• Title/Summary/Keyword: $C^*$-integral

Search Result 662, Processing Time 0.021 seconds

SOME PROPERTIES OF GENERALIZED BESSEL FUNCTION ASSOCIATED WITH GENERALIZED FRACTIONAL CALCULUS OPERATORS

  • Jana, Ranjan Kumar;Pal, Ankit;Shukla, Ajay Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • This paper devoted to obtain some fractional integral properties of generalized Bessel function using pathway fractional integral operator. We also find the pathway transform of the generalized Bessel function in terms of Fox H-function.

THE COMPOSITION OF HURWITZ-LERCH ZETA FUNCTION WITH PATHWAY INTEGRAL OPERATOR

  • Jangid, Nirmal Kumar;Joshi, Sunil;Purohit, Sunil Dutt;Suthar, Daya Lal
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.267-276
    • /
    • 2021
  • The aim of the present investigation is to establish the composition formulas for the pathway fractional integral operator connected with Hurwitz-Lerch zeta function and extended Wright-Bessel function. Some interesting special cases have also been discussed.

A NEW EXTENSION OF BESSEL FUNCTION

  • Chudasama, Meera H.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.277-298
    • /
    • 2021
  • In this paper, we propose an extension of the classical Bessel function by means of our ℓ-hypergeometric function [2]. As the main results, the infinite order differential equation, the generating function relation, and contour integral representations including Schläfli's integral analogue are derived. With the aid of these, other results including some inequalities are also obtained. At the end, the graphs of these functions are plotted using the Maple software.

f-BIHARMONIC SUBMANIFOLDS AND f-BIHARMONIC INTEGRAL SUBMANIFOLDS IN LOCALLY CONFORMAL ALMOST COSYMPLECTIC SPACE FORMS

  • Aslam, Mohd;Karaca, Fatma;Siddiqui, Aliya Naaz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.595-606
    • /
    • 2022
  • In this paper, we have studied f-biharmonic submanifolds in locally conformal almost cosymplectic space forms and have derived condition on second fundamental form for f-biharmonic submanifolds. Also, we have discussed its integral submanifolds in locally conformal almost cosymplectic space forms.

A FUNDAMENTAL THEOREM OF CALCULUS FOR THE Mα-INTEGRAL

  • Racca, Abraham Perral
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.415-421
    • /
    • 2022
  • This paper presents a fundamental theorem of calculus, an integration by parts formula and a version of equiintegrability convergence theorem for the Mα-integral using the Mα-strong Lusin condition. In the convergence theorem, to be able to relax the condition of being point-wise convergent everywhere to point-wise convergent almost everywhere, the uniform Mα-strong Lusin condition was imposed.

ON EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL EQUATIONS IN BANACH ALGEBRAS VIA FIXED POINT TECHNIQUES

  • Dhage, B.C.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.33-45
    • /
    • 2001
  • In this paper an improved version of a fixed point theorem of the present author [3] in Banach algebras is obtained under the weaker conditions with a different method and using measure of non-compactness. The newly developed fixed point theorem is further-applied to certain nonlinear integral equations of mixed type for proving the existence theorems and stability of the solution in Banach algebras.

  • PDF

INTEGRAL REPRESENTATION OF SOME BLOCH TYPE FUNCTIONS IN ℂn

  • Choi, Ki Seong;Yang, Gye Tak
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • Let B be the open unit ball in the complex space $\mathbb{C}^n$. A holomorphic function $f:B{\rightarrow}C$ which satisfies sup{(1- ${\parallel}\;{\nabla}_zf\;{\parallel}\;{\mid}z{\in}B$} < $+{\infty}$ is called Bloch type function. In this paper, we will find some integral representation of Bloch type functions.

  • PDF

A NEW SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION

  • Lee, S.K.;Khairnar, S.M.
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.351-365
    • /
    • 2011
  • In the present paper we introduce a new subclass of analytic functions in the unit disc defined by convolution $(f_{\mu})^{(-1)}*f(z)$; where $$f_{\mu}=(1-{\mu})z_2F_1(a,b;c;z)+{\mu}z(z_2F_1(a,b;c;z))^{\prime}$$. Several interesting properties of the class and integral preserving properties of the subclasses are also considered.

Method to Determine Elastic Follow-Up Factors to Predict C(t) for Elevated Temperature Structures (이차하중을 받는 고온 구조물의 C(t) 예측을 위한 탄성추종 계수 결정법)

  • Lee, Kuk-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.759-768
    • /
    • 2012
  • This paper proposes a method to determine the elastic follow-up factors for the $C(t)$-integral under secondary stress. The rate of creep crack growth for transient creep is correlated with the $C(t)$-integral. Elastic follow-up behavior, which occurs in structures under secondary loading, prevents a relaxation of stress during transient creep. Thus, both the values of $C(t)$ and creep crack growth increase as increasing elastic follow-up. An estimation solution for $C(t)$ was proposed by Ainsworth and Dean based on the reference stress method. To predict the value of $C(t)$ using this solution, an independent method to determine the elastic follow-up factors for cracked bodies is needed. This paper proposed that the elastic follow-up factors for $C(t)$ can be determined by elastic-plastic analyses using the plastic-creep analogy. Finite element analyses were performed to verify this method.