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A NEW EXTENSION OF BESSEL FUNCTION

Meera H. Chudasama

Abstract. In this paper, we propose an extension of the classical Bessel

function by means of our `-hypergeometric function [2]. As the main

results, the infinite order differential equation, the generating function
relation, and contour integral representations including Schläfli’s integral

analogue are derived. With the aid of these, other results including some
inequalities are also obtained. At the end, the graphs of these functions

are plotted using the Maple software.

1. Introduction

We defined and studied `-hypergeometric function [2]:

H

[
a; z
b; (c : `);

]
=

∞∑
n=0

(a)n
(b)n (c)`nn

zn

n!
,(1.1)

in which a, `, z ∈ C with <(`) ≥ 0, and b, c ∈ C \ {0,−1,−2, . . .}.
This function can evidently be considered as the extension of the general-

ized hypergeometric function 1F1+s ([4, Ch. 4]), which reduces to the so-called
hyper-Bessel function 0Fs if a = b. Here s in the second index goes to infinity
together with the summation index n in the power series.

When ` = 0, this function reduces to the confluent hypergeometric function

1F1[z].
As a particular case: a = b, c = 1 of this `-H function, we defined the `-H

exponential function as follows.

Definition 1. The `-H exponential function is denoted and defined by [2]

(1.2) e`H(z) = H

[
−; z
−; (1 : `);

]
=

∞∑
n=0

zn

(n!)`n+1

for all z ∈ C and <(`) ≥ 0.

Remark 1.1. Obviously, e0
H(z) = ez and e`H(0) = 1.
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In (1.2), replacing z by iz, we are led to the `-H trigonometric functions [2].
That is,

e`H(iz) =

∞∑
n=0

(−1)n z2n

((2n)!)2`n+1
+ i

∞∑
n=0

(−1)n z2n+1

((2n+ 1)!)2`n+`+1
(1.3)

= cos`H(z) + i sin`H(z).(1.4)

Remark 1.2. It is easy to see that

(1.5) cos`H(−z) = cos`H(z), sin`H(−z) = − sin`H(z),

and

(1.6) cos0
H(z) = cos z, sin0

H(z) = sin z.

Also,

1

2

[
e`H(iz) + e`H(−iz)

]
= cos`H(z),(1.7)

1

2i

[
e`H(iz)− e`H(−iz)

]
= sin`H(z).(1.8)

It is noteworthy that in parallel to the Kiryakova’s generalized sine and co-
sine functions [5] termed as r-even functions in [8]; these `-H trigonometric func-
tions may be regarded as belonging to the scheme of the new `-Hypergeometric
functions (1.1).

Interestingly, the Laurent’s series expansion of the product of two `-H ex-
ponential functions enables us to define an `-extension of the Bessel function
Jn(z). The `-H trigonometric functions then lead us to derive `-analogues of
certain properties of the Bessel function occurring in the literature hitherto.
The proposed function is defined as follows.

Definition 2. Let <(`) ≥ 0, n ∈ N∪{0}. Then the new class of Bessel functions
is denoted and defined by

(1.9) J`n,H(z) =

∞∑
k=0

(−1)k (z/2)
n+2k

(k!)`k+1 ((n+ k)!)`n+`k+1
.

We shall call this function as the `-H Bessel function or briefly, `-HBF.

Remark 1.3. For ` = 0, the `-HBF (1.9) reduces to

(1.10) J0
n,H(z) =

∞∑
k=0

(−1)k (z/2)
n+2k

k! (n+ k)!
= Jn(z).

We first show the convergence of the series in (1.9).

Theorem 1.4. If <(`) ≥ 0 and <(2`n + ` + 2) > 0, then `-HBF is an entire
function of z.
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Proof. Consider

J`n,H(z) =

∞∑
k=0

(−1)k (z/2)
n+2k

(k!)`k+1 ((n+ k)!)`n+`k+1
=

∞∑
k=0

ϕn,k z
n+2k

with

ϕn,k =
(−1)k

(k!)`k+1 ((n+ k)!)`n+`k+1 4k
.

Applying here the Stirling’s formula [4]:

(1.11) Γ(α+ k) ∼
√

2π e−(α+k) (α+ k)(α+k−1/2)

for large k and taking α = 1, n+ 1 in turn, we get

|ϕn,k|
1
k =

∣∣∣∣ 1

Γ`k+1(k + 1) Γ`n+`k+1(n+ k + 1) 4k

∣∣∣∣ 1k

∼ 1

4

∣∣∣√2π e−(k+1) (k + 1)k+1− 1
2

∣∣∣ 1k−`∣∣∣√2π e−(n+k+1) (n+ k + 1)n+k+1− 1
2

∣∣∣ `nk +`+ 1
k

.

