• Title/Summary/Keyword: $C^{*}$-Integral

Search Result 658, Processing Time 0.023 seconds

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

EVALUATION OF CONDITIONAL WIENER INTEGRALS USING PARK AND SKOUG'S FORMULA

  • Chang, Joo-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.441-450
    • /
    • 1999
  • In this paper we first evaluate the conditional Wiener integral of certain functionals using a Park and Skoug's formula. and we also evaluate the conditional wiener integral E(F│$X_\alpha$) of functional F on C[0, T] given by $F(x)=exp\{{\int_0}^T s^kx(s)ds\}$ for a general conditioning function $X_\alpha$ on C[0,T].

  • PDF

FUZZY LINEARITY OF THE FUZZY INTEGRAL

  • Kim, Mi Hye;Shin, Seung Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 1999
  • We introduce a concept of fuzzy linearity: A function $F:L^0(X){\rightarrow}\mathbb{R}$ is fuzzy linear if $F[({\alpha}{\wedge}f){\vee}(b{\wedge}g)]=[a{\wedge}F(f)]{\vee}[b{\wedge}F(g)]$ for $f,g{\in}L^0(X)$ and a, b > 0. We show that a fuzzy integral is fuzzy linear if the measure is fuzzy c-additive.

  • PDF

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

A Modification of the $C^*$ Integral Considering the Effect of Crack Growth (균열 진전의 효과를 고려한 $C^*$ 적분의 수정)

  • 최영환;방종명;염윤용;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.77-86
    • /
    • 1989
  • A modified $C^{*}$ integral as load parameter in creep fracture is proposed considering the effect of crack growth. It is shown that the parameter does not depend on crack velocity. By performing experiment using STS 304 stainless steel at 600.deg.C the validity of the parameter is investigated. The results show that the parameter is a good measure as a load parameter in creep fracture and the rate of crack tip opening displacement can also be a creep load parameter for STS 304 at 600.deg. C.C.

Membrane Topology of the Integral Membrane Transporter for Ribose

  • Park, Yongkyu;Park, Chankyu
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.28-28
    • /
    • 1998
  • RbsC of Escherichia coli is the integral membrane component of the high-affinity ribose transport system classified as the AraH family. To understand the function and structure of RbsC, the topology of RbsC was investigated by alkaline phosphatase fusion. Characterization of a total of 64 RbsC-PhoA fusions revealed that RbsC is composed of six transmembrane helixes and has three periplasmic and two cytoplasmic loops.(omitted)

  • PDF

SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.709-723
    • /
    • 2016
  • Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.

CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Bong Jin, Kim
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.593-601
    • /
    • 2022
  • Let C(Q) denote Yeh-Wiener space, the space of all real-valued continuous functions x(s, t) on Q ≡ [0, S] × [0, T] with x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . , m, j = 1, . . . , n} of Q with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T, define a random vector Xτ : C(Q) → ℝmn by Xτ (x) = (x(s1, t1), . . . , x(sm, tn)). In this paper we study the conditional integral transform and the conditional convolution product for a class of cylinder type functionals defined on K(Q) with a given conditioning function Xτ above, where K(Q)is the space of all complex valued continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the conditional integral transform of the conditional convolution product without ever actually calculating convolution product or conditional convolution product.

Comparison of Proportional, Integral, and P-I Control Systems in Biological Wastewater Treatment Plants (생물학적 하수처리시스템에 적용된 Proportional, Integral 및 P-I 조절 시스템에 대한 비교)

  • Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.410-415
    • /
    • 2005
  • The main purpose of this study is to evaluate the characteristics of three sets of traditional control methods (proportional, integral, and proportional - integral controls) through lab-scale biological reactor experiments. An increase in proportional gain ($K_c$) resulted in reduced dissolved oxygen (DO) offset under proportional control. An increase in integral time ($T_i$) resulted in a slower response in DO concentration with less oscillation, but took longer to get to the set point. P-I control showed more stable and efficient control of DO and airflow rates compared to either proportional control or integral control. Developed P-I control system was successfully applied to lab-scale Sequencing Batch Reactor (SBR) for treating industrial wastewater with high organic strength.