry between G2(C4) and the real Grassmann manifold G+

2 (R6) of oriented two-
dimensional linear subspaces of R6.

In this paper, we will assume m ≥ 3.

The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕ R,
where R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2), the
center R induces a Kähler structure J and the su(2)-part a quaternionic Kähler
structure J on G2(Cm+2).
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Let Jν , ν = 1, 2, 3, be a canonical local basis, which becomes an almost Hermi-
tian structure in J. Then JJν = JνJ and JJν is a symmetric endomorphism with
(JJν)

2 = I and Tr(JJν) = 0, ν = 1, 2, 3.

A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian
structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index is taken
modulo three. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(Cm+2), ḡ), there exist for any canonical local basis J1, J2, J3 of J three local
one-forms q1, q2, q3 such that

(2.1) ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(Cm+2).

The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X,Y )Z = ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX

− ḡ(JX,Z)JY − 2ḡ(JX, Y )JZ

+
3∑

ν=1

{
ḡ(JνY, Z)JνX − ḡ(JνX,Z)JνY − 2ḡ(JνX,Y )JνZ

}
+

3∑
ν=1

{
ḡ(JνJY, Z)JνJX − ḡ(JνJX,Z)JνJY

}
,

(2.2)

where J1, J2, J3 is any canonical local basis of J (See [3]).

3. Some fundamental formulas

In this section we derive some basic formulae from the Codazzi equation for a
real hypersurface in G2(Cm+2) (See [3], [4], [14], [15], [16] and [17]).

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2)
with real codimension one. The induced Riemannian metric on M will be de-
noted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local
unit normal field of M and A the shape operator of M with respect to N . The
Kähler structure J of G2(Cm+2) induces on M an almost contact metric structure
(ϕ, ξ, η, g). Furthermore, let J1, J2, J3 be a canonical local basis of J. Then each Jν
induces an almost contact metric structure (ϕν , ξν , ην , g) on M . Using the above
expression (2.2) for the curvature tensor R̄, the Gauss and Codazzi equations are
respectively given by

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y

+ g(ϕY,Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ

+
3∑

ν=1

{g(ϕνY,Z)ϕνX − g(ϕνX,Z)ϕνY − 2g(ϕνX,Y )ϕνZ}
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+

3∑
ν=1

{g(ϕνϕY,Z)ϕνϕX − g(ϕνϕX,Z)ϕνϕY }

−
3∑

ν=1

{η(Y )ην(Z)ϕνϕX − η(X)ην(Z)ϕνϕY }

−
3∑

ν=1

{η(X)g(ϕνϕY,Z)− η(Y )g(ϕνϕX,Z)}ξν

+ g(AY,Z)AX − g(AX,Z)AY

and

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ

+
3∑

ν=1

{
ην(X)ϕνY − ην(Y )ϕνX − 2g(ϕνX,Y )ξν

}
+

3∑
ν=1

{
ην(ϕX)ϕνϕY − ην(ϕY )ϕνϕX

}
+

3∑
ν=1

{
η(X)ην(ϕY )− η(Y )ην(ϕX)

}
ξν ,

where R denotes the curvature tensor of a real hypersurface M in G2(Cm+2).

The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations:

ϕν+1ξν = −ξν+2, ϕνξν+1 = ξν+2,

ϕξν = ϕνξ, ην(ϕX) = η(ϕνX),

ϕνϕν+1X = ϕν+2X + ην+1(X)ξν ,

ϕν+1ϕνX = −ϕν+2X + ην(X)ξν+1.

(3.1)

Now let us put

(3.2) JX = ϕX + η(X)N, JνX = ϕνX + ην(X)N

for any tangent vector X of M in G2(Cm+2), where N denotes a normal vector of
M in G2(Cm+2). Then from this and the formulas (2.1) and (3.1) we have that

(3.3) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = ϕAX,

(3.4) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX,

(∇Xϕν)Y = −qν+1(X)ϕν+2Y + qν+2(X)ϕν+1Y + ην(Y )AX

− g(AX,Y )ξν .

(3.5)
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Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

(3.6) ϕϕνX = ϕνϕX + ην(X)ξ − η(X)ξν .