Hence using the Cauchy-Hadamard formula, we further have

1

R
= lim
k→∞

sup k

√
|ϕn,k|

=
1

4 (2π)`
lim
k→∞

sup

∣∣e2`n+2`+2
∣∣

|e`n+2` k2`n+`+2|

∣∣∣ e
k

∣∣∣2`k
=
e2

4

∣∣∣∣ en2π

∣∣∣∣` lim
k→∞

sup
1

k2`n+`+2

∣∣∣ e
k

∣∣∣2`k
= 0,

provided <(`) ≥ 0 and <(2`n+ `+ 2) > 0. �

In order to obtain the properties of the `-HBF (1.9), we need to extend the
binomial coefficient and thereby the binomial theorem.

Definition 3. For 0 ≤ k ≤ n, the `-binomial coefficient may be denoted and
defined by (

n

k

)(`)

=
(n!)`n+1

((n− k)!)`n−`k+1 (k!)`k+1
.

For z1, z2 ∈ C, let us denote by (z1 +` z2)n the `-analogue of (z1 + z2)n.
Then the binomial theorem admits the extension in the form:

(z1 +` z2)n =

n∑
k=0

(
n

k

)(`)

zn−k1 zk2(1.12)

which we call the `-binomial theorem. Here we make a convention that z1 +` z2

denotes the usual sum z1+z2 only and z1+`(−z2) denotes the usual subtraction



280 M. H. CHUDASAMA

z1 − z2, while (z1 +` z2)n indicates that we have to consider this expansion
through `-binomial coefficient.

Remark 1.5. For ` = 0, the `-binomial theorem reduces to the binomial theo-
rem.

In view of Definition 1, we have

e`H(z +` w) =

∞∑
n=0

(z +` w)n

(n!)`n+1
(1.13)

for z, w ∈ C and <(`) ≥ 0.
Using the expansion (1.12), we prove the `-analogue of the identity:

exp(z1 + z2) = exp(z1) exp(z2)

as:

Lemma 1.6. For the `-H exponential function, the following identity holds:

(1.14) e`H(z1 +` z2) = e`H(z1) e`H(z2).

Proof. In view of (1.12) and (1.13), we have

e`H(z1 +` z2) =

∞∑
n=0

1

(n!)`n+1

n∑
k=0

(n!)`n+1

((n− k)!)`n−`k+1 (k!)`k+1
zn−k1 zk2

=

∞∑
n=0

n∑
k=0

zn−k1 zk2
((n− k)!)`n−`k+1 (k!)`k+1

=

∞∑
n=0

zn1
(n!)`n+1

∞∑
k=0

zk2
(k!)`k+1

= e`H(z1) e`H(z2). �

Remark 1.7. Since e`H(0) = 1, it follows from (1.14) with z2 = −z1 that

(1.15) e`H(z1) e`H(−z1) = e`H(z1 +` (−z1)) = e`H(z1 − z1) = e`H(0) = 1.

Along with this, the relation: J−n(z) = (−1)nJn(z) is also put in the `-form
which will be used later in obtaining certain properties.

Lemma 1.8. For n ∈ Z,

(1.16) (−1)n J`n,H(z) = J`−n,H(z).

Proof. We begin with

(−1)n J`n,H(z) = (−1)n
∞∑
s=0

(−1)s (z/2)
n+2s

(s!)`s+1 ((n+ s)!)`n+`s+1

=

∞∑
s=0

(−1)s+n (z/2)
2s+2n−n

(s!)`s+1 ((s+ n)!)`s+`n+1
.
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Taking s+ n = k we have

(−1)n J`n,H(z) =

∞∑
k=n

(−1)k (z/2)
2k−n

(k!)`k+1 ((k − n)!)`k−`n+1

= J`−n,H(z). �

2. Main results

For the `-HBF, we first derive the generating function relation (GFR) and
then derive the differential equation and the integral representations.

2.1. Generating function relation

The derivation of the GFR of `-HBF uses the finite summation identity
[9, Lemma 12, p. 112] which is referred to here as:

Lemma 2.1. For n ≥ 1,

(2.1)

n∑
k=0

A(k, n) =

[n
2 ]∑

k=0

A(n− k, n) +

[n−1
2 ]∑

k=0

A(k, n).

Proof. First note that for n ≥ 1,

n = 1 +
[n

2

]
+

[
n− 1

2

]
,

in which [∗] is the usual greatest integer symbol.
Hence

(2.2)

n∑
k=0

A(k, n) =

[n
2 ]∑

k=0

A(k, n) +

1+[n
2 ]+[n−1

2 ]∑
k=0

A(k, n).

Now replacing k by n−k that is, k by 1+
[
n
2

]
+
[
n−1

2

]
−k in the last summation

in (2.2), leads to (2.1). �

We now derive the GFR in:

Theorem 2.2. For t 6= 0 and for all finite |z|,

(2.3)

∞∑
n=−∞

J`n,H(z) tn = e`H

(z
2

(
t+` (−t−1)

))
,

where e`H(z) is as defined in (1.2).

