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ON A POSITIVE SUBHARMONIC BERGMAN FUNCTION

JUNG OK Kim AND ERN GUN KwON

ABSTRACT. A holomorphic function F' defined on the unit disc belongs
to AP*(0 < p < 00,1 < a < 00) if
1 1 e
/ B ()P (14log ——)  dady < oc.
U 1— 2| 1— 12|
For boundedness of the composition operator defined by Cyg = go f

mapping Blochs into AP*¢, the following (1) is a sufficient condition while
(2) is a necessary condition.

11 1
1 —(1+1
(1) /0 (14 log —

)" Mp(r, Ao f)P dr < oo,
'

Lo 1 \—atp » £\ P
2) /O (1 +log ) A= My (1) dr < oo

1. Introduction

We introduce few facts that we need in the sequel, most of which are well
known.

Let U denote the open unit disc of the complex plane.

For 1 < a <ooand 0 < p < oo, let AP denote the weighted Bergman
space of holomorphic functions on U, consisting of those holomorphic f in U
for which

—« 1/p
1 llare = /|f ‘ |(1+log1_| ) dedy) < .
Note that AP is different from AP*¢ | the well-known weighted Bergman space
of order «, & > —1, consisting of holomorphic functions f in U for which

i = ([ 18P0 1" ) < o
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For functions defined in U and for 0 < p < 00, 0 <r < 1, M, (r, f) is defined
as usual by

1 1/p

.0 = (55 | " e a0

For f with |f| subharmonic in U, we set
[fllp :=sup My(r, f).

Then the classical Hardy space H? = HP(U) is the space of those f holomorphic
in U for which || f||, < co. The Yamashita [8] hyperbolic Hardy class H? is
defined as the set of those holomorphic self-maps f of U for which ||o(f)|], < oo,
where o(z) denotes the hyperbolic distance of z and 0 in U, i.e.,

1. 147
=-1 .
o(z) 5 0g1_|z|

We set, following Yamashita,

1 /']
AT P
for holomorphic self-maps f of U. It obvious that f € H? if and only if
IA(f)|l, < oo and that f* is M-invariant in the sense that f* = (po £)* for
any ¢ € M, where M is the group of all automorphisms of U.

The Bloch space B consists of holomorphic functions A in U for which

fﬁ

sup |W(2)] (1= |2°) < oo.
zeU

This is a Banach space, if the norm ||h||s of h € B is defined to be the sum of
|h(0)| and the left side of above inequality. A pair of Bloch functions h;, j = 1,2
are constructed such that

(1.1) (L= =) (R + hy(2))) 2 1, z€U
([6]). Then it follows that

1 , - C
(1.2) Wﬁ\fh fI+ [ny f|§71—|f\2

for holomorphic self-maps f, where C = 2max{||hy||s, ||h2]5}- For h € B, it
follows from Schwarz-Pick’s Lemma ([2]) that

(1.3) |(ho f)(2)] < Ihllsf*(2) < |Ihlls z€eU.

1— 2"

For f: U — U be holomorphic, the composition operator C generated by
f is defined by Cth = ho f, h € B. Also, we define C'}Q by C’?h =ho f—h(0).
See [7].

Our results in this note are as follows.
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Theorem 1. A(z) = log ﬁ, |z| < 1. Let f : U — U be holomorphic and
1 <a<oo,1<p<oo. Then the following (1) implies (3) with 6 = «; (3)
implies (2) with § = a — p, and (2) implies (1).

(1) The composition operator Cy : B — AP* is bounded.
! 1
(2) /0 ﬁ(l"‘logl_’r)_a Mp(r,)\of)p dr < oo.
Lo 1 P
(3) / (1+log )01 —7)P M, (r, fﬁ) dr < oo.
o 1—r 1—r

After introducing simple but useful lemmas in Section 2, we will prove our
main results in Section 3.

2. Lemmas

Lemma 1. Let f : U — U be holomorphic and h : U — C be holomorphic.
Then, for 1 <p < oo and 1 < a < oo,

1 1 —a /
/U 1—7|z|(1 +log 1_7|Z|) (1= [2])? [(ho f)(2)]" dedy

) (ko f)(z) = h(0)| dady,

1
1—|z|
where Cy, p, 15 a constant depending on o and p.

