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DUAL SURFACES DEFINED BY z = f(u) + g(v) IN SIMPLY

ISOTROPIC 3-SPACE I13

Ali Çakmak, Murat Kemal Karacan, and Sezai Kiziltuğ

Abstract. In this study, we define the dual surfaces by z = f(u) + g(v)
and also classify these surfaces in I13 satisfying some algebraic equations

in terms of the coordinate functions and the Laplace operators according
to fundamental forms of the surface.

1. Introduction

A surface obtained by translating a curve α(u) over another curve β(v) is
called a translation surface. A translation surface can be defined as the sum of
the two generating curves α(u) and β(v). Therefore, translation surfaces are
made up of quadrilateral, that is, four sided, facets. Because of this property,
translation surfaces are used in architecture to design and construct free-form
glass roofing structures. A translation surface in a Euclidean 3-space E3 formed
by translating two curves lying in orthogonal planes is the graph of a function
z(u, v) = f(u) + g(v), where f(u) and g(v) are smooth functions on some
interval of R ([1, 9]).

In 1835, H. F. Scherk studied translation surfaces in E3 defined as graph of
the function z(u, v) = f(u) + g(v) and he proved that, besides the planes, the
only minimal translation surfaces are the surfaces given by

z(u, v) =
1

a
log

∣∣∣∣cos(au)

cos(av)

∣∣∣∣ =
1

a
log |cos(au)| − 1

a
log |cos(av)| ,

where a is a non-zero constant. These surfaces are now referred as Scherk’s
minimal surfaces ([21]).

Translation surfaces have been investigated from various viewpoints by many
differential geometers. Liu described translation surfaces having constant
Gaussian and mean curvature in the Euclidean and Minkowski space ([12]).
Goemans proved classification theorems of Weingarten translation surfaces
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([9]). Baba-Hamed, Bekkar and Zoubir studied coordinate finite type trans-
lation surfaces in a 3-dimensional Minkowski space ([3]). Yoon classified coor-
dinate finite type translation surfaces in a 3-dimensional Galilean space ([20]).
Bekkar and Senoussi researched the translation surfaces in the 3-dimensional
space satisfying the equation

∆IIIri = µiri,

where ri is the coordinate functions of the position vector and the Laplace
operator ∆III with respect to the third fundamental form, respectively ([4]).
Cakmak, Karacan, Kiziltug and Yoon studied the translation surfaces in the
3-dimensional Galilean space satisfying the equation

∆IIxi = λixi

([8]). Sipus described translation surfaces in a simply isotropic space having
constant isotropic Gaussian or mean curvature ([17]). Aydin studied the trans-
lation surfaces generated by a space curve and a planar curve in the isotropic
3-space I3 ([2]). Bukcu, Karacan and Yoon classified translation surfaces of
Type 1 and Type 2 that satisfy the condition

∆I,II,IIIxi = λixi

in I13 ([6, 7, 11]).
In this study, we examine the dual surfaces defined by z = f(u) + g(v) in

I13 satisfying the condition ∆Jxi = λixi, J = I, II, III, where λi ∈ R and
∆J indicates the Laplace operator according to the first, second and third
fundamental forms, respectively.

2. Preliminaries

The simply isotropic space I13 is a Cayley–Klein space described from the
projective 3-space P(R3) with an absolute figure consisting of a plane w and
two complex-conjugate straight lines f1, f2 in w. The homogeneous coordinates
in P(R3) are introduced in such a way that the absolute plane w is given by
x0 = 0 and the absolute lines f1, f2 by x0 = x1 + ix2 = 0, x0 = x1 − ix2 = 0.
F(0 : 0 : 0 : 1) is described as intersection point of these two lines and called as
the absolute point. The group of motions of I13 is a six-parameter group given
in the affine coordinates x = x1

x0
, y = x2

x0
, z = x3

x0
by

(2.1)

 x′ = c1 + x cosα− y sinα,
y′ = c2 + x sinα+ y cosα,
z′ = c3 + c4x+ c5y + z,

where c1, c2, c3, c4, c5, α ∈ R. These affine transformations are called isotropic
congruence transformations ([13,14]). The metric of I13 is given by

ds2 = dx2 + dy2.
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This metric is induced by the absolute figure. The lines parallel to the z-
direction are define as isotropic lines. In addition, if the planes containing an
isotropic line are define as isotropic planes. Otherwise, they are non-isotropic.