Proof. The left hand side

∞∑
n=−∞

J`n,H(z) tn =

−1∑
n=−∞

J`n,H(z) tn +

∞∑
n=0

J`n,H(z) tn

=

∞∑
n=0

J`−n−1,H(z) t−n−1 +

∞∑
n=0

J`n,H(z) tn.
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In view of Lemma 1.8 and defining series (1.9), we further have

∞∑
n=−∞

J`n,H(z) tn

=

∞∑
n=0

(−1)n+1 J`n+1,H(z) t−n−1 +

∞∑
n=0

J`n,H(z) tn

=

∞∑
n,k=0

(−1)n+k+1 (z/2)n+2k+1 t−n−1

(k!)`k+1 ((n+ k + 1)!)`n+`k+`+1
+

∞∑
n,k=0

(−1)k (z/2)n+2k tn

(k!)`k+1 ((n+ k)!)`n+`k+1

=

∞∑
n=0

[n
2 ]∑

k=0

(−1)n−2k+k+1 (z/2)n−2k+2k+1 t−n+2k−1

(k!)`k+1 ((n− 2k + k + 1)!)`n−2`k+`k+`+1

+

∞∑
n=0

[n
2 ]∑

k=0

(−1)k (z/2)n−2k+2k tn−2k

(k!)`k+1 ((n− 2k + k)!)`n−2`k+`k+1

=

∞∑
n=0

[n−1
2 ]∑

k=0

(−1)n−k (z/2)n t−n+2k

(k!)`k+1 ((n− k)!)`n−`k+1
+ 1

+

∞∑
n=1

[n
2 ]∑

k=0

(−1)k (z/2)n tn−k−k

(k!)`k+1 ((n− k)!)`n−`k+1

= 1 +

∞∑
n=1

[ [n−1
2 ]∑

k=0

(−1)n−k (z/2)n t−n+2k

(k!)`k+1 ((n− k)!)`n−`k+1

+

[n
2 ]∑

k=0

(−1)k (z/2)n tn−k−k

(k!)`k+1 ((n− k)!)`n−`k+1

]
.

From the result stated in Lemma 2.1, we have

∞∑
n=−∞

J`n,H(z) tn = 1 +

∞∑
n=1

n∑
k=0

(−1)k (z/2)n tn−2k

(k!)`k+1 ((n− k)!)`n−`k+1

=

∞∑
n=0

∞∑
k=0

(−1)k (z/2)n+k tn−k

(k!)`k+1 (n!)`n+1

=

∞∑
n=0

(z/2)n tn

(n!)`n+1

∞∑
k=0

(−1)k (z/2)k t−k

(k!)`k+1

= e`H

(
zt

2

)
e`H

(
−z
2t

)
= e`H

(z
2

(
t+` (−t−1)

))
.

Thus, the GFR follows from Lemma 1.6. �
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2.2. Differential equation

The differential equation of `-HBF is obtained by means of the infinite order
hyper-Bessel type differential operator as defined below [2,3].

Definition 4. Let f(z) =
∑∞
n=1 anz

n, 0 6= z ∈ C, p ∈ N ∪ {0} and α ∈ C.
Define

(2.4) p∆
Θ
α (f(z)) =


∞∑
n=1

an(α)pn−1(Θ + α− 1)pnzn, if p ∈ N,

f(z), if p = 0,

where Θ is either differential operator θ = z d
dz or hyper-Bessel type differential

operators (see for instance [5–7])

(Dz)n =
d

dz
z
d

dz
· · · d

dz
z
d

dz︸ ︷︷ ︸
n derivatives

with (Θ + α)r = (Θ + α)(Θ + α) · · · (Θ + α)︸ ︷︷ ︸
r times

.

Also, we need the following operators.

Definition 5. For f(z) =
∑∞
k=0 ak z

αk, α ∈ R, define the lowering operator:

(2.5) Oα−f(z) =

∞∑
k=0

ak z
(α−1)k,

the raising operator:

(2.6) Oα+f(z) =

∞∑
k=0

ak z
(α+1)k

and as suggested by (2.4), the operator:

(2.7) `ΛM (f(z)) = `∆
θ
1 (θ(f(z))).

We put

(2.8) `Ω
(z)
n ≡

(
O1+ `ΛMz

−n
`ΛMO2−

)
.

With these operators, the differential equation of `-HBF is derived in:

Theorem 2.3. For `, n ∈ N ∪ {0} and z 6= 0, w = J`n,H(z) satisfies the
differential equation

(2.9)

[
`Ω

(z)
n +

z−n+1

4

]
w = 0,

where `Ω
(z)
n is as defined in (2.8).
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Proof. We start with

`Ω
(z)
n J`n,H(z)

=
(
O1+ `ΛMz

−n
`ΛMO2−

)( ∞∑
k=0

(−1)k (z/2)n+2k

(k!)`k+1 ((n+ k)!)`n+`k+1

)

= O1+ `ΛMz
−n

`ΛM

( ∞∑
k=0

(−1)k zn+k

2n+2k (k!)`k+1 ((n+ k)!)`n+`k+1

)

= O1+ `ΛMz
−n

`∆M

( ∞∑
k=0

(−1)k zn+k

2n+2k (k!)`k+1 ((n+ k)!)`n+`k (n+ k − 1)!