4. Key lemmas

Now let us consider a real hypersurface M in G2(Cm+2) with parallel normal
Jacobi operator R̄N , that is, ∇XR̄N = 0 for any vector field X on M . Then first
of all, we want to derive the normal Jacobi operator from the curvature tensor
R̄(X,Y )Z of complex two-plane Grassmannian G2(Cm+2) given in (2.2). So the
normal Jacobi operator R̄N is given by

R̄N (X) = R̄(X,N)N

= X + 3η(X)ξ + 3

3∑
ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)Jν(ϕX + η(X)N)− ην(ϕX)(ϕνξ + ην(ξ)N)

}
= X + 3η(X)ξ + 3

3∑
ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)(ϕνϕX − η(X)ξν)− ην(ϕX)ϕνξ

}
,

where we have used the following

g(JνJN,N) = −g(JN, JνN) = −g(ξ, ξν) = −ην(ξ),

g(JνJX,N) = g(X, JJνN) = −g(X, Jξν)

= −g(X,ϕξν + η(ξν)N) = −g(X,ϕξν)

and
JνJN = −Jνξ = −ϕνξ − ην(ξ)N.

Of course, by (3.6) the normal Jacobi operator R̄N could be symmetric endomor-
phism of TxM , x ∈ M (See [5]).

Now let us consider a covariant derivative of the normal Jacobi operator R̄N

along any direction X of TxM , x ∈ M (See [6], [7]). Then it is given by

(∇XR̄N )Y = ∇X(R̄NY )− R̄N (∇XY )

= 3(∇Xη)(Y )ξ + 3η(Y )∇Xξ + 3
3∑

ν=1

(∇Xην)(Y )ξν

+ 3
3∑

ν=1

ην(Y )∇Xξν −
3∑

ν=1

[
X(ην(ξ))(ϕνϕY − η(Y )ξν)

+ ην(ξ)
{
(∇Xϕνϕ)Y − (∇Xη)(Y )ξν − η(Y )∇Xξν

}
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− (∇Xην)(ϕY )ϕνξ − ην((∇Xϕ)Y )ϕνξ − ην(ϕY )∇X(ϕνξ)
]
,

where the formula X(ην(ξ)) in the right side is given by

X(ην(ξ)) = g(∇Xξν , ξ) + g(ξν ,∇Xξ)

= qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ) + 2g(ϕνAX, ξ).

From this, together with the formulas given in section 3, a real hypersurface M in
G2(Cm+2) with parallel normal Jacobi operator, that is, ∇XR̄N = 0 for any vector
field X on M , satisfies the following

0 = 3g(ϕAX, Y )ξ + 3η(Y )ϕAX

+ 3

3∑
ν=1

{
qν+2(X)ην+1(Y )− qν+1(X)ην+2(Y )

+ g(ϕνAX,Y )
}
ξν

+ 3
3∑

ν=1

ην(Y )
{
qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX

}
−

3∑
ν=1

[{
qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ)

+ 2ην(ϕAX)
}
(ϕνϕY − η(Y )ξν)

+ ην(ξ)
{
− qν+1(X)ϕν+2ϕY + qν+2(X)ϕν+1ϕY

+ ην(ϕY )AX − g(AX,ϕY )ξν

+ η(Y )ϕνAX − g(AX,Y )ϕνξ − g(ϕAX, Y )ξν

− η(Y )(qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX)
}

−
{
qν+2(X)ην+1(ϕY )− qν+1(X)ην+2(ϕY )

+ g(ϕνAX,ϕY )
}
ϕνξ

−
{
η(Y )ην(AX)− g(AX,Y )ην(ξ)

}
ϕνξ

− ην(ϕY )
{
qν+2(X)ϕν+1ξ − qν+1(X)ϕν+2ξ

+ ϕνϕAX − g(AX, ξ)ξν + η(ξν)AX
}]

.

(4.1)
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On the other hand, we know that the following formulas vanish.

3∑
ν=1

{
qν+2(X)ην+1(Y )ξν − qν+1(X)ην(Y )ξν+2

}
= 0,

3∑
ν=1

{
qν+2(X)ην(Y )ξν+1 − qν+1(X)ην+2(Y )ξν

}
= 0,

3∑
ν=1

{
qν+2(X)ην+1(ξ)ϕνϕY − qν+1(X)ην(ξ)ϕν+2ϕY

}
= 0,

3∑
ν=1

{
qν+2(X)ην(ξ)ϕν+1ϕY − qν+1(X)ην+2(ξ)ϕνϕY

}
= 0,

3∑
ν=1

{
qν+1(X)η(Y )ην(ξ)ξν+2 − qν+2(X)η(Y )ην+1(ξ)ξν

}
= 0,

3∑
ν=1

{
qν+1(X)η(Y )ην+2(ξ)ξν − qν+2(X)η(Y )ην(ξ)ξν+1

}
= 0,

3∑
ν=1

{
qν+1(X)ην+2(ϕY )ϕνξ − qν+2(X)ην(ϕY )ϕν+1ξ

}
= 0

and

3∑
ν=1

{
qν+1(X)ην(ϕY )ϕν+2ξ − qν+2(X)ην+1(ϕY )ϕνξ

}
= 0.