Proof. We show that there is a constant C, , depending only on p and a such
that

1 1 1 —« 27 )
141 1—7)? rd ho £) (ret)” do
| sty s [ e pye)
1 —a

1 1 27 )
< Cap 1—(1 + log 1 r> rdr / |(ho f)(re®) — h(0)[" dé.
0

o LT -

Let ho f — h(0) = F. Then

By [1, p. 80]
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1 —«
1 1
/0 l—r(l—HOgl—r) (1 —7)2 My(r, F") rdr

1 —a 1+r p
1 1 M( F)
< 4P 141 1— p(p#) d
/0 1—r( +Ogl—r) ( ) 1—r rar

1 _
1 1" 141 NP
< 4?/ - (1+log . 7n) MP(T’F) rdr

1 —«
< Cy p/ (1+ log r) My, (r, F)? rdr,

where C, p is a constant dependmg on « and p. Therefore

1 1 1 —a 27 )
1+1 1—7r)P rd ho f) (re®)[" do
| o) e [ e fy e

1 -« 27
1 1 " »
< — 0y _ _
_Ca’p/o 1—r(1+10g1—r) rdr /0 [(ho f)(re"™) — h(0)|" d 0

Lemma 2. Let f: U — U be holomorphic. Then

887"(10g1_1|f|2) < 2fﬁ.

Proof. Tt is easy to see that

) - a0) - S

where f,. = g—f. But since

of 0foz /it

fr:ar 0z or

and _ _
F_O0f _0foz _ 4 -
= T azar e

it follows that

Q(log 1 ) - fre? + fre's
or\ 71— |f] 1-|f?
_ 2Re(ff'e')
1—|ff?
Z A
T1-fP

Noting that |f| < 1, we obtain

;ﬁ(logllw)§2fﬁ. -
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Lemma 3. Let \(z) = log ﬁ, |z| < 1. Let f : U — U be holomorphic and
1<a<oo,l1<b<oo,l1<p<oo. Then

1
1 1 (-» o
/0 l—r(1+10g1—r) My(r, Ao f)* dr

< Ao fO)"

2 ¢ 11
+(b71) /0 17T(1+log

)T ) A G, )

Proof. Integrating by parts, we have

| 1 (s o
/Ol—r(1+10g1—r) My(r, Ao f)* dr

1

1 .-
(1 1o ) My o e

-b+1 1 0
! 1\ —bt1 8
— 141
/0 7b+1(+oglir) o M, (r,Xo f)* dr
—1 a ! 1 br1 O "
= 1 M0 A ) —/0 7 Hlos =) My Ao f)" dr
1 ! 1 (1-50 "
:b_1|)\0f( ) +r— ; (1+log1_r) aMp(r,)\of) dr,
so that
. 1 o
/1_ (1+10g1 ) My(r, Ao f)* dr
(2.1) 0 ,
:7‘)‘0 Jr7/ (1 +log ) bg Myp(r, Ao f)* dr.
But, since
9 o a1 0
EMP(T,)\O]C) :aMp(T,)\Of) o — M, (T’ )\Of)
a a— 10
:];Mp(ry/\of) PpMy(r, Mo f)P 1(“)7 p(r, Ao f)

_a a—p 0 p
- pMp('I",AOf) 6TMP(T7>\Of) ’

we have

(2.2) %Mp(r,)\of)a - %Mp(r,)\o f)“*”%Mp(r,Ao )P
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And since
p—1 0

D xo 1) <| o sre®))?| = [pixo sirey) ™ 2

o = (N0 f(re"))]

N2 e

< 2p|(ho f(re )" |fHre?)

< |pro flre))’

where we used Lemma 2 in last inequality, we have
9 , S ,
)gw o f(re)" Fre®) P (e,
r

By (2.2) and (2.3),

9
or

(2.3)

My(r, Ao e

a ap O
= ‘E M,(r,Xo f) paMp(r,)\Of)p

a L, [0 , do
< = a—p 0y P
<Saae [ Tne et
27
a _ p—1 df
<2 a—p # .
=5 Mp(r, Ao f) /O 2p[Xo f(re)[" " fi(re )27r

Thus it follows from Hélder’s inequality that
0

EMP(T,)\Of)a
27
< % My(r.xo )" / 2N o (e’ fi(rei®) 2
p 0 2'/T
27 (p—1)/p
a—p 0 p—1,P/(P=1) df
<20 Myro ) ( [ (|Ao fret) )