)

= O1+ `ΛMz
−n

( ∞∑
k=0

(−1)k (1)`n+k−1 θ
`n+`k zn+k

2n+2k (k!)`k+1 ((n+ k)!)`n+`k (n+ k − 1)!

)
.

Since θ`n+`k zn+k = (n+ k)`n+`k zn+k, we have

`Ω
(z)
n J`n,H(z)

= O1+ `ΛMz
−n

( ∞∑
k=0

(−1)k zn+k

2n+2k (k!)`k+1 ((n+ k − 1)!)`n+`k−`+1

)

= O1+ `ΛM

( ∞∑
k=0

(−1)k zk

2n+2k (k!)`k+1 ((n+ k − 1)!)`n+`k−`+1

)

= O1+ `∆M

( ∞∑
k=1

(−1)k zk

2n+2k (k!)`k (k − 1)! ((n+ k − 1)!)`n+`k−`+1

)

= O1+

( ∞∑
k=1

(−1)k (1)`k−1 θ
`k zk

2n+2k (k!)`k (k − 1)! ((n+ k − 1)!)`n+`k−`+1

)

= O1+

( ∞∑
k=1

(−1)k zk

2n+2k ((k − 1)!)`k−`+1 ((n+ k − 1)!)`n+`k−`+1

)

= O1+

( ∞∑
k=0

(−1)k+1 zk+1

2n+2k+2 (k!)`k+1 ((n+ k)!)`n+`k+1

)

=

∞∑
k=0

(−1)k+1 z2k+1

2n+2k+2 (k!)`k+1 ((n+ k)!)`n+`k+1

= − z−n+1

4
J`n,H(z).

�

Remark 2.4. The zero order `-HBF, that is w = J`0,H(z) satisfies the differential
equation: [

`Ω
(z)
0 +

z

4

]
w = 0.
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2.3. `-HBF integral

By using the `-H trigonometric functions (1.4), the `-analogue of the Bessel’s
integral is obtained in:

Theorem 2.5. For n ∈ Z,

(2.10) J`n,H(z) =
1

π

∫ π

0

[
cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)

]
dθ.

Proof. The generating function relation of `-HBF (2.3) may be regarded as
the Laurent series expansion of the function e`H

(
z
2 (t− t−1)

)
; valid near the

essential singularity t = 0. We then have the coefficient

J`n,H(z) =
1

2πi

∫ (0+)

u−n−1 e`H

(z
2

(u+` (−u−1))
)

du(2.11)

in which the contour (0+) is a simple closed path encircling the origin u = 0
once in the positive direction.

In (2.11), let us choose the particular path

u = eiθ = cos θ + i sin θ,

where θ runs from −π to π. Then u−1 = cos θ − i sin θ, hence (2.11) yields

J`n,H(z) =
1

2πi

∫ π

−π
e(−n−1)iθ e`H

(z
2

(2i sin θ)
)
ieiθdθ

=
1

2π

∫ π

−π
(cosnθ − i sinnθ)

[
cos`H(z sin θ) + i sin`H(z sin θ)

]
dθ

=
1

2π

∫ π

−π
cosnθ cos`H(z sin θ) dθ +

1

2π

∫ π

−π
sin nθ sin`H(z sin θ) dθ(2.12)

− i

2π

[∫ π

−π
sinnθ cos`H(z sin θ) dθ −

∫ π

−π
cos nθ sin`H(z sin θ) dθ

]
= I1 + I2 + I3 + I4 (say).

From (1.5), we note that the integrands in I1 and I2 are even functions of θ
whereas the integrands in I3 and I4 are odd functions of θ, hence I3 = I4 = 0.
Thus the theorem. �

Remark 2.6. When `=0, then in view of (1.6) and (1.10), (2.10) reduces to the
Bessel’s integral [9, Theorem 40, p. 114]:

Jn(z) =
1

π

∫ π

0

cos (nθ − z sin θ) dθ

for integral n.
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2.4. Schläfli’s integral analogue

Here the integral of Theorem 2.5 is modified so as to include the non integral
values of n. For that considering the alternative form:

J`n,H(z) =

∞∑
k=0

(−1)k (z/2)n+2k tn

(k!)`k+1 Γ`n+`k+1(n+ k + 1)
,(2.13)

we have:

Theorem 2.7. If <(z) > 0, then for general values of n,

J`n,H(z) =
1

π

{∫ π

0

cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)dθ

− sinnπ

π

∫ ∞
0

e−nθ e`H (−z sinh θ) dθ

}
.(2.14)

Proof. Let us consider the integral in (2.11), that is

J`n,H(z) =
1

2πi

∫ (0+)

u−n−1 e`H

(z
2

(u+` (−u−1))
)

du.

We integrate the branch

u−n−1 e`H

(z
2

(u+` (u−1))
)

(|u| > 0, −π < arg u < π)

with branch cut arg u = π around the contour C which is traced out by a point
moving (i) along the lower edge of the cut from −∞ to −1, then (ii) around
the circle |u| = 1, and finally (iii) along the upper edge of the cut from −1 to
−∞ as shown in the figure.