From these, the derivative of the normal Jacobi operator (4.1) becomes

0 = (∇XR̄N )Y

= 3g(ϕAX, Y )ξ + 3η(Y )ϕAX

+ 3
3∑

ν=1

{
g(ϕνAX,Y )ξν + ην(Y )ϕνAX

}
−

3∑
ν=1

[
2ην(ϕAX)(ϕνϕY − η(Y )ξν)− g(ϕνAX,ϕY )ϕνξ

− η(Y )ην(AX)ϕνξ − ην(ϕY )(ϕνϕAX − g(AX, ξ)ξν)
]

(4.2)

for any tangent vector fields X and Y on M in G2(Cm+2).
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By putting X = ξµ and replacing Y by X in (4.2) we have

0 = (∇ξµR̄N )X

= 3g(ϕAξµ, X)ξ + 3η(X)ϕAξµ

+ 3
3∑

ν=1

{
g(ϕνAξµ, X)ξν + ην(X)ϕνAξµ

}
−

3∑
ν=1

[
2ην(ϕAξµ)(ϕνϕX − η(X)ξν)− g(ϕνAξµ, ϕX)ϕνξ

− η(X)ην(Aξµ)ϕνξ − ην(ϕX)(ϕνϕAξµ − g(Aξµ, ξ)ξν)
]
.

(4.3)

From this, by putting X = ξ in (4.3), it follows that

0 = (∇ξµR̄N )ξ

= 3ϕAξµ + 5
3∑

ν=1

ην(ϕAξµ)ξν + 3
3∑

ν=1

ην(ξ)ϕνAξµ +
3∑

ν=1

ην(Aξµ)ϕνξ

(4.4)

for any µ = 1, 2, 3.
We consider the notion of parallel normal Jacobi operator along the direction

of the Reeb vector ξ, that is, ∇ξR̄N = 0 for a hypersurface M in G2(Cm+2). We
assert the following

Lemma 4.1. Let M be a Hopf hypersurface in G2(Cm+2), m ≥ 3. If the normal
Jacobi operator R̄N is parallel in the direction of the structure vector ξ, then the
Reeb vector ξ belongs to either the distribution D or the distribution D⊥.

Proof. Putting X = Y = ξ in (4.2), we have

(4.5) 0 = 4α
3∑

ν=1

ην(ξ)ϕνξ,

where we have used Aξ = αξ. From this, we have α = 0 or
∑3

ν=1 ην(ξ)ϕνξ = 0.
In the case where M is with vanishing geodesic Reeb flow, it can be verified

directly by Pérez and Suh [12].
Now let us consider the other case that M is with non-vanishing geodesic Reeb

flow, that is, α ̸= 0. Then we assume that ξ = η(X0)X0 + η(ξ1)ξ1 for some unit
X0 ∈ D and the non-zero functions η(X0) and η(ξ1). From this, together with (4.5),
it follows that

0 = η1(ξ)ϕ1ξ

= η1(ξ)ϕ1(η(X0)X0 + η(ξ1)ξ1)

= η1(ξ)η(X0)ϕ1X0.
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Then two non-zero functions η1(ξ) and η(X0) give

ϕ1X0 = 0,

which makes a contradiction. This means η(X0) = 0 or η(ξ1) = 0, that is, the Reeb
vector ξ belongs to either the distribution D or the distribution D⊥. 2

Next, we consider the notion of parallel normal Jacobi operator along the dis-
tribution D⊥, that is, ∇ξµR̄N = 0, µ = 1, 2, 3, for a hypersurface M in G2(Cm+2).
Then we obtain the following

Lemma 4.2. Let M be a Hopf real hypersurface in G2(Cm+2), m ≥ 3, with D⊥-
parallel normal Jacobi operator and ξ ∈ D⊥. Then g(AD,D⊥) = 0.

Proof. Assume that ξ is tangent to D⊥. Then the unit normal N is a singular
tangent vector of G2(Cm+2) of type JN ∈ JN . So there exists an almost Hermitian
structure J1 ∈ J such that JN = J1N . Then we have

ξ = ξ1, ϕξ2 = −ξ3, ϕξ3 = ξ2, ϕD ⊂ D.

Putting ξ = ξ1 into (4.4), we have

0 = 3ϕAξµ + 5
3∑

ν=1

ην(ϕAξµ)ξν + 3ϕ1Aξµ +
3∑

ν=1

ην(Aξµ)ϕνξ.