Let M be a surface immersed in I13. This surface is described as admissible
if it has no isotropic tangent planes. In this case, the coefficients E,F,G of
the first fundamental form I of M and the coefficients e, f, g of the second
fundamental form II of M are easily determined according to the induced
metric. Hence, the (isotropic) Gaussian curvature K and (isotropic) mean
curvature H are described as

(2.2) K = k1k2 =
eg − f2

EG− F 2
, 2H = k1 + k2 =

Eg − 2Ff +Ge

EG− F 2
,

where k1, k2 are principal curvatures. In other words, k1, k2 are extrema of
the normal curvature determined by the normal section of a surface. Here, if
K = 0, the surface M is isotropic flat. If H = 0, the surface M is isotropic
minimal [2,15,17,18]. The Laplacian operators ∆I, ∆II , ∆III of the I, the II
and the III fundamental forms on M according to local coordinates {u, v} of
M are defined by ([3–5,7, 8, 10,11,16])

(2.3) ∆Ix = − 1√
|EG− F 2|

[
∂

∂u

(
Gxu − Fxv√
|EG− F 2|

)
− ∂

∂v

(
Fxu − Exv√
|EG− F 2|

)]
,

and

(2.4) ∆IIx = − 1√
|eg − f2|

[
∂

∂u

(
gxu − fxv√
|eg − f2|

)
− ∂

∂v

(
fxu − exv√
|eg − f2|

)]
,

(2.5) ∆IIIx = −
√
|EG− F 2|
eg − f2


∂
∂u

(
Zxu−Y xv

(eg−f2)
√
|EG−F 2|

)
−

∂
∂v

(
Y xu−Xxv

(eg−f2)
√
|EG−F 2|

)
 ,

where

X = Ef2 − 2Fef +Ge2,

Y = Efg − Feg +Gef − Ff2,

Z = Gf2 − 2Fgf + Eg2.

3. Curvatures of the dual surfaces defined by z = f(u) + g(v) in I13
In this chapter, we define the dual surfaces defined by z = f(u) + g(v) in

the three dimensional simply isotropic space. Consider a surface in I13 as a the
graph of a function z = h(u, v) of two variables, which is itself the sum of two
functions f and g of one variable. A surface can be defined via the surface
patch z = f(u) + g(v).
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Here, we restrict our topic to regular surfaces x without isotropic tangent
planes. Thus, we can express in open form as

(3.1) x : z = h(u, v).

A surface x : z = h(u, v) is a set of contact elements. This surface correspond
to a surface x∗, given by

(3.2)

 x∗ = hu(u, v),
y∗ = hv(u, v),
z∗ = uhu(u, v) + vhv(u, v)− h(u, v).

So, using the equations (3.1) and (3.2), we can define the dual surfaces defined
by z = f(u) + g(v) as

(3.3) x∗(u, v) = (f ′(u), g′(v), uf ′(u) + vg′(v)− f(u)− g(v)) .

Let (M,M∗) be a dual surface pairs. In this case, the relationship between the
curvatures of these surfaces is as follows:

(3.4) K∗ =
1

K
, H∗ =

H

K
.

As it can be seen, if K = 0, M∗ may have singularities. In addition, the
dual isotropic minimal surface is also isotropic minimal ([13,14,19]). Using the
equation (3.3), the coefficients of the first and the second fundamental forms
are given by

(3.5) E = f ′′
2

(u), G = g′′
2

(v), F = 0,

and

(3.6) e = f ′′(u), g = g′′(v), f = 0,

respectively. The dual Gaussian curvature K∗ and the mean curvature H∗ of
the dual surfaces defined by z = f(u) + g(v) are given by

(3.7) K∗ =
1

f ′′(u)g′′(v)

and

(3.8) H∗ =
f ′′(u) + g′′(v)

2f ′′(u)g′′(v)
,

respectively.
Let’s assume that the dual surface has the constant Gaussian curvature.

Then

(3.9)
1

f ′′(u)g′′(v)
= A,

where A ∈ R. If we use separation of variables method, the Gaussian curvature
K∗ = const. 6= 0 if and only if

(3.10)
1

f ′′(u)
= const. = A1 6= 0
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and

(3.11)
1

g′′(v)
= const. = A2 6= 0.

