IDENTITIES INVOLVING TANGENT NUMBERS AND POLYNOMIALS

CHAE KYEONG AN AND C.S. RYOO*

Abstract

In this paper we give some properties, explicit formulas, several identities, a connection with tangent numbers and polynomials, and some integral formulas.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.
Key words and phrases : Tangent numbers and polynomials, Gamma function, Beta function, Eulerian integral.

1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers, Euler numbers, Genocchi numbers, and tangent numbers (see [1, 2, 3, $4,5,8,910,11])$. Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, and \mathbb{C} denotes the set of complex numbers. The tangent numbers T_{n} are defined by the generating function:

$$
F(t)=\frac{2}{e^{2 t}+1}=\sum_{n=0}^{\infty} T_{n} \frac{t^{n}}{n!},\left(|t|<\frac{\pi}{2}\right)
$$

where we use the technique method notation by replacing T^{n} by $T_{n}(n \geq 0)$ symbolically $[6,7]$. We consider the tangent polynomials $T_{n}(x)$ as follows:

$$
\begin{equation*}
F(x, t)=\left(\frac{2}{e^{2 t}+1}\right) e^{x t}=\sum_{n=0}^{\infty} T_{n}(x) \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

Note that $T_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} T_{k} x^{n-k}$. Numerous properties of tangent number are known. More studies and results in this subject we may see references $[6,7$,

[^0]8]. About extensions for the tangent numbers can be found in $[6,7,8]$. Because

$$
\frac{\partial F}{\partial x}(x, t)=t F(x, t)=\sum_{n=0}^{\infty} \frac{d T_{n}}{d x}(x) \frac{t^{n}}{n!},
$$

it follows the important relation

$$
\frac{d T_{n}}{d x}(x)=n T_{n-1}(x)
$$

Since

$$
\begin{aligned}
\int_{0}^{x} T_{n}(t) d t & =\sum_{l=0}^{n}\binom{n}{l} T_{l} \int_{0}^{x} t^{n-l} d t \\
& =\left.\sum_{l=0}^{n}\binom{n}{l} T_{l} \frac{t^{n-l+1}}{n-l+1}\right|_{0} ^{x} \\
& =\left.\frac{1}{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l} T_{l} t^{n-l+1}\right|_{0} ^{x}
\end{aligned}
$$

we see that

$$
\begin{equation*}
\int_{0}^{x} T_{n}(t) d t=\frac{T_{n+1}(x)-T_{n+1}(0)}{n+1} . \tag{1.2}
\end{equation*}
$$

Since $T_{n}(0)=T_{n}$, by (1.2), we have the following theorem.
Theorem 1.1. For $n \in \mathbb{N}$, we have

$$
T_{n}(x)=T_{n}+n \int_{0}^{x} T_{n-1}(t) d t
$$

From (1.1), we can derive the following equation:

$$
\begin{align*}
\sum_{n=0}^{\infty} T_{n}(2-x) \frac{(-t)^{n}}{n!} & =\frac{2}{e^{-2 t}+1} e^{(2-x)(-t)} \\
& =\frac{2}{e^{2 t}+1} e^{x t}=\sum_{n=0}^{\infty} T_{n}(x) \frac{t^{n}}{n!} \tag{1.3}
\end{align*}
$$

By comparing the coefficients on both sides of (1.3), we have the following theorem.

Theorem 1.2. For any positive integer n, we have

$$
\begin{equation*}
T_{n}(x)=(-1)^{n} T_{n}(2-x) . \tag{1.4}
\end{equation*}
$$

Now we observed that

$$
\begin{align*}
\sum_{n=0}^{\infty} T_{n}(2-x) \frac{t^{n}}{n!} & =\frac{2}{e^{2 t}+1} e^{(2-x) t} \\
& =\frac{2}{e^{2 t}+1} e^{2 t} e^{(-x) t} \\
& =\left(\sum_{n=0}^{\infty} T_{n}(2) \frac{t^{n}}{n!}\right)\left(\sum_{m=0}^{\infty}(-x)^{m} \frac{t^{m}}{m!}\right) \tag{1.5}\\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}\binom{n}{m} T_{n-m}(2)(-1)^{m} x^{m}\right) \frac{t^{n}}{n!}
\end{align*}
$$

By (1.5), we have the following theorem.
Theorem 1.3. For any positive integer n, we have

$$
\begin{equation*}
T_{n}(2-x)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} T_{n-k}(2) x^{k} . \tag{1.6}
\end{equation*}
$$

The beta integral is defined for $\operatorname{Re}(x)>0, \operatorname{Re}(y)>0$ by

$$
\begin{equation*}
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \tag{1.7}
\end{equation*}
$$

For $\operatorname{Re}(x)>0$, the gamma function $\Gamma(x)$ is defined by

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \tag{1.8}
\end{equation*}
$$

The above integral for $\Gamma(x)$ is sometimes called the Eulerian integral of the second kind. Thus, by (1.7) and (1.8), we have

$$
\begin{equation*}
\Gamma(x+1)=x \Gamma(x), \quad B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \tag{1.9}
\end{equation*}
$$

Our aim in this paper is to give some properties, explicit formulas, several identities, a connection with tangent numbers and polynomials, and some integral formulas.

2. Identities involving tangent numbers and polynomials

In this section, we obtain several new and interesting identities involving tangent numbers and polynomials.

By (1.6), we get

$$
\begin{align*}
\int_{0}^{1} T_{n}(2-x) x^{n} d x & =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} T_{n-k}(2) \int_{0}^{1} x^{k+n} d x . \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{T_{n-k}(2)}{n+k+1} . \tag{2.1}
\end{align*}
$$

Since

$$
\begin{aligned}
\sum_{n=0}^{\infty} T_{n}(x+y) \frac{t^{n}}{n!} & =\frac{2}{e^{2 t}+1} e^{x t} e^{y t}=\left(\sum_{n=0}^{\infty} T_{n}(x) \frac{t^{n}}{n!}\right)\left(\sum_{m=0}^{\infty} y^{m} \frac{t^{m}}{m!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}\binom{n}{m} T_{m}(x) y^{n-m}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

we have the following theorem.
Theorem 2.1. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{equation*}
T_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} T_{k}(x) y^{n-k} \tag{2.2}
\end{equation*}
$$

By (2.2), we note that

$$
\begin{align*}
\int_{0}^{1} y^{n} T_{n}(x+y) d y & =\int_{0}^{1} y^{n} \sum_{l=0}^{n}\binom{n}{l} T_{n-l}(x) y^{l} d y \\
& =\sum_{l=0}^{n}\binom{n}{l} T_{n-l}(x) \int_{0}^{1} y^{n+l} d y \tag{2.3}\\
& =\sum_{l=0}^{n}\binom{n}{l} T_{n-l}(x) \frac{1}{n+l+1}
\end{align*}
$$

From (1.4) and (2.3), we note that

$$
\begin{align*}
& \int_{0}^{1} y^{n} T_{n}(x+y) d y=\left.y^{n} \frac{T_{n+1}(x+y)}{n+1}\right|_{0} ^{1}-\int_{0}^{1} n y^{n-1} \frac{T_{n+1}(x+y)}{n+1} d y \\
& =\frac{T_{n+1}(x+1)}{n+1}-\frac{n}{n+1} \int_{0}^{1} y^{n-1} T_{n+1}(x+y) d y \\
& =\frac{T_{n+1}(x+1)}{n+1}-\frac{n}{n+1} \int_{0}^{1}(-1)^{n+1} y^{n-1} T_{n+1}(2-(x+y)) d y \\
& =\frac{T_{n+1}(x+1)}{n+1} \\
& \quad-\frac{n}{n+1} \int_{0}^{1}(-1)^{n+1} y^{n-1} \sum_{l=0}^{n+1}\binom{n+1}{l} T_{n+1-l}(1-x)(1-y)^{l} d y \tag{2.4}\\
& =\frac{T_{n+1}(x+1)}{n+1} \\
& \quad-\frac{n}{n+1}(-1)^{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l} T_{n+1-l}(1-x) \int_{0}^{1} y^{n-1}(1-y)^{l} d y \\
& =\frac{T_{n+1}(x+1)}{n+1}+\frac{n}{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l}(-1)^{1-l} T_{n+1-l}(x+1) B(n, l+1)
\end{align*}
$$

Therefore, by (2.3) and (2.4), we obtain the following theorem.
Theorem 2.2. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
\frac{T_{n+1}(x+1)}{n+1}= & \sum_{l=0}^{n}\binom{n}{l} T_{n-l}(x) \frac{1}{n+l+1} \\
& +\frac{n}{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l}(-1)^{l} T_{n+1-l}(x+1) B(n, l+1)
\end{aligned}
$$

For $n \in \mathbb{N}$ with $n \geq 4$, we obtain

$$
\begin{aligned}
& \int_{0}^{1} y^{n} T_{n}(x+y) d y=\left.y^{n} \frac{T_{n}(x+y)}{n+1}\right|_{0} ^{1}-\int_{0}^{1} n y^{n+1} \frac{T_{n-1}(x+y)}{n+1} d y \\
& =\frac{T_{n}(x+1)}{n+1}-\frac{n}{n+1} \int_{0}^{1} y^{n+1} T_{n-1}(x+y) d y \\
& =\frac{T_{n}(x+1)}{n+1}-\frac{n T_{n-1}(x+1)}{(n+1)(n+2)}+(-1)^{2} \frac{n}{n+1} \frac{n-1}{n+2} \int_{0}^{1} y^{n+2} T_{n-2}(x+y) d y \\
& =\frac{T_{n}(x+1)}{n+1}+(-1) \frac{n T_{n-1}(x+1)}{(n+1)(n+2)}+(-1)^{2} \frac{n}{n+1} \frac{n-1}{n+2} \frac{T_{n-2}(x+1)}{n+3} \\
& \quad+(-1)^{3} \frac{n}{n+1} \frac{n-1}{n+2} \frac{n-2}{n+3} \int_{0}^{1} y^{n+3} T_{n-3}(x+y) d y \\
& =\frac{T_{n}(x+1)}{n+1}+(-1) \frac{n T_{n-1}(x+1)}{(n+1)(n+2)}+(-1)^{2} \frac{n}{n+1} \frac{n-1}{n+2} \frac{T_{n-2}(x+1)}{n+3} \\
& \quad+(-1)^{3} \frac{n}{n+1} \frac{n-1}{n+2} \frac{n-2}{n+3} \frac{T_{n-3}(x+1)}{n+4} \\
& \quad+(-1)^{4} \frac{n}{n+1} \frac{n-1}{n+2} \frac{n-2}{n+3} \frac{n-3}{n+4} \int_{0}^{1} y^{n+4} T_{n-4}(x+y) d y
\end{aligned}
$$

Continuing this process, we obtain

$$
\begin{align*}
\int_{0}^{1} y^{n} T_{n}(x & +y) d y=\frac{T_{n}(x+1)}{n+1} \\
& +\sum_{l=2}^{n} \frac{n(n-1) \cdots(n-l+2)(-1)^{l-1}}{(n+1)(n+2) \cdots(n+l)} T_{n-l+1}(x+1) \tag{2.5}\\
& +(-1)^{n} \frac{n!}{(n+1)(n+2) \cdots(2 n)} \int_{0}^{1} y^{2 n} T_{0}(x+y) d y
\end{align*}
$$

Hence, by (2.3) and (2.5), we have the following theorem.

Theorem 2.3. For $n \in \mathbb{N}$ with $n \geq 2$, we have

$$
\begin{aligned}
\sum_{l=0}^{n}\binom{n}{l} T_{n-l}(x) & \frac{1}{n+l+1} \\
=\frac{T_{n}(x+1)}{n+1}+ & \sum_{l=2}^{n} \frac{n(n-1) \cdots(n-l+2)(-1)^{l-1}}{(n+1)(n+2) \cdots(n+l)} T_{n-l+1}(x+1) \\
& +(-1)^{n} \frac{n!}{(n+1)(n+2) \cdots(2 n)} \times \frac{1}{2 n+1} .
\end{aligned}
$$

By Theorem 2.2 and Theorem 2.3, we have the following corollary.
Corollary 2.4. For $n \in \mathbb{N}$ with $n \geq 2$, we have

$$
\begin{aligned}
T_{n+1}(x+1)-T_{n}(x+1) & =n \sum_{l=0}^{n+1}\binom{n+1}{l}(-1)^{l} T_{n+1-l}(x+1) B(n, l+1) \\
& +\sum_{l=2}^{n} \frac{n(n-1) \cdots(n-l+2)(-1)^{l-1}}{(n+2) \cdots(n+l)} T_{n-l+1}(x+1) \\
& +(-1)^{n} \frac{n!}{(n+2) \cdots(2 n)(2 n+1)}
\end{aligned}
$$

From (1.4), we have $(-1)^{n} T_{n}=T_{n}(2)$. Putting $x=1$ in Theorem 2.3 gives the identity

$$
\begin{aligned}
& \sum_{l=0}^{n}\binom{n}{l} T_{n-l}(1) \frac{1}{n+l+1} \\
& =\frac{(-1)^{n} T_{n}}{n+1}+\sum_{l=2}^{n} \frac{n(n-1) \cdots(n-l+2)(-1)^{l-1}}{(n+1)(n+2) \cdots(n+l)}(-1)^{n-l+1} T_{n-l+1} \\
& \quad \quad+(-1)^{n} \frac{n!}{(n+1)(n+2) \cdots(2 n)} \times \frac{1}{2 n+1} .
\end{aligned}
$$

Hence we have the following corollary.
Corollary 2.5. For $n \in \mathbb{N}$ with $n \geq 2$, we have

$$
\begin{aligned}
T_{n}= & \sum_{l=0}^{n}(-1)^{n}\binom{n}{l} T_{n-l}(1) \frac{n+1}{n+l+1}-\sum_{l=2}^{n} \frac{n(n-1) \cdots(n-l+2)}{(n+2) \cdots(n+l)} T_{n-l+1} \\
& -\frac{n!}{(n+2) \cdots(2 n)(2 n+1)}
\end{aligned}
$$

Putting $x=1$ in Corollary 2.4 yields an identity

$$
\begin{aligned}
T_{n+1}+T_{n} & =n \sum_{l=0}^{n+1}\binom{n+1}{l} T_{n+1-l} B(n, l+1) \\
& -\sum_{l=2}^{n} \frac{n(n-1) \cdots(n-l+2)}{(n+2) \cdots(n+l)} T_{n-l+1}-\frac{n!}{(n+2) \cdots(2 n)(2 n+1)}
\end{aligned}
$$

Now we observe that

$$
\begin{align*}
& \int_{0}^{2} T_{n}(x) T_{m}(x) d x=\int_{0}^{2} \sum_{l=0}^{n}\binom{n}{l} T_{l} x^{n-l}(-1)^{m} T_{m}(2-x) d x \\
& =\int_{0}^{2} \sum_{l=0}^{n}\binom{n}{l} T_{l} x^{n-l}(-1)^{m} \sum_{k=0}^{m}\binom{m}{k} T_{k}(2-x)^{m-k} d x \\
& =\sum_{l=0}^{n} \sum_{k=0}^{m}\binom{n}{l}\binom{m}{k} T_{l} T_{k}(-1)^{m} 2^{n+m-l-k+1} \int_{0}^{1} x^{n-l}(1-x)^{m-k} d x \\
& =\sum_{l=0}^{n} \sum_{k=0}^{m}\binom{n}{l}\binom{m}{k} T_{l} T_{k}(-1)^{m} 2^{n+m-l-k+1} B(n-l+1, m-k+1) \tag{2.6}\\
& =\sum_{l=0}^{n} \sum_{k=0}^{m}\binom{n}{l}\binom{m}{k} T_{l} T_{k}(-1)^{m} 2^{n+m-l-k+1} \frac{\Gamma(n-l+1) \Gamma(m-k+1)}{\Gamma(n+m-l-k+2)} \\
& =\sum_{l=0}^{n} \sum_{k=0}^{m} \frac{\binom{n}{l}\binom{m}{k}(-1)^{m} 2^{n+m-l-k+1}}{\binom{m+n-l-k}{n-l}} \frac{T_{l} T_{k}}{(n+m-l-k+1)}
\end{align*}
$$

For $m, n \in \mathbb{N}$ with $m, n \geq 2$, we have

$$
\begin{aligned}
& \int_{0}^{2} T_{n}(x) T_{m}(x) d x=\left.T_{m}(x) \frac{T_{n+1}(x)}{n+1}\right|_{0} ^{2}-\int_{0}^{2} m T_{m-1}(x) \frac{T_{n+1}(x)}{n+1} d x \\
& =-\frac{m}{n+1} \int_{0}^{2} T_{m-1}(x) T_{n+1}(x) d x \\
& =(-1)^{2} \frac{m(m-1)}{(n+1)(n+2)} \int_{0}^{2} T_{m-2}(x) T_{n+2}(x) d x
\end{aligned}
$$

Continuing this process, we get

$$
\begin{align*}
& \int_{0}^{2} T_{n}(x) T_{m}(x) d x \\
& =(-1)^{m} \frac{m(m-1) \cdots 3 \cdot 2 \cdot 1}{(n+1)(n+2) \cdots(n+m)} \int_{0}^{2} T_{n+m}(x) T_{0}(x) d x \tag{2.7}\\
& =(-1)^{m+1} \frac{m(m-1) \cdots 3 \cdot 2 \cdot 1}{(n+1)(n+2) \cdots(n+m)} \frac{2 T_{n+m+1}}{n+m+1}
\end{align*}
$$

By (2.6) and (2.7), we have the following theorem.
Theorem 2.6. For $m, n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{l=0}^{n} \sum_{k=0}^{m} \frac{\binom{n}{l}\binom{m}{k} 2^{n+m-l-k}}{\binom{m+n-l-k}{n-l}} \frac{T_{l} T_{k}}{(n+m-l-k+1)} \\
& =-\frac{m!T_{n+m+1}}{(n+1)(n+2) \cdots(n+m)} .
\end{aligned}
$$

References

1. R. Ayoub, Euler and zeta function, Amer. Math. Monthly 81 (1974), 1067-1086.
2. L. Comtet, Advances Combinatorics, Riedel, Dordrecht, 1974.
3. D. Kim, T. Kim, Some identities involving Genocchi polynomials and numbers, ARS Combinatoria 121 (2015), 403-412
4. N.S. Jung, C.S. Ryoo, Symmetric identities for twisted q-Euler zeta functions, J. Appl. Math. \& Informatics 33 (2015), 649-656.
5. J.Y. Kang, C.S. Ryoo, On Symmetric Property for q-Genocchi Polynomials and Zeta Function, Int. Journal of Math. Analysis 8 (2014), 9-16.
6. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7 (2013), 447-454.
7. C.S. Ryoo, On the Analogues of Tangent Numbers and Polynomials Associated with p-Adic Integral on \mathbb{Z}_{p}, Applied Mathematical Sciences 7 (2013), 3177-3183.
8. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App. Math. \& Informatics 32 (2014), 315-322.
9. C.S. Ryoo, Analytic Continuation of Euler Polynomials and the Euler Zeta Function, Discrete Dynamics in Nature and Society 2014 (2014), Article ID 568129, 6 pages.
10. C.S. Ryoo, A Note on the Reflection Symmetries of the Genocchi polynomials, J. Appl. Math. \& Informatics 27 (2009), 1397-1404.
11. H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European J. Combin. 31 (2010), 1689-1705

Chae Kyeong An is a graduate student in Hannam University. Her research interests are analytic number theory and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea e-mail: norz@naver.com
C.S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea
e-mail: ryoocs@hnu.kr

[^0]: Received March 20, 2016. Revised May 16, 2016. Accepted May 23, 2016. * Corresponding author.
 © 2016 Korean SIGCAM and KSCAM.