−1−∞ .
O

C

Hence for <(z) > 0, we have

J`n,H(z) =
1

2πi

∫
C

u−n−1 e`H

(z
2

(u+` (u−1))
)

du

=
1

2πi

{∫ −1

−∞
+

∫
|u|=1

+

∫ −∞
−1

}
u−n−1 e`H

(z
2

(u+` (u−1))
)

du.
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Writing u = e∓iπ t in the first and third integrals respectively and u = eiθ,
−π < θ < π in the second, we further have

J`n,H(z) =
1

2π

∫ π

−π
e−inθe`H(iz sin θ)dθ

− 1

2πi

∫ −1

−∞
e(−n−1)(−iπ)t−n−1 e`H

(
z

2

(
e−iπt+`

(
−e

iπ

t

)))
dt

− 1

2πi

∫ ∞
1

e(−n−1)(iπ)t−n−1 e`H

(
z

2

(
eiπt+`

(
−e
−iπ

t

)))
dt

=
1

2π

∫ π

−π
e−inθe`H(iz sin θ)dθ

+

∫ ∞
1

t−n−1 e`H

(z
2

(
−t+` t

−1
)) [e(n+1)πi − e−(n+1)πi

2πi

]
dt

=
1

2π

∫ π

−π
e−inθe`H(iz sin θ)dθ

+
sin(n+ 1)π

π

∫ ∞
1

t−n−1 e`H

(z
2

(
t−1 +` (−t)

))
dt.

Now evaluating the first integral by following the procedure of obtaining (2.10)
from (2.12), and evaluating the second integral by putting t = eθ, we finally
find

J`n,H(z) =
1

π

∫ π

0

[cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)] dθ

+
sin(n+ 1)π

π

∫ ∞
0

e−nθ e`H

(z
2

(
e−θ +` (−eθ)

))
dθ

=
1

π

∫ π

0

[cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)] dθ

− sinnπ

π

∫ ∞
0

e−nθ e`H (−z sinh θ) dθ. �

Remark 2.8. (1) We call the integral (2.14) as the `-Schläfli’s integral. If
` = 0, then (2.14) yields the Schläfli’s integral for Bessel function Jn(z) given
by [11, Sec. 17.231, p. 362]

Jn(z) =
1

π

∫ π

0

cosn(θ − z sin θ) dθ − sinnπ

π

∫ ∞
0

e−nθ−z sinh θdθ.

(2) If n is an integer, then the integral (2.14) reduces to the `-HBF integral
(2.10).

3. Other properties

Here a differential recurrence relation, summation formula and two inequal-
ities will be derived and then with the help of the GFR and `-HBF integral
representation, some other properties will be deduced.



288 M. H. CHUDASAMA

3.1. Differential recurrence relation

Let `∆
θ
1 be as defined in (2.4). Then by using the operator [2, 3]:

(3.1) `D(z)
M (f(z)) =

(
z−1

`∆
θ
1 θ
)

(f(z)) or
(
≡ `∆

Dz
1 θ(f(z))

)
,

we derive the differential recurrence relation in:

Theorem 3.1. For ` ∈ N ∪ {0},

(3.2) 2 `D(z)
M J`n,H(z) = J`n−1,H(z)− J`n+1,H(z).

The theorem is proved by using the following lemma which describes the
eigen function property of `-H exponential function.

Lemma 3.2. The `-H exponential function e`H
(
z
2

(
t− t−1

))
with t fixed, is an

eigen function with respect to the operator `D(z)
M as defined in (3.1). That is,

(3.3) `D(z)
M

[
e`H

(z
2

(
t+` (−t−1)

))]
=

1

2

(
t− t−1

)
e`H

(z
2

(
t+` (−t−1)

))
for fixed t.

Proof. We begin with

`D(z)
M

[
e`H

(z
2

(
t+` (−t−1)

))]
= `∆

Dz
1

(
θ

∞∑
n=0

(
t+` (−t−1)

)n
zn

2n (n!)`n+1

)

= `∆
Dz
1

( ∞∑
n=1

(
t+` (−t−1)

)n
zn

2n (n!)`n (n− 1)!

)

=

∞∑
n=1

(
t+` (−t−1)

)n
(1)`n−1 (Dz)n zn

2n (n!)`n (n− 1)!
.

Now since

(Dz)`n zn =
d

dz
z
d

dz
· · · d

dz
z
d

dz︸ ︷︷ ︸
`n derivatives

zn = n`n zn−1,

we obtain

`D(z)
M

[
e`H

(z
2

(
t− t−1

))]
=

∞∑
n=1

(
t+` (−t−1)

)n
(1)`n−1 n

`n zn−1

2n (n!)`n (n− 1)!

=

∞∑
n=1

(
t+` (−t−1)

)n
zn−1

2n ((n− 1)!)`n−`+1

=
1

2

(
t− t−1

)
e`H

(z
2

(
t+` (−t−1)

))
. �

Proof of Theorem 3.1. From Theorem 2.2 we have

e`H

(z
2

(
t+` (−t−1)

))
=

∞∑
n=−∞

J`n,H(z) tn.
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Applying the operator `D(z)
M both the sides, we obtain

`D(z)
M

[
e`H

(z
2

(
t+` (−t−1)

))]
=

∞∑
n=−∞

`D(z)
M

(
J`n,H(z)

)
tn.