From this, taking an inner product with any X ∈ D and using g(ϕνξ,X) = 0, we
have

(4.6) 0 = 3g(ϕAξµ, X) + 3g(ϕ1Aξµ, X).

On the other hand, by using (3.4) we know that

ϕAξµ = ∇ξµξ

= ∇ξµξ1

= q3(ξµ)ξ2 − q2(ξµ)ξ3 + ϕ1Aξµ.

From this, taking an inner product with any X ∈ D, we have

g(ϕAξµ, X) = g(ϕ1Aξµ, X).

Substituting this formula into (4.6) gives

(4.7) 0 = g(ϕAξµ, X).

From this, let us replace X by ϕX in (4.8). Then it follows that

0 = g(ϕAξµ, ϕX)

= −g(Aξµ, ϕ
2X)

= g(AX, ξµ)
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for any X ∈ D, µ = 1, 2, 3. This gives a complete proof of our Lemma. 2

Moreover, in order to prove our theorem, we need the following

Lemma 4.3. Let M be a Hopf hypersurface in G2(Cm+2), m ≥ 3, with D⊥-parallel
normal Jacobi operator and ξ ∈ D. Then g(AD,D⊥) = 0.

Proof. Put the subset D0 of D as D0 = {X ∈ D | X⊥ ξ, ϕ1ξ, ϕ2ξ, ϕ3ξ}. Then the
tangent vector space TxM for any point x ∈ M is denoted by

TxM = D⊕D⊥

= [ξ]⊕ [ϕ1ξ, ϕ2ξ, ϕ3ξ]⊕D0 ⊕D⊥,

where [ϕ1ξ, ϕ2ξ, ϕ3ξ] denotes a subspace of the distribution D spanned by the
vectors {ϕ1ξ, ϕ2ξ, ϕ3ξ}.

In order to show that g(AX, ξµ) = 0 for any X ∈ D and µ = 1, 2, 3, first we
consider for X = ξ. Then we have g(Aξ, ξµ) = αg(ξ, ξµ) = 0 for any µ = 1, 2, 3.

Next, we consider the case that any X ∈ [ϕ1ξ, ϕ2ξ, ϕ3ξ]. Put X = ϕνξ, ν =
1, 2, 3. Since η(ξν) = 0 for any ν = 1, 2, 3, we see that g(∇ξµξ, ξν) = −g(ξ,∇ξµξν)
for any µ = 1, 2, 3. Thus we have

g(Aϕνξ, ξµ) = g(ϕξν , Aξµ)

= −g(ξν , ϕAξµ)

= −g(ξν ,∇ξµξ)

= g(∇ξµξν , ξ)

= g(qν+2(ξµ)ξν+1 − qν+1(ξµ)ξν+2 + ϕνAξµ, ξ)

= g(ϕνAξµ, ξ)

= −g(Aϕνξ, ξµ).

Consequently we have
g(Aϕνξ, ξµ) = 0

for any µ, ν = 1, 2, 3.
Finally, we consider the case that any X ∈ D0. By putting X = ξ1 in (4.3), we

have

0 = 3g(ϕAξµ, ξ1)ξ + 3
3∑

ν=1

g(ϕνAξµ, ξ1)ξν + 3ϕ1Aξµ

−
3∑

ν=1

{
2ην(ϕAξµ)ϕνϕξ1 − g(ϕνAξµ, ϕξ1)ϕνξ

}
.

(4.8)

To avoid confusion, we put X = X0 ∈ D0, where the distribution D0 is defined
by

D0 = {X ∈ D | X⊥ξ, ϕ1ξ, ϕ2ξ, ϕ3ξ}.
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Now let us take an inner product (4.8) with any X0 ∈ D0, we have

(4.9) 0 = 3g(ϕ1Aξµ, X0)− 2
3∑

ν=1

ην(ϕAξµ)g(ϕνϕξ1, X0).

On the other hand, by using (3.6) we know that

g(ϕνϕξ1, X0) = g(ϕϕνξ1 − ην(ξ1)ξ + η(ξ1)ξν , X0)

= g(ϕϕνξ1, X0)

= 0

for any X0 ∈ D0 and any ν = 1, 2, 3. Substituting this formula into (4.9), we have

(4.10) 0 = g(ϕ1Aξµ, X0)

for any X0 ∈ D0. Here let us replace X0 by ϕ1X0 in (4.10). Then we have

0 = g(ϕ1Aξµ, ϕ1X0)

= −g(Aξµ, ϕ1
2X0)

= g(AX0, ξµ)

for any X0 ∈ D0 and µ = 1, 2, 3. From these facts we assert that g(AX, ξµ) = 0 for
any X ∈ D and any µ = 1, 2, 3. This gives a complete proof of our Lemma. 2