We can get easily

(3.12)

{
f(u) = c1 + uc2 + u2

2A1
,

g(v) = c3 + vc4 + v2

2A2
,

where ci, A1, A2 ∈ R. Thus, we have the following results:

Corollary 3.1. Let M∗ be the dual surface by z = f(u)+g(v) with the constant
Gaussian curvature K∗ 6= 0 in I13. Then, z can be written as (3.12).

Corollary 3.2. There is no dual surface M∗ defined by z = f(u) + g(v) with
the zero Gaussian curvature K∗ = 0 (flat) in I13.

Let’s assume that the dual surface has the constant mean curvature, so

(3.13)
f ′′(u) + g′′(v)

f ′′(u)g′′(v)
= 2C,

where C ∈ R. If we use separation of variables method, the mean curvature
H∗ = const. 6= 0 if and only if

(3.14)
1

f ′′(u)
= C1,

and

(3.15)
1

g′′(v)
= C2,

where C1, C2 ∈ R. Thus, we get

(3.16)

{
f(u) = c1 + uc2 + u2

2C1
,

g(v) = c3 + vc4 + v2

2C2
,

where ci ∈ R.

Theorem 3.3. Let M∗ be the dual surface by z = f(u)+g(v) with the constant
mean curvature H∗ = C 6= 0 in I13. Then z can be written as (3.16).

Suppose that H∗ satisfies the condition H∗ = 0. In this case, we define
as a surface satisfying that condition dual isotropic minimal. Then, from the
equation (3.8) we can write

(3.17) f ′′(u) + g′′(v) = 0,

where u, v are independent variables and both sides of the equation (3.17) are
constant. If we show that this constant is equal to p, we get

(3.18) f ′′(u) = p = −g′′(v).
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Hence, we can write

(3.19)

{
f(u) = c1 + uc2 + pu2

2 ,

g(v) = c3 + vc4 − pv2

2 ,

where p, ci ∈ R. Here, if p = 0, we obtain

(3.20)

{
f(u) = c1 + uc2,
g(v) = c3 + vc4,

where ci ∈ R.

Theorem 3.4. Let M∗ be the dual surface by z = f(u) + g(v) with zero mean
curvature (dual isotropic minimal, H∗ = 0) in I13. Then z can be written as
(3.19) or (3.20).

4. The dual surfaces defined by z = f(u) + g(v) satisfying
∆Ix∗

i = λix
∗
i

In this section, we classify dual surface defined by z = f(u) + g(v) in I13
under the condition

(4.1) ∆Ix∗i= λix
∗
i ,

where λi ∈ R, i=1, 2, 3 and

(4.2) ∆Ix∗=
(
∆Ix∗1,∆

Ix∗2,∆
Ix∗3
)
,

where

(4.3) x∗1 = f ′(u), x∗2 = g′(v), x∗3 = uf ′(u) + vg′(v)− f(u)− g(v).

From the equations (4.2), (4.3) and (2.7), we obtain

(4.4) ∆Ix∗i =

(
0, 0,

−f ′′(u)− g′′(v)

f ′′(u)g′′(v)

)
.

If M∗ satisfies the equation (4.1), from the equations (4.3) and (4.4), we get

(4.5)
−f ′′(u)− g′′(v)

f ′′(u)g′′(v)
= λ (uf ′(u) + vg′(v)− f(u)− g(v)) ,

where λ ∈ R. Then, M∗ is of 1-type. In this case, if M∗ satisfies the condi-
tion ∆Ix∗i = 0, this surface is defined as a harmonic surface or dual isotropic
minimal. As a result of the equation (4.5), we obtain

(4.6) f ′′(u) + g′′(v) = 0.

Thus we have the solutions of the equations (3.19) and (3.20).

Theorem 4.1. Suppose that M∗ is a dual surface which satisfies the condition
(3.1) in I13. If M∗ is harmonic or dual isotropic minimal, then z can be written
as (3.19) or (3.20).
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If λ 6= 0, from the equation (4.5), we get

(4.7) − 1

f ′′(u)
− λuf ′(u) + λf(u) =

1

g′′(v)
+ λvg′(v)− λg(v),

which implies there exists a real number p such that

(4.8) − 1

f ′′(u)
− λuf ′(u) + λf(u) = p =

1

g′′(v)
+ λvg′(v)− λg(v).