Then from Lemma 3.2,

1

2

(
t− t−1

)
e`H

(z
2

(
t+` (−t−1)

))
=

∞∑
n=−∞

`D(z)
M

(
J`n,H(z)

)
tn.

Once again using Theorem 2.2, we find
∞∑

n=−∞
`D(z)

M

(
J`n,H(z)

)
tn

=
t

2

∞∑
n=−∞

J`n,H(z) tn +

(
−1

2t

) ∞∑
n=−∞

J`n,H(z) tn

=
1

2

∞∑
n=−∞

J`n,H(z) tn+1 − 1

2

∞∑
n=−∞

J`n,H(z) tn−1

=
1

2

∞∑
n=−∞

J`n−1,H(z) tn − 1

2

∞∑
n=−∞

J`n+1,H(z) tn.

On comparing the coefficients of tn both sides, we get (3.2). �

The iteration of the relation (3.2) yields the following general formula.

Theorem 3.3. If n ∈ N ∪ {0} and k ∈ N, then (cf. [9, Ex. 7, p. 121])

(3.4) 2k
(
`D(z)

M

)k
J`n,H(z) =

k∑
m=0

(−1)k−m
(
k

m

)
J`n+k−2m,H(z).

Proof. For k = 1, this theorem holds true from Theorem 3.1. That is,

2 `D(z)
M J`n,H(z) = J`n−1,H(z)− J`n+1,H(z).

Here, applying the operator 2 `D(z)
M both the sides, we find that

22
(
`D(z)

M

)2

J`n,H(z) = 2 `D(z)
M J`n−1,H(z)− 2 `D(z)

M J`n+1,H(z)

= J`n−2,H(z)− 2J`n,H(z) + J`n+2,H(z)

=

2∑
m=0

(−1)2−m
(

2

m

)
J`n+2−2m,H(z).(3.5)

Similarly,

23
(
`D(z)

M

)3

J`n,H(z)

= 2 `D(z)
M J`n−2,H(z)− 2 `D(z)

M

[
2J`n,H(z)

]
+ 2 `D(z)

M J`n+2,H(z)
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= J`n−3,H(z)− 3J`n−1,H(z) + 3J`n+1,H(z)− J`n+3,H(z)

=

3∑
m=0

(−1)3−m
(

3

m

)
J`n+3−2m,H(z).

The recursive procedure k-times, leads to the theorem. �

Remark 3.4. Alternatively, this theorem can also be proved by using the prin-
ciple of mathematical induction on k.

3.2. Summation formula and inequalities

In the following theorems, the properties involving series and definite integrals
are extended.

Theorem 3.5. For an integer n, (cf. [9, Ex. 2, p. 120])

cos`H(z) = J`0,H(z) + 2

∞∑
n=1

(−1)n J`2n,H(z),(3.6)

sin`H(z) = 2

∞∑
n=0

(−1)n J`2n+1,H(z).(3.7)

Proof. From the GFR of `-HBF (2.3) and the identity (1.16),

e`H

(z
2

(
t+` (−t−1)

))
=

∞∑
n=−∞

J`n,H(z) tn

= J`0,H(z) +

∞∑
n=1

J`n,H(z) tn +

∞∑
n=1

J`−n,H(z) t−n

= J`0,H(z) +

∞∑
n=1

J`n,H(z) [tn + (−1)n t−n].(3.8)

Taking t = i, we have t−1 = −i hence

e`H(iz) = J`0,H(z) +

∞∑
n=1

J`n,H(z) [in + (−1)n i−n]

= J`0,H(z) +

∞∑
n=1

J`2n,H(z) [i2n + (−1)2n i−2n]

+

∞∑
n=0

J`2n+1,H(z) [i2n+1 + (−1)2n+1 i−(2n+1)].

In view of (1.4), this gives

cos`H(z)+i sin`H(z) = J`0,H(z)+2

∞∑
n=1

(−1)n J`2n,H(z)+2i

∞∑
n=0

(−1)n J`2n+1,H(z).

On comparing the real and imaginary parts, we obtain the required result. �
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Theorem 3.6. If n ∈ Z, then (cf. [9, Ex. 3, p. 120])

cos`H(z sin`H θ) = J`0,H(z) + 2

∞∑
n=1

J`2n,H(z) cos`H 2nθ,(3.9)

sin`H(z sin`H θ) = 2

∞∑
n=0

J`2n+1,H(z) sin`H(2n+ 1)θ.(3.10)

Proof. In (3.8), substituting t = e`H(iθ) the `-H exponential function, we find

e`H

(z
2

(
e`H(iθ) +` (−e`H(−iθ))

))
= J`0,H(z) +

∞∑
n=1

J`n,H(z) [e`H(inθ) + (−1)n e`H(−inθ)]

= J`0,H(z) +

∞∑
n=1

J`2n,H(z) [e`H(2inθ) + (−1)2n e`H(−2inθ)]

+

∞∑
n=0

J`2n+1,H(z) [e`H((2n+ 1)iθ) + (−1)2n+1 e`H(−(2n+ 1)iθ)]

= J`0,H(z) + 2

∞∑
n=1

J`2n,H(z) cos`H 2nθ + 2i

∞∑
n=0

J`2n+1,H(z) sin`H(2n+ 1)θ.

