East Asian Math J 17(2001), No 1, pp 33-45

ON EXISTENCE THEOREMS FOR NONLINEAR
INTEGRAL EQUATIONS IN BANACH
ALGEBRAS VIA FIXED POINT TECHNIQUES

B C Duace

ABSTRACT In this paper an improved version of a fixed point the-
orem of the present author (3] :n Banach algebras 1s obtammed under
the weaker conditions with a different method and using measure of
non-compactness. The newly developed fixed point theorem is fur-
ther applied to certain nonlinear integral equations of mixed type for

proving the existence Lheurems and stability of the solution in Banach
algebras

1. Introduction

Recently the present author [2, 3, 4] initiated the study of the nonlin-
ear integral equations of mixed type in Banach algebras via fixed point
techniques. The present author in [3] proved the existence theorem for
the nonlinecar integral equation (in short IE)of the form,

(1.1)
2(1) =q(t) + L k1 (¢, ) f1 (5, 2(s))ds + h(t) fé kot 8) fols, 2(s))ds

N (/Ot ki (t, s)fl(s,x(s))ds> ([)a kz(t,s)fz(S,m(s))ds)
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under the mixed type of conditions, namely, Lipschitz type and com-
pactness on the functions involved in the IE (1.1). The special cases
of the IE (1.1) include Hammerstein, Fredholm and Hammerstein-
fredholm integral equations of mixed type {5,6]. Also the special
cases of the IE (1.1) occur in several physical problems such as Chan-
drasekhar’s integral equation in heat transfer [6], in some biological
processes and queuing theory etc(cf.[2.6]). Therefore, it is of interest
to study the integral equations of the type (1.1) for different aspects of
the solution. In the present paper we study the existence and stability
of certain nonlinear 1E of the type (1.1) via the fixed point techniques.
The following fixed point theorem is proved in Dhage [3].

THEOREM 1.1. Let A, B and C be three operators on a nonempty,
closed, convezr and bounded subset S of a Banach algebra into itself
such that

(i) A and C are contractions with confractions constants o.and 3
respectively,
(ii) B is complete continuous, and
(ii) AzBy + Cz € S, whenever z,y € S.

Then the operator equation

(1.2) AzBx +Cx =z

has a solution in S, whenever aM + 3 < 1, where
M = |B(S)| = sup{||Bz| : = € 5}.

In the following section we shall prove an improved version of The-
orem 1.1 under weaker conditions with a different method which will
be further used for proving the existence and stability of solution of
certain nonlinear integral equations which is more general than (1.1)
in the subsequent part of this paper.

2. Fixed point theorem

Before proving the main fixed point theorem, we give some prelim-
inaries which will be used in the sequel. Let X denote a Banach space
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and a the Kuratowskii [8, page 492] measure of non compactness in X
defined by

(2.1) afS)=wmf{y>0:5CU_F, diam(F,) <% forall 1}

{or any bounded set § in X. Now we give a few properties of a:
(a) a(S) =0« S is precompact,
{b) 51 C S = alS)) < a(Sy),
(c) a(AS) =a(S), ) e R,
(d) a(S; + 92) < a(S;) + a(Ss), and
(e) a(conv(8)) = a(S) = a(S),

where conv(S) and S denote the convex hull and closure of S respec-
tively. The details of the Kuratowskil measure of non compactness may
be found in Deimling [2] and Sadovskii {7].

DEFINITION 2.1. Anoperator T : X — X issaid to be ¢ Lipschitzian
if there exists a continuous nondecreasing function ¢7 : Ry — R, sat-
isfying

(2.2) [Tz — Tyl < or(fjz —yl)

for all z,y € X. In particular if ¢r(y) < v, v > 0, T is called a
nonhnear contraction on X. Further if ¢p(vy) = kv, £ > 0, T is called

a Lipschitzian, and moreover if £ < 1, T is called a contraction with
contraction constant k.

DEFINITION 2.2. A mapping T on a subset S of a Banach space X
1s said to be a-condensing if for any bounded subset F' of S with T'(F)
is bounded implies a(T(F)) < a(F) for a(F) > 0.