([ ireenr ey

=2a Mpy(r, o f )“pM(T/\O PP My(r, %)
= 2a My(r,Xo f)*"" My(r, f )

for p > 1. This is also true when p = 1. Consequently, the last integral of (2.1)
is dominated by

! 1
2 1+1
a/o (1 log 3=

=)' My he 1) My (1 ) dr

1-1/a

1 —b o
7ﬂ) My(r,Ao f) dr}
1/a

1 1-a
AL G e ) T M
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where Holder’s inequality has been used again. Therefore by (2.4), (2.1) is
dominated by

!
/Ol_r(l+log
1
1 a
(25) < p—7AefO)
2a (' 1 1 o
+b—1{/0 -, (1—&—10g1 r) My(r,Ao f) dr}

1 1 l1—a 1 bta g 1/‘1
X{/o (1—r) (1+10g1_r) My (r, f*) dr}

In order to obtain the desired inequality, let

|
A= ——(1+1
/0 [ (I +logy

1
]. ]. —b+a a a
B:/O 1—r(1+10g1—r) (1 —r)*My(r, /) dr

for a moment. Then (2.5) can be expressed as

)7b Mpy(r, Ao f)* dr

0
) b@ My(r,Ao f)* dr

1 _
) b My(ryXo f)* dr
—r

and

1/a
A< oo O+ AV x (2 B]
Using
A*BY < @A+ (1-a)B (0<a<1),
we have ) ) )
a a ¢
< I _ -
A< o fO) + [(1- A+ (=) B,
equivalently
—A X0 F(O) + ( 20 "1
*b— b—1" a
Therefore
o 2a \°
A<7‘)‘o ( )| +<b71) B.
That is,

1
1
1+log
i
< e FO)f

1 )_b My(r,Xo f)* dr
_

2a \* [P 1 1\ —bsa .
+(b71) /0 177"(1+10g17r) (1 =) My(r, f*)°
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This completes the proof. ([
Lemma 4. Let g € B and f € H*®(U) with |f| < 1. Then

lgo f(z) —gO)] <llglls o(f(2)), z€U.
Proof. For w e U,

g I—‘/ ) dz| = ‘/wl (t€) ¢ dt|

|w|
< / 19/(tC)] dt

o] 1 ol g
< [ lgls——gdt = llgls /
/0 t¢|? , 1-¢

1
~lgll 5 tog et = llgls o).
whence
g0 f(2) =g(0)] <llglls o(f(2)), z€U. O

3. Proof of the results

Proof of Theorem 1. Suppose (1) holds. Using Minkowski’s inequality with
those hj, j = 1,2 of (2.1) and Lemma 1, we obtain
(3.1)

{/ 1—|z|(1+10g1—1|z|)

p l/p
1 (1+10 1 )
e &1

E (1—z))? (i hjo f)( ) dxdy

([ (e t) "ot e sy )

: 1 1 @ 1/p
a’p;{/zjllz(“rloglld) |(hj°f)(z)—hj(0)|pdwdy} :

where C, p is a constant depending on o and p.
Since

{50+ ee =) 1006 = oo dzdy}l/p

1 —«
< ||hi|ls su 7(1“0 )

IRl < 1

—x

1/p
(1 2 (F4(2))” d:cdy}

—Q

A
S
~

M-

Q

1/p
(ho £)(z) — h(O)])” dxdy} ,
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j=1,2, from (3.1) we have
(3.2)

1 ( 1
1+ log )
{/Ul—IZI 1— ||
1 1
< Cy,p su /7(1—1—10 7)
7, {U1—|z| *T-T|

Inlls <1
= Cap sup  |[ho f—h(0)]| 4p.
heB

[Irlls <1

= CaplICYll -

—

1/p
(1 o) (££()" dxdy}

—Q

1/p
(o £)(z) — h(O)” dxdy}

Thus (3) holds.

Also, (3) with 6 = a—p = (2) is proved in Lemma 3. And (2) = (1)
follows directly from Lemma 4 with an application of Minkowski’s inequality:
For g € B,

L 1 \7@
P R P
/0 1—r(1+10g1—r> My(r,go f)* dr

—Q

1
1 1
< HQH%/ 7(14'10%7) My(r,1+ 00 f)P dr < oo.
o 1—r =T

The proof is complete. (I
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