From (1.8),

e`H

(z
2

(
e`H(iθ) +` (−e`H(−iθ))

))
= e`H(iz sin`H θ)

= cos`H(z sin`H θ) + i sin`H(z sin`H θ),

hence the result follows by comparison of the real and imaginary parts. �

Theorem 3.7. For n ∈ Z, the following equalities hold (cf. [9, Ex. 3, p. 120]):

[1 + (−1)n] J`n,H(z) =
2

π

∫ π

0

cosnθ cos`H(z sin θ)dθ,(3.11)

[1− (−1)n] J`n,H(z) =
2

π

∫ π

0

sinnθ sin`H(z sin θ)dθ.(3.12)

Further,

J`2n,H(z) =
1

π

∫ π

0

cos 2nθ cos`H(z sin θ)dθ,(3.13)

J`2n+1,H(z) =
1

π

∫ π

0

sin(2n+ 1)θ sin`H(z sin θ)dθ(3.14)

and ∫ π

0

cos(2n+ 1)θ cos`H(z sin θ)dθ = 0,(3.15)



292 M. H. CHUDASAMA∫ π

0

sin 2nθ sin`H(z sin θ)dθ = 0.(3.16)

Proof. From the `-HBF integral, we have

J`n,H(z) =
1

π

∫ π

0

[
cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)

]
dθ(3.17)

⇒ J`−n,H(z) =
1

π

∫ π

0

[
cos(−nθ) cos`H(z sin θ) + sin(−nθ) sin`H(z sin θ)

]
dθ

⇒ (−1)nJ`n,H(z) =
1

π

∫ π

0

[
cosnθ cos`H(z sin θ)− sinnθ sin`H(z sin θ)

]
dθ.

(3.18)

Hence adding (subtracting) (3.17) and (3.18) we obtain (3.11) ((3.12)).
If n is an even (odd) integer, then (3.11) ((3.12)) yields (3.13) ((3.14)).
By considering even ordered `-HBF in (3.11) and odd ordered `-HBF in

(3.12) yield (3.13) and (3.14) respectively.
Similarly, if the order n is an odd (even) integer, then (3.11) ((3.12)) fur-

nishes (3.15) ((3.16)). �

3.3. `-Analogue of Bessel’s inequality due to Cauchy

Here we first obtain the `-analogue of the inequality [10, p. 16]

(n+ r)!

n!
≥ (n+ 1)r.

Lemma 3.8. If <(`) ≥ 0 and r ∈ N ∪ {0}, then

(3.19)
((n+ r)!)`n+1

(n!)`n+1
≥ (n+ 1)r(`n+1).

Proof. For r = 0, (3.19) is evident. For the remaining values of r, we use the
principle of mathematical induction.

For r = 1,

L.H.S. =
((n+ 1)!)`n+1

(n!)`n+1
= (n+ 1)`n+1 = R.H.S.

Suppose that (3.19) is true for r = some positive integer k. That is

(3.20)
((n+ k)!)`n+1

(n!)`n+1
≥ (n+ 1)k(`n+1)

holds true. Then for r = k + 1, it suffice to prove

((n+ k + 1)!)`n+1

(n!)`n+1
≥ (n+ 1)(k+1)(`n+1).
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We begin with the left hand side of this inequality and make use of the as-
sumption in (3.20) to get

((n+ k + 1)!)`n+1

(n!)`n+1
= (n+ k + 1)`n+1 ((n+ k)!)`n+1

(n!)`n+1

≥ (n+ k + 1)`n+1 (n+ 1)k(`n+1)

≥ (n+ 1)`n+1 (n+ 1)k(`n+1)

= (n+ 1)(k+1)(`n+1),

whenever <(`) ≥ 0. �

Using this, we establish below the `-Bessel’s inequality due to Cauchy.

Theorem 3.9. For `, n ∈ N ∪ {0},

(3.21)
∣∣J`n,H(z)

∣∣ ≤ ∣∣ z
2

∣∣n
(n!)`n+1

e`H

(∣∣∣∣z2

4

∣∣∣∣) .
Proof. From Definition 2 (of `-HBF) we have

∣∣J`n,H(z)
∣∣ ≤ ∣∣∣z

2

∣∣∣n ∞∑
k=0

∣∣ z
2

∣∣2k
((n+ k)!)`n+`k+1 (k!)`k+1

(3.22)

in which

1

((n+ k)!)`n+`k+1
≤ 1

((n+ k)!)`k (n!)`n+1 (n+ 1)k(`n+1)

in view of Lemma 3.8. Thus (3.22) leads us to

∣∣J`n,H(z)
∣∣ ≤ ∣∣ z

2

∣∣n
(n!)`n+1

∞∑
k=0

∣∣ z
2

∣∣2k
((n+ k)!)`k (n!)`n+1 (n+ 1)k(`n+1) (k!)`k+1

≤
∣∣ z

2

∣∣n
(n!)`n+1

∞∑
k=0

∣∣ z
2

∣∣2k
(k!)`k+1

=

∣∣ z
2

∣∣n
(n!)`n+1

e`H

(∣∣∣∣z2

4

∣∣∣∣) ,
when `, n ∈ N ∪ {0}. �

Remark 3.10. The special case ` = 0 yields the inequality [10, Eq. (14), p. 16]:

|Jn(z)| ≤
∣∣ z

2

∣∣n
n!

exp

(∣∣∣∣z2

4

∣∣∣∣) .
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3.4. Addition formula

Theorem 3.11. For the `-HBF, the following equality holds (cf. [10, Sec. 2.4,
2.5, p. 30])

J`n,H(z1 + z2) =

∞∑
m=−∞

J`m,H(z1) J`n−m,H(z2).(3.23)

Proof. On substituting z = z1 +z2 in the contour integral (2.11) and then using
the property (1.14), we obtain

J`n,H(z1 + z2)

=
1

2πi

∫ (0+)

u−n−1 e`H

(
(z1 + z2) (u+` (−u−1))

2

)
du

=
1

2πi

∫ (0+)

u−n−1 e`H

(z1

2
(u+` (−u−1))

)
e`H

(z2

2
(u+` (−u−1))

)
du

=
1

2πi

∫ (0+)

u−n−1
∞∑

m=−∞
J`m,H(z1) um e`H

(z2

2
(u+` (−u−1))

)
du

=

∞∑
m=−∞

J`m,H(z1)
1

2πi

∫ (0+)

um−n−1 e`H

(z2

2
(u+` (−u−1))

)
du.

Once again making an appeal to (2.11), we are led to (3.23). �

Corollary 3.12. The following series relation holds.

(3.24) J`n,H(2z) =

n∑
m=0

J`m,H(z) J`n−m,H(z)+2

∞∑
m=1

(−1)m J`m,H(z) J`n+m,H(z).

Proof. If z1 = z2 = z in (3.23), then

J`n,H(2z) =

∞∑
m=−∞

J`m,H(z) J`n−m,H(z)

=
−1∑

m=−∞
J`m,H(z) J`n−m,H(z) +

∞∑
m=0

J`m,H(z) J`n−m,H(z)

=

−1∑
m=−∞

J`m,H(z) J`n−m,H(z) +

n∑
m=0

J`m,H(z) J`n−m,H(z)

+

∞∑
m=n+1

J`m,H(z) J`n−m,H(z).

This in view of (1.16) gives

J`n,H(2z) =

n∑
m=0

J`m,H(z) J`n−m,H(z) +

∞∑
m=1

(−1)m J`m,H(z) J`n+m,H(z)
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+

∞∑
m=1

(−1)m J`m,H(z) J`n+m,H(z)

=

n∑
m=0

J`m,H(z) J`n−m,H(z) + 2

∞∑
m=1

(−1)m J`m,H(z) J`n+m,H(z).
�

Remark 3.13. The newly defined function `-HBF (1.9) can be considered as
an extension to the hypergeometric function 0Fq where q in the second index
goes to infinity together with the summation index k in the power series. Con-
sequently, this leads us the construction of the hyper-Bessel type differential
operator which helps in establishing an infinite order differential equation sat-
isfied by the new class of Bessel functions defined by (1.9). Noticing that the
differential equations of infinite order appear in the perturbative approach to
the p-adic string theory [1] as well as in the tachyon field in open string field
theory [1], it may be of the interest to examine the occurrence of the `-HBF in
these theories.

The graphs of the `-H Bessel functions of different order with different scales
are shown in Figures 1-4.

Figure 1. a,b: Graphs of J1
0,H(x) with different scales
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Figure 2. a,b: Graphs of J1
1,H(x) with different scales

Figure 3. a,b: Graphs of J1
2,H(x) with different scales
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Figure 4. a,b: Graphs of J1
1
2 ,H

(x) with different scales

Acknowledgment. Author is indebted to her guide Prof. B. I. Dave, for his
valuable guidance. Author sincerely thanks the referee(s) for going through the
manuscript critically and giving the valuable comments of the manuscript.

References

[1] N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: the initial

value problem, J. High Energy Phys. 2008 (2008), no. 2, 008, 39 pp. https://doi.org/

10.1088/1126-6708/2008/02/008

[2] M. H. Chudasama and B. I. Dave, Some new class of special functions suggested by

the confluent hypergeometric function, Ann. Univ. Ferrara Sez. VII Sci. Mat. 62 (2016),
no. 1, 23–38. https://doi.org/10.1007/s11565-015-0238-3

[3] , A new class of functions suggested by the generalized hypergeometric function,
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