The second order nonlinear differential the equation (4.8) can not be solved
analytically. If we differentiate both sides of the equation (4.8) according to u
and v, we obtain the following:

−λuf ′′ + f ′′′

f ′′2
= 0,(4.9)

λvg′′ − g′′′

g′′2
= 0.(4.10)

We deal with two cases with respect to constant λ.
Case 1: If λ > 0, the general solutions of the equations (4.9) and (4.10) are

given by

(4.11)


f(u) = c1 + uc2 ±

u arctan

(
u
√
λ√

−λu2−2c3

)
+

√
−λu2−2c3√

λ
√
λ

,

g(v) = c3 + vc4 ±
v arctan

(
v
√
λ√

−λv2−2c5

)
+

√
−λv2−2c5√

λ
√
λ

,

where λ, ci 6= 0 ∈ R.
Case 2: If λ < 0, general solutions of the equations (4.9) and (4.10) are

given by

(4.12)

 f(u) = c1 + uc2 ±
−
√
λu2−2c3√

λ
+u log(uλ+

√
λ2u2−2λc3)

√
λ

,

g(v) = c3 + vc4 ±
−
√
λv2−2c5√

λ
+v log(vλ+

√
λ2u2−2λc5)

√
λ

,

where λ, ci 6= 0 ∈ R.

Theorem 4.2. Suppose that M∗ is a non harmonic dual surface which satisfies
the condition (3.1) in I13. If the surface M∗ satisfies the equation ∆Ix∗i=λx∗i ,
where λ ∈ R, i=1, 2, 3, then z(u, v) can be written as (4.11) or (4.12).

5. The dual surfaces defined by z = f(u) + g(v) satisfying
∆IIx∗

i = λix
∗
i

In this section, we consider dual surfaces with non-degenerate II fundamen-
tal form in I13 under the condition

(5.1) ∆IIx
∗
i= λix

∗
i ,

where λi ∈ R, i=1, 2, 3 and

∆IIx∗=
(
∆IIx∗1,∆

IIx∗2,∆
IIx∗3

)
.
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If dual surface M∗ is constructed with component functions which are eigen-
functions of its Laplacian operator ∆II, then we shall have

− f
′′′

2f ′′
= λ1f

′(5.2)

− g
′′′

2g′′
= λ2g

′,(5.3)

−2− u f
′′′

2f ′′
− v g

′′′

2g′′
= λ3 (uf ′ + vg′ − f − g) ,(5.4)

where λi ∈ R and M∗ is at least 3-type. From the equations (5.2), (5.3) and
(5.4), we can write

(5.5) λ1uf
′ − λ3uf

′ + λ3f − 2 = p = −λ2vg
′ + λ3vg

′ − λ3g.

We discuss eight cases according to constants λ1, λ2, λ3. We have summarized
the solutions of (5.5) of ordinary differential equation in the following table.

No λ1, λ2, λ3 f(u) g(v)
1 λ1 = 0, λ2 = 0, λ3 = 0 f(u) −
2 λ1 = 0, λ2 6= 0, λ3 = 0 f(u) c1 − p ln v

λ2

3 λ1 = 0, λ2 = 0, λ3 6= 0 c1u+ 2+p
λ3

c1v − p
λ3

4 λ1 = 0, λ2 6= 0, λ3 6= 0 c1u+ 2+p
λ3

B

5 λ1 6= 0, λ2 = 0, λ3 = 0 c1 + (2+p) lnu
λ1

−
6 λ1 6= 0, λ2 6= 0, λ3 = 0 c1 + (2+p) lnu

λ1
c2 − p ln v

λ2

7 λ1 6= 0, λ2 = 0, λ3 6= 0 A c1v − p
λ3

8 λ1 6= 0, λ2 6= 0, λ3 6= 0 A B

where p, ci ∈ R and

A = c1 (uλ1 − uλ3)
− λ3
λ1−λ3 +

(2 + p) (u (λ1 − λ3))
λ3

λ1−λ3 (uλ1 − uλ3)
− λ3
λ1−λ3

λ3
,

B = c2 (vλ2 − vλ3)
− λ3
λ2−λ3 − p (v (λ2 − λ3))

λ3
λ2−λ3 (vλ1 − vλ3)

− λ3
λ2−λ3

λ3
.

In the first and the second rows of the table above, f(u) can be any second order
differentiable function. In the first and the fifth rows, we get contradictions for
the function g(v) (p 6= 0). In the third, the fourth and the seventh rows, we
have L = 0 or N = 0. So the second fundamental form in these cases are
degenerate, that contradicts with the assumption. Substituting the eighth row
into (5.2), (5.3) and (5.4), respectively, we can easily see that they do not satisfy
these equations. Substituting the sixth row into (5.2), (5.3) and (5.4) yields
p = −1 and (λ1, λ2, λ3) = (1, 1, 0), respectively. They satisfy these equations.
Similarly, if we choose f(u) = c1 + lnu, g(v) = c1 + ln v yields p = −1 and
(λ1, λ2, λ3) = (1, 1, 0) in the second row, then they also satisfy.
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Definition. A dual surface in I13 is define as II-harmonic under the condition
that ∆IIx∗= 0.

Corollary 5.1. There is no II-harmonic dual surface satisfying the equation
∆IIx∗= 0 in I13.

Theorem 5.2. Suppose that M∗ is a non II-harmonic dual surface with non-
degenerate second fundamental form given by (3.3) in I13. If M∗ satisfies the
condition ∆IIx∗i=λix

∗
i for λi∈R, i=1, 2, 3, then z(u, v) can be written as

z(u, v) = (c+ lnuv) ,

where c ∈ R.

6. The dual surfaces defined by z = f(u) + g(v) satisfying
∆IIIx∗

i = λix
∗
i

In this section, we consider dual surface with non-degenerate II fundamental
form in I13 under the condition

(6.1) ∆IIIx∗i= λix
∗
i ,

where λi ∈ R, i=1, 2, 3 and

(6.2) ∆IIIx∗=
(
∆IIIx∗1,∆

IIIx∗2,∆
IIIx∗3

)
.

Using the equation (6.2), the Laplacian of M∗ can be expressed as follows

(6.3) ∆IIIx∗ = (−f ′′′,−g′′′,−f ′′ − g′′ − uf ′′′ − vg′′′) .

By using the equations (6.1) and (6.3), we have the following equations

−f ′′′ = λ1f
′,(6.4)

−g′′′ = λ2g
′,(6.5)

−f ′′ − g′′ − uf ′′′ − vg′′′ = λ3 (uf ′ + vg′ − f − g) ,(6.6)

where λ1, λ2 and λ3 ∈ R. Therefore, M∗ is at least 3-type. Using the equations
(6.4), (6.5) and (6.6), we have

(6.7) −f ′′ + λ1uf
′ − λ3uf

′ + λ3f = g′′ − λ2vg
′ + λ3vg

′ + λ3g,

where u, v are independent variables and both sides of the equation (6.7) are
a constant. If we show this constant with p, we have

(6.8) −f ′′ + λ1uf
′ − λ3uf

′ + λ3f = p = g′′ − λ2vg
′ + λ3vg

′ − λ3g.

The differential equations (6.8) cannot be solved analytically, except in some
special cases, i.e., (λ1, λ2, λ3) = (1, 1, 1) and (λ1, λ2, λ3) = (−1,−1,−1). Thus,
the general solutions of (6.8) are given by

(6.9)

{
f(u) = p+ c1e

u + c2e
−u,

g(v) = −p+ c3e
v + c3e

−v,
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and

(6.10)

{
f(u) = −p+ c1 cosu+ c2 sinu,
g(v) = p+ c1 cos v + c2 sin v,

respectively. The remained cases with respect to λ1, λ2 and λ3 are do not
appear. Substituting the solutions (6.9) and (6.10) into (6.6), respectively,
They don’t satisfy this equation, respectively. Let λ1 = λ2 = λ3 = 0, from
(6.8), we obtain

(6.11) −f ′′ = p = g′′.

Hence, the general solutions of (6.8) are given by

(6.12)

{
f(u) = c1 + c2u− pu

2

2 u,

g(v) = c3 + c4u+ pu
2

2 u,

where p, ci 6= 0 ∈ R.

Definition. A dual surface in I13 is define as III-harmonic under the condition
that ∆IIIx∗= 0.

Theorem 6.1. Suppose that M∗ is a dual surface with non-degenerate second
fundamental in I13. If M∗ is III-harmonic, then z(u, v) can be written as
(6.12).

Theorem 6.2. Suppose that M∗ is a non III-harmonic dual surface with non-
degenerate second fundamental form in I13. Then, there is no dual surface M∗

satisfying the condition ∆IIIx∗i=λix
∗
i , where λi∈R.
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Erzincan University

Faculty of Arts and Sciences
Department of Mathematics

24000, Erzincan, Turkey

Email address: skiziltug@erzincan.edu.tr