5. F-parallel normal Jacobi operator

Now in this section we consider the weaker condition than having parallel nor-
mal Jacobi operator. So as a generalization of the notion of parallel normal Jacobi
operator, we consider a notion of parallel normal Jacobi operator along the distri-
bution F defined by F = [ξ] ∪ D⊥ on M in G2(Cm+2), where [ξ] = Span{ξ} and
D⊥ = Span{ξ1, ξ2, ξ3}. Then, on such a distribution F we can use Lemmas 4.1, 4.2
and 4.3. Then we assert the following

Proposition 5.1. Let M be a Hopf hypersurface in G2(Cm+2), m ≥ 3, with F-
parallel normal Jacobi operator. Then g(AD,D⊥) = 0.

By Proposition 5.1 and Theorem A in the introduction, we have

Proposition 5.2. Let M be a Hopf hypersurface in G2(Cm+2), m ≥ 3, with F-
parallel normal Jacobi operator. Then M is congruent to an open part of one of the
following real hypersurfaces in G2(Cm+2):

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2).

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).
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Before giving the proof of our main theorem, we will check whether any kind of
hypersurfaces in Theorem A satisfy F-parallel normal Jacobi operator.

By Lemma 4.2 and Theorem A we know that M is locally congruent to a tube
over a totally geodesic G2(Cm+1) in G2(Cm+2).

Then it naturally rises to a problem that the normal Jacobi operator R̄N of
hypersurfaces of type A in Theorem A satisfies F-parallel or not? Corresponding to
such a problem, we introduce the following due to Berndt and Suh [3]

Proposition A. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost
Hermitian structure such that JN = J1N . Then M has three (if r = π/2

√
8) or

four (otherwise) distinct constant principal curvatures

α =
√
8 cot(

√
8r), β =

√
2 cot(

√
2r), λ = −

√
2 tan(

√
2r), µ = 0

with some r ∈ (0, π/
√
8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces we have

Tα = Rξ = RJN = Rξ1,
Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3,
Tλ = {X | X⊥Hξ, JX = J1X},
Tµ = {X | X⊥Hξ, JX = −J1X},

where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span of
the structure vector ξ and C⊥ξ denotes the orthogonal complement of Cξ in Hξ.

Let us consider for µ = 2 in (4.4). Then we have

0 = (∇ξ2R̄N )ξ

= 3ϕAξ2 + 5
3∑

ν=1

ην(ϕAξ2)ξν + 3
3∑

ν=1

ην(ξ)ϕνAξ2 +
3∑

ν=1

ην(Aξ2)ϕνξ.

(5.1)

Now let us suppose that M is of type (A) with F-parallel normal Jacobi operator
and its Reeb vector ξ ∈ D⊥. Then, by using Proposition A and ϕξ2 = −ξ3, ϕξ3 = ξ2,
the equation (5.1) can be written

0 = 3βϕξ2 + 5β

3∑
ν=1

ην(ϕξ2)ξν + 3β

3∑
ν=1

ην(ξ)ϕνξ2 + β

3∑
ν=1

ην(ξ2)ϕνξ

= −3βξ3 − 5βξ3 + 3βϕ1ξ2 + βϕ2ξ

= −6βξ3.

(5.2)
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Thus, we have β = 0 and this case also can not occur for some r ∈ (0, π/
√
8). This

makes a contradiction.

On the other hand, by Lemma 4.3 and Theorem A we know that M is locally
congruent to a tube over a totally geodesic HPn in G2(Cm+2), m = 2n. Now
it remains only to check that whether real hypersurfaces of type (B) in Theorem
A satisfy F-parallel normal Jacobi operator or not? Then in order to do this we
introduce the following due to Berndt and Suh [3]

Proposition B. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension
m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal
curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,

where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Let us consider for µ = 2 in (4.4) and ξ ∈ D. Then, by using Proposition B and
(3.1), (4.4) can be written

0 = 3βϕξ2 + 5β
3∑

ν=1

ην(ϕξ2)ξν + 3β
3∑

ν=1

ην(ξ)ϕνξ2 + β
3∑

ν=1

ην(ξ2)ϕνξ

= 3βϕξ2 + βϕ2ξ

= 4βϕ2ξ.

Thus, we have β = 0 and this case also can not occur for some r ∈ (0, π/4). This
also makes a contradiction. Accordingly, we know that the normal Jacobi operator
R̄N for hypersurfaces of type (A) or of type (B) in Theorem A can not be F-parallel,
respectively.

From this, we complete the proof of our main Theorem in the introduction.
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