Now we state a key theorem of Sadovskii [7] which will be used in
the proof of the fixed point theorem.

THEOREM 2.1 (SADOVSKI [17]). Let S be a nonempty closed, con-
vex and bounded subset of X and let T : § — 8§ be a continuous and
a-condensing mapping. Then T has a fized point.
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THEOREM 2.2 Let § be a nonempty closed, convex and bounded
subset of a Banach algebra X and let A,B,C : § = X be three opera-
tors such that

(A1) A and C are ¢-Lipschitzians,
(A2) B is complete continuous,
(A3) AzBx +Cz € S for everyxz € S.

Then the operator equation (1.1) has a solution in § whenever

Moa(y) + Moc(y) <,

for v > 0, where M =sup{||Bz| : z € S}.
PROOF Define a mapping 7 on S by

(2.3) Tz =AxzBz +Cx, zc€S.

By (As), T maps S into itself and hence 7' is well defined. Since
B is completely continuous B{(S) is precompact and hence bounded.
Therefore, the number M = ||B(S)| = sup{|| Bz|| : = € S} exists and
so ||Bx|| < M for all z € S. We shall show that T is continuous and
a—condensing on S.
Let z,y € S, by (A1),
(2.4)
Tz — Ty| ={|Az — Ayll|| Bz|| + | Ay]||| Bz — By|| +{|Cz — Cy||

< Méa(llz - yl) + ¢clllz — yi) + |AS)II| Bz - Byl
Now § is bounded, so by (A1),
(2.5)  {[Az|| < [JAzo]l + || Az — Azol < [|Azo|| + pa(diam(S))
for z,z9 € 5, and so
[ACSHI = sup{{|Az|| : = € S} < o0.

First we show that T is a continuous mapping on S. For, let {zn}
be a sequence in S such that z, —» = as n — ooc. We prove that
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Tz, — Tz as n — co. Since the operator B is completely continuous,
il 1s continuous and so Br, — Bx as n — 00.
Now from inequality (2.4}, we obtain

1 T@n — Tzl < Méa(llzn — z|) + dc(fizn — z|)
(2.6) +AS)| Bern — Bz| =0

as n oo ( since |A(S)|] < o).

0 be given and ¥ C S. Then there exists subsets Iy, Fy, -+, K, of
F such that FF = U2 | F,, and diam(F) < o(F) + € for each ¢ =
1,2,--- ,n. Since B is completely continuous, B(F') is precompact and
hence a( B(F)) < ]l—A%sr)T, where § > 0 is arbitrary number. There
exist subsets (1, G, -+ , Gy, of B(F) such that B(F) = UT,,(,, and

This shows that the mapping T is continnous on § Again let ¢ >

diam{G ;) <-m for all 7=1,2,---,m. Then
F=Ur,BTNG,)

and so

27) T(F) = U, Um, T(F, 0 B-1(Gy).

Now by definition of a, we get
(2.8)

diam(F,NB~'(G,)) < a{F)+e forall i=1,2,---,n.5=1,2,--- ,m.

From the inequalities (2.4)-(2.5), (2 7)-(2.8), we obtain,
(2.9)

diam(T(F,NB~HG,))) < §+max{Mo(Y)+éc(y) : v € 0, a(F)+el}.

Since ¢4 and ¢¢ are nondecreasing in R, , the maximum on the
right hand side of inequality (2.9) is attained at v = a(F) + ¢
But we know

(2.10) a(T(F)) = maxdiam?'(F, N B~HG,))
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and so from (2.9), we get
o(T(F)) <8+ max{Mea(7) + dc(v) : v € [0,(F) + €]}
Since ¢ and & are arbitrary positive numbers, we have
(2.11) o(T(F)) = Moa(a(F)) + dc(a(F)) < ofF)

for a{F} > 0. This shows that T is a a-condensing on S§. Now an
application of Theorem 2.1 yields that the operator equation T'z =
has a solution in § and consequently the operator equation (1.2) has a
solution in S. This completes the proof.

REMARK 2.1. From hypothesis (A1) of Theorem 2.2 we note that
the operators 4, B and (' need nat map the domain set § into itself
and every contraction is ¢-Lipschitzian. Therefore Theorem 2.2 is a
generalization of Theorem 1.1 under the weaker hypothesis (1) and (iii)
thereof.

When C = 0 in Theorem 2.2, we obtain the following result as a
corollary which is again new and includes the main fixed point Theo-
rems of Dhage [2,4] as special cases under weaker conditions

COROLLARY 2.1. Let § be a nonempty, closed, conver and bounded
subset of the Banach algebra X and let A, B : 5§ — X be two operators
such that

(i) A s ¢-Lipschitzian,
(i) B s completely continuous, and
(iii) AzBr € S for everyz € S.

Then the operator equation
(2.12) AzBz =z

has a solution mn § whenever

Moa(y) <y for v>0,
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where M = || B(S)|| = sup{||Bz|l : = € S}.

In the following section we prove the existence and stability of the
solution of certain nonlinear integral equations in Banach algebra which
are more than (1.1) and by the application of Theorem 2.2.

3. Nonlinear integral equations

Let R denote the real line and let I = ftg,t9 + a] C R for some
to,a € R with @ > 0, be a closed and bounded interval. Let F denote

a Banach algebra with a norm || - |g. Now we consider the nonlinear
IE
t
z(t) = )+ | f(t,s,%(s))ds
(3.1) . e wora
o] g(t,s,:z:(s))ds) ( / k(t,s,a:(s))ds)
\jto to

fort € I, whereg: I — F and f,g,k: I x I x ¥ — E are continuous.

We seek the solution of the IE (3.1) in the space X = BM{I, E) of
all bounded and measurable E-valued functions on I. Define a norm
|-l in X = BM(I,E) by

(3.2) ||| = sup llz()] -

Clearly X is a Banach algebra with this supremum norm. To prove the

existence theorem for the IE (3.1), we need the following hypotheses:

(Ho) q € BM(I, E) and the functions f(¢,s,z), ¢(t,s,z) and k(t, s, z)
are measurable in t,s € I forallxz ¢ F.

(Hi) The functions f,g and k are bounded on I x I x F with bounds
K, K3 and K3 respectively.

(H2) The functions f(t,s,z), g(t,s,z) and k({,s,z) satisfy the Lip-
schitz condition in z uniformly for £,s € I, i.e. there exists con-
stants L; > 0 and Ls > 0 such that

1£(,s,2) — f{t,5,9)e < Liflz —ylE
"g(ta 8,.’1:) _g(ta s)y)"E < L‘2"x _y“b and
k(t,s,2) — ft,s,9)lle < Lnlle —ylle
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for all {¢,s,z),(t,s,y) €I x I x E.
(H3) Given € > 0 there exists a number § > 0 such that

"k(t’hsv :E) - k(ti’vs) m)“E <€,
whenever (t,,s,7),(t2,s,z) € I x I x E and |t; — to]| < 4.

THEOREM 3 1 Assume (Ho)-(Hz). Then IE (3.1) admits a solu-
tion, whenever (L) + LaKsa)a < 1.

Proor. Define a subset § of the Banach algebra X by
(3.3) §={zeX: |zl <K},

where K = |jq|| + (K1 + K2Ksa)a. Clearly S is a nonempty, closed,
convex and bounded subset of the Banach algebra X. We define three
operators A, B and C on S by

at

(3.4) Az(t) = L glt,s,o(s))ds, tel,
(3.5) Bz(t) = ft:m k(t,s,2(s))ds, tel,
and

(3.6) Ca(t) = g(t) + [ f(t,5,2(s))ds, tel.

In view of the hypotheses (Hg) and (H;), it follows that the operators
A, B and C are well defined and Az, Bz, Cx € BM(I,E)forallz € §.
Now for any = € S, by (H,) we have

4z(t) Bz(t) + Cz(t)||e < [|Az(®)ll el Bz(t)ile + |IC2()l| &

< ([ llg(t, s,x(s))ngds) (/:M (ik(t,s,z(s)| E

+ la®)le + ] 1£(t, 5, 2(s))lids

< liglt + (K1 + K2 Ksa)e = K.
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This shows that AzBz + Cz € Sforