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EVALUATION OF CONDITIONAL WIENER INTEGRALS
USING PARK AND SKOUG’S FORMULA

Joo Sup CHANG

ABSTRACT. In this paper we first evaluate the conditional Wiener
integral of certain functionals using a Park and Skoug’s formula. And
we also evaluate the conditional Wiener integral E(F | X,) of func-
tional F on €0, T] given by

F(z) =exp {/OTsk z(s) ds}

for a general conditioning function X, on C[0,T].

1. Introduction

Let (C]0, T), F, m,) denote Wiener measure space where C|0, T is the
space of all continuous functions z on [0, 7’| vanishing at the origin. For
each partition 7 = 7, = {t1,- -, tp,} of [0,T) with 0 =ty < t1 < --- <
t, =T, let X;: C[0,T|— R" be defined by X,(z) = (z(t1),- - -, z(¢n))-
Let B™ be the o—algebra of Borel sets in R". Then, by the definition
of conditional Wiener integral (see [9, 10]), for each Wiener integrable
function F(z),

| F@yma ()= [ EFIX)E P, @)
X71(B) B

where B € B", Py.(B) = m, (X-}(B)), and E (F|X,)(£) is a Borel
measurable function of £ which is unique up to Borel null sets in R*. Here
E (F|X,) is called a conditional Wiener integral of F given condition X .
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The purpose of this paper is to evaluate the conditional Wiener in-
tegral of certain functionals using a Park and Skoug’s formula. And we
also evaluate the conditional Wiener integral E(F | X,) of functional F

on C[0, T given by
F(z) =exp {/OTs’C z(s) ds}

and the conditioning function X, on C[0, T] given by

Xo(z) = (f; a;(t) dz(t),- - -, /OT ay(t) da:(t))

for a;(t) = Iy, 1(t), 0=t <ty < < t, = T, the indicator function
Of [tj—l)tj]) ] = 1,2, LN (N

2. Preliminaries

For a given partition 7 = 7, of [0,T] and z € C[0,T), define the
polygonal function [z] on [0,T] by

(2.1) mur=an4r+%é%f<awr—ag4»

where t € [tj_1,t;) and j =1,--- ,n. Similarly, for each £ = (&, ,&n)
€ R*, define the polygonal function [€] of £ on [0,T] by

t—ti

(22) ) =&+ 7

(& = &i-1)

where t € [tj_1,t;}, j = 1,--+,n and & = 0. Then both [z] and €] are
continuous on [0,T], their graphs are line segments on each subinterval

[tio1, £, and [z](t;) = (t;) and [)(t;) = & at each t; € 7.

For a polygonal function [z] we have the following lemma.
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LEMMA 2.1. Forz in C[0,T], we have

@3  E ({ [ a })
o[ [orions)

alr 2{2 T (t; +t5-1) = (£ + 71D} (t; — ti-0)-
=1

Proof. By the Fubini theorem, we have

(24) E <{ /0 ") dt }2>

T T
:/ / E([z])(u) [z](v)) du dv

—Z/t{ / (lel(w) [2](0)) du

+ / E((2)(u) [](v)) du + / ! E(lal(u) [2)(v)) du

+ Z / z)(u) [z)(v)) d }
Since E(z(s) z(t)) = min{s, t} and

25) W lble) = {s)+ EEL (o) - ol |
v—1t;_1

{ottr) + 7222 ey - o(t-) |

for (u,v) in [t;-1, 8] X [tj-1, %], ¢, j =1,2,- - -,n, the right hand side of
the last equality in (2.4) becomes

n

tj ti-1 LY v — tj 1 ( ) p
2.6 / {/ udu+/ <t-_ + — (u —t;_ ) u
( ) Z ti—1 0 tj-1 =t t] - tj-—l -

7=1
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t —t. )2 —t
+/J (t,-_1+ (v =t-1) M o (u—v)) du

tj - tj—l tj — tj——l

+ 2": /:lvdu} dv

i=j+1

= 2”:/%' {% £ +% (v+tio1) (G —tim1) +v (T—tj)} dv.

j=1 Yti-1

Now, using the Fubini theorem, we have

2.7) E( /0 ! /0 " () [)(v) du dv)

- 2”: /t t{ /0 " Bla(u) [m](v))du} dv

t; v— tj—l T
+ tj_1 + - (u b tj_l) du + vdup dv.
i1 tj—tj t;

The right hand side of the last equality in (2.7) becomes the right hand
side of (2.6) and so we have (2.3) from (2.6) and (2.7).

In [5], Park and Skoug obtained that for a Wiener integrable and
Borel measurable function F on C[0,T], they have

(2.8) E (F(2)|X,(z) =€) = E (F (z - [z] + [&]))

where the equality in (2.8) means that both sides are Borel measurable

function of E and they are equal except for Borel null sets. We call
the formula (2.8) as a Park and Skoug’s formula for conditional Wiener
integral.

Let {ci(t),---,an(t)} be an orthogonal set of functions in L0, T
1
with |a;|| = [fOT (a;(t))? dt]2 #0 for 7 =1,2,---,n. Then the

444



Evaluation of conditional Wiener integrals

corresponding stochastic integrals

; |
(2.9) yi(z) = / o) da(t),  F=1,2-n

form a set of Gaussian random variables on C[0,T] with
T
(2.10) Bl @) = [ o) ot dr

¢
Ela) (@) = [ (o) ds
Let X, :C[0,T]—R"™ be the conditioning function defined by

(2.11) Xa(z) = (m(=)," - 1m(2))
and let
(2.12) Bi(t) = /t aj(s) ds, 0<t<T and j=1,2,---,n

For zeC[0,T] and £ = (&, - -, &)ER™, let

(2.13) za(t) = D llosll ™ Bi(8) i)
=1

&) = Y llayll™ Bi(1) (& — &)
=1

The following lemma comes from [6] which will be used in last theorem.

Lemma 2.2. Let geL.[0,T). Then

(2.14) E (exP { /OT g(s) z(s) ds}| Xo(z) = E)
oo (SO
+% /OT [/ST dt]z ds - % ,:1 Z;,ﬂ;);}
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3. Conditional Wiener Integrals for Vector-valued Condi-
tioning Function

In this section we evaluate the conditional Wiener integral of certain
functionals using a Park and Skoug’s formula (2.8).

THEOREM 3.1. For a positive integer m, let Fp,(z) = fo ([z}())™
for z in C[0,T). Then we have

(31)  EFEX)E = {Z il } A

=0
for € = (&, - -, &,) in R
Proof. Using a formula (2.8) we have

T
32 EEX)E = E( [ -+ @ (t))'"dt)
- / (@ @) dt

where the second equality in (3.2) comes from the fact that the polygonal
function satisfies the linearity and [[z]] (¢) = [z] (¢) for t in [0,T]. Now
we have, by a simple change of variable,

T
(3.3) / GIO
=Z§J §j—1/ u™ du

o &1

—_ 1 m m— m
:m+1 Z (6] +§] 1&j—l+"'+§j_1) (t]—t]-—l)'
j=1
Combining (3.2) and (3.3), we have (3.1) as we desire. , 0

THEOREM 3.2. Let F(z { fo z(t) dt} for z in C[0,T]. Then we
have
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34) EFIX)E

n

{27 (8 + tic) = (¢ +t11)} (6 = tic)
Z (& + &) (& + -t — ticy) (& — 85-1)

fOI'g: (617"' 7§n) inR

Proof. Using a formula (2.8), we have

(3.5) E (F 1X.)()

—F ({ / " (e(t) — [21) + [E2) dt}2>
/ / E (2(u) 2(v) — 3(u) [z](v)

—[2](w) 2(v) + [&](u) [a)(v) + [E](w) [€](v)) du dv

where the second equality in (3.5) comes from the Fubini theorem and
the linearity of the Wiener integral. Now we have

(3-6) //E(:c ) du dv
/0{/0 udu—i—[Tvdu} d'u=T?3

(3.7) [ /OTE( )(w) [E|)) du dv

= % SON (& + &) (6 + &) (8~ ticr) (5 — tim).

-1 j-

-1 -1
Combining (3.5), (3.6), (3.7) and Lemma 2.1, we obtain (3.4) as we
desire. )
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Finally we treat the conditional Wiener integral for general condition-
ing function.

THEOREM 3.3. Let X, be the general conditioning function on C|0, T
defined by X.(z) = ( JF on(z) do(t), - JT anla) d:c(t)) where a(t) =
Iy, .t (t). Then we have

(38) E <exp { /0 " sk a(s) ds}]Xa(a:) =5)

T2k+3
= exp {(k+2) (2k+3) 2 (k+1)? Z t-—t,-_l

1
{Tk+l (t _ tj-—l) - - t;C+2 tk+2 } e

k+2
Zt

J_tJ 1

k+1

1
Tk+1 (t _tj 1) _k-'__2 tk+2 t-l;;i—f)}}

for £ = (&1, - -, €&.)ER™.

Proof. Since s* € L,[0,T] and {o4(t)}}_, is an orthogonal set, we
have

(3.9) E (exp { /0 ' s* z(s) ds} | X.(z) :E)

— exp {Z (& — €j—.1) (.Sk,ﬂj)

j=1 (a] ) a])

using Lemma 2.2. From (2.13), we get

(3.10) i“" ~&-1) (s,6)

(aj, ;)

j=1
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n S T ]
=Z5 i1 / s / A(t) dt| ds
t; —t;
/ / s* ds dt
t - t] 1 t] 1 JE

1 § =&

= k + 1 Z t] _ t] ) {Tk+1(tj . tj—l) _ m (t§+2 tk+2)}
=1 -

where the first equality in (3.10) comes from (2.12) and the second
equality follows from the change of the order of integration. Now, we
easily obtain

2

T QT2%k+3
3.11 t*dt| ds= - .
(310 [ #a] o=y
Using the fact

61 (8=

and “0‘1'”2 =t; —t;_1, we have

T AT (= ta) - (5 -5}

k+2

(3. 13)
— (5%, 8;)°
~ (a5, 25)
- 1 Z Tk+1 (t' —t ) _ 1 (t’?+2 tk+2) 2
T2(k+1)? t—t;_ P T g VY '
Combining (3.9), (3.10), (3.11), and (3.13), we have the desired result
(3.8). O

REMARK. Corollaries 8 and 9 in [6] are special cases of Theorem 3.3
for k = 0 and 1, respectively.
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