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Abstract. In this paper we give some properties, explicit formulas, several
identities, a connection with tangent numbers and polynomials, and some

integral formulas.
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1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli
numbers, Euler numbers, Genocchi numbers, and tangent numbers (see [1, 2, 3,
4, 5, 8, 9 10, 11]). Throughout this paper, we always make use of the following
notations: N denotes the set of natural numbers and Z+ = N ∪ {0} , and C
denotes the set of complex numbers. The tangent numbers Tn are defined by
the generating function:

F (t) =
2

e2t + 1
=

∞∑
n=0

Tn
tn

n!
, (|t| < π

2
),

where we use the technique method notation by replacing Tn by Tn(n ≥ 0)
symbolically [6, 7]. We consider the tangent polynomials Tn(x) as follows:

F (x, t) =

(
2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
. (1.1)

Note that Tn(x) =
∑n

k=0

(
n
k

)
Tkx

n−k. Numerous properties of tangent number
are known. More studies and results in this subject we may see references [6, 7,
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8]. About extensions for the tangent numbers can be found in [6, 7, 8]. Because

∂F

∂x
(x, t) = tF (x, t) =

∞∑
n=0

dTn

dx
(x)

tn

n!
,

it follows the important relation

dTn

dx
(x) = nTn−1(x).

Since ∫ x

0

Tn(t)dt =
n∑

l=0

(
n

l

)
Tl

∫ x

0

tn−ldt

=

n∑
l=0

(
n

l

)
Tl

tn−l+1

n− l + 1

∣∣∣∣x
0

=
1

n+ 1

n+1∑
l=0

(
n+ 1

l

)
Tl t

n−l+1
∣∣x
0
,

we see that ∫ x

0

Tn(t)dt =
Tn+1(x)− Tn+1(0)

n+ 1
. (1.2)

Since Tn(0) = Tn, by (1.2), we have the following theorem.

Theorem 1.1. For n ∈ N, we have

Tn(x) = Tn + n

∫ x

0

Tn−1(t)dt.

From (1.1), we can derive the following equation:

∞∑
n=0

Tn(2− x)
(−t)n

n!
=

2

e−2t + 1
e(2−x)(−t)

=
2

e2t + 1
ext =

∞∑
n=0

Tn(x)
tn

n!
.

(1.3)

By comparing the coefficients on both sides of (1.3), we have the following the-
orem.

Theorem 1.2. For any positive integer n, we have

Tn(x) = (−1)nTn(2− x). (1.4)
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Now we observed that
∞∑

n=0

Tn(2− x)
tn

n!
=

2

e2t + 1
e(2−x)t

=
2

e2t + 1
e2te(−x)t

=

( ∞∑
n=0

Tn(2)
tn

n!

)( ∞∑
m=0

(−x)m
tm

m!

)

=
∞∑

n=0

(
n∑

m=0

(
n

m

)
Tn−m(2)(−1)mxm

)
tn

n!
.

(1.5)

By (1.5), we have the following theorem.

Theorem 1.3. For any positive integer n, we have

Tn(2− x) =
n∑

k=0

(
n

k

)
(−1)kTn−k(2)x

k. (1.6)

The beta integral is defined for Re(x) > 0, Re(y) > 0 by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (1.7)

For Re(x) > 0, the gamma function Γ(x) is defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt. (1.8)

The above integral for Γ(x) is sometimes called the Eulerian integral of the
second kind. Thus, by (1.7) and (1.8), we have

Γ(x+ 1) = xΓ(x), B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (1.9)

Our aim in this paper is to give some properties, explicit formulas, several iden-
tities, a connection with tangent numbers and polynomials, and some integral
formulas.

2. Identities involving tangent numbers and polynomials

In this section, we obtain several new and interesting identities involving
tangent numbers and polynomials.

By (1.6), we get∫ 1

0

Tn(2− x)xndx =
n∑

k=0

(
n

k

)
(−1)kTn−k(2)

∫ 1

0

xk+ndx.

=
n∑

k=0

(
n

k

)
(−1)k

Tn−k(2)

n+ k + 1
.

(2.1)
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Since
∞∑

n=0

Tn(x+ y)
tn

n!
=

2

e2t + 1
exteyt =

( ∞∑
n=0

Tn(x)
tn

n!

)( ∞∑
m=0

ym
tm

m!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
Tm(x)yn−m

)
tn

n!
,

we have the following theorem.

Theorem 2.1. For n ∈ Z+, we have

Tn(x+ y) =

n∑
k=0

(
n

k

)
Tk(x)y

n−k. (2.2)

By (2.2), we note that∫ 1

0

ynTn(x+ y)dy =

∫ 1

0

yn
n∑

l=0

(
n

l

)
Tn−l(x)y

ldy

=

n∑
l=0

(
n

l

)
Tn−l(x)

∫ 1

0

yn+ldy

=
n∑

l=0

(
n

l

)
Tn−l(x)

1

n+ l + 1
.

(2.3)

From (1.4) and (2.3), we note that∫ 1

0

ynTn(x+ y)dy = yn
Tn+1(x+ y)

n+ 1

∣∣∣∣1
0

−
∫ 1

0

nyn−1Tn+1(x+ y)

n+ 1
dy

=
Tn+1(x+ 1)

n+ 1
− n

n+ 1

∫ 1

0

yn−1Tn+1(x+ y)dy

=
Tn+1(x+ 1)

n+ 1
− n

n+ 1

∫ 1

0

(−1)n+1yn−1Tn+1(2− (x+ y))dy

=
Tn+1(x+ 1)

n+ 1

− n

n+ 1

∫ 1

0

(−1)n+1yn−1
n+1∑
l=0

(
n+ 1

l

)
Tn+1−l(1− x)(1− y)ldy

=
Tn+1(x+ 1)

n+ 1

− n

n+ 1
(−1)n+1

n+1∑
l=0

(
n+ 1

l

)
Tn+1−l(1− x)

∫ 1

0

yn−1(1− y)ldy

=
Tn+1(x+ 1)

n+ 1
+

n

n+ 1

n+1∑
l=0

(
n+ 1

l

)
(−1)1−lTn+1−l(x+ 1)B(n, l + 1)

(2.4)
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Therefore, by (2.3) and (2.4), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, we have

Tn+1(x+ 1)

n+ 1
=

n∑
l=0

(
n

l

)
Tn−l(x)

1

n+ l + 1

+
n

n+ 1

n+1∑
l=0

(
n+ 1

l

)
(−1)lTn+1−l(x+ 1)B(n, l + 1).

For n ∈ N with n ≥ 4, we obtain

∫ 1

0

ynTn(x+ y)dy = yn
Tn(x+ y)

n+ 1

∣∣∣∣1
0

−
∫ 1

0

nyn+1Tn−1(x+ y)

n+ 1
dy

=
Tn(x+ 1)

n+ 1
− n

n+ 1

∫ 1

0

yn+1Tn−1(x+ y)dy

=
Tn(x+ 1)

n+ 1
− nTn−1(x+ 1)

(n+ 1)(n+ 2)
+ (−1)2

n

n+ 1

n− 1

n+ 2

∫ 1

0

yn+2Tn−2(x+ y)dy

=
Tn(x+ 1)

n+ 1
+ (−1)

nTn−1(x+ 1)

(n+ 1)(n+ 2)
+ (−1)2

n

n+ 1

n− 1

n+ 2

Tn−2(x+ 1)

n+ 3

+ (−1)3
n

n+ 1

n− 1

n+ 2

n− 2

n+ 3

∫ 1

0

yn+3Tn−3(x+ y)dy

=
Tn(x+ 1)

n+ 1
+ (−1)

nTn−1(x+ 1)

(n+ 1)(n+ 2)
+ (−1)2

n

n+ 1

n− 1

n+ 2

Tn−2(x+ 1)

n+ 3

+ (−1)3
n

n+ 1

n− 1

n+ 2

n− 2

n+ 3

Tn−3(x+ 1)

n+ 4

+ (−1)4
n

n+ 1

n− 1

n+ 2

n− 2

n+ 3

n− 3

n+ 4

∫ 1

0

yn+4Tn−4(x+ y)dy

Continuing this process, we obtain

∫ 1

0

ynTn(x+ y)dy =
Tn(x+ 1)

n+ 1

+

n∑
l=2

n(n− 1) · · · (n− l + 2)(−1)l−1

(n+ 1)(n+ 2) · · · (n+ l)
Tn−l+1(x+ 1)

+ (−1)n
n!

(n+ 1)(n+ 2) · · · (2n)

∫ 1

0

y2nT0(x+ y)dy

(2.5)

Hence, by (2.3) and (2.5), we have the following theorem.
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Theorem 2.3. For n ∈ N with n ≥ 2, we have
n∑

l=0

(
n

l

)
Tn−l(x)

1

n+ l + 1

=
Tn(x+ 1)

n+ 1
+

n∑
l=2

n(n− 1) · · · (n− l + 2)(−1)l−1

(n+ 1)(n+ 2) · · · (n+ l)
Tn−l+1(x+ 1)

+ (−1)n
n!

(n+ 1)(n+ 2) · · · (2n)
× 1

2n+ 1
.

By Theorem 2.2 and Theorem 2.3, we have the following corollary.

Corollary 2.4. For n ∈ N with n ≥ 2, we have

Tn+1(x+ 1)− Tn(x+ 1) = n

n+1∑
l=0

(
n+ 1

l

)
(−1)lTn+1−l(x+ 1)B(n, l + 1)

+
n∑

l=2

n(n− 1) · · · (n− l + 2)(−1)l−1

(n+ 2) · · · (n+ l)
Tn−l+1(x+ 1)

+ (−1)n
n!

(n+ 2) · · · (2n)(2n+ 1)
.

From (1.4), we have (−1)nTn = Tn(2). Putting x = 1 in Theorem 2.3 gives
the identity

n∑
l=0

(
n

l

)
Tn−l(1)

1

n+ l + 1

=
(−1)nTn

n+ 1
+

n∑
l=2

n(n− 1) · · · (n− l + 2)(−1)l−1

(n+ 1)(n+ 2) · · · (n+ l)
(−1)n−l+1Tn−l+1

+ (−1)n
n!

(n+ 1)(n+ 2) · · · (2n)
× 1

2n+ 1
.

Hence we have the following corollary.

Corollary 2.5. For n ∈ N with n ≥ 2, we have

Tn =

n∑
l=0

(−1)n
(
n

l

)
Tn−l(1)

n+ 1

n+ l + 1
−

n∑
l=2

n(n− 1) · · · (n− l + 2)

(n+ 2) · · · (n+ l)
Tn−l+1

− n!

(n+ 2) · · · (2n)(2n+ 1)
.

Putting x = 1 in Corollary 2.4 yields an identity

Tn+1 + Tn = n
n+1∑
l=0

(
n+ 1

l

)
Tn+1−lB(n, l + 1)

−
n∑

l=2

n(n− 1) · · · (n− l + 2)

(n+ 2) · · · (n+ l)
Tn−l+1 −

n!

(n+ 2) · · · (2n)(2n+ 1)
.
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Now we observe that∫ 2

0

Tn(x)Tm(x)dx =

∫ 2

0

n∑
l=0

(
n

l

)
Tlx

n−l(−1)mTm(2− x)dx

=

∫ 2

0

n∑
l=0

(
n

l

)
Tlx

n−l(−1)m
m∑

k=0

(
m

k

)
Tk(2− x)m−kdx

=
n∑

l=0

m∑
k=0

(
n

l

)(
m

k

)
TlTk(−1)m2n+m−l−k+1

∫ 1

0

xn−l(1− x)m−kdx

=
n∑

l=0

m∑
k=0

(
n

l

)(
m

k

)
TlTk(−1)m2n+m−l−k+1B(n− l + 1,m− k + 1)

=

n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
TlTk(−1)m2n+m−l−k+1Γ(n− l + 1)Γ(m− k + 1)

Γ(n+m− l − k + 2)

=
n∑

l=0

m∑
k=0

(
n
l

)(
m
k

)
(−1)m2n+m−l−k+1(
m+n−l−k

n−l

) TlTk

(n+m− l − k + 1)

(2.6)

For m,n ∈ N with m,n ≥ 2, we have∫ 2

0

Tn(x)Tm(x)dx = Tm(x)
Tn+1(x)

n+ 1

∣∣∣∣2
0

−
∫ 2

0

mTm−1(x)
Tn+1(x)

n+ 1
dx

= − m

n+ 1

∫ 2

0

Tm−1(x)Tn+1(x)dx

= (−1)2
m(m− 1)

(n+ 1)(n+ 2)

∫ 2

0

Tm−2(x)Tn+2(x)dx

Continuing this process, we get∫ 2

0

Tn(x)Tm(x)dx

= (−1)m
m(m− 1) · · · 3 · 2 · 1

(n+ 1)(n+ 2) · · · (n+m)

∫ 2

0

Tn+m(x)T0(x)dx

= (−1)m+1 m(m− 1) · · · 3 · 2 · 1
(n+ 1)(n+ 2) · · · (n+m)

2Tn+m+1

n+m+ 1

(2.7)

By (2.6) and (2.7), we have the following theorem.

Theorem 2.6. For m,n ∈ N, we have
n∑

l=0

m∑
k=0

(
n
l

)(
m
k

)
2n+m−l−k(

m+n−l−k
n−l

) TlTk

(n+m− l − k + 1)

= − m!Tn+m+1

(n+ 1)(n+ 2) · · · (n+m)
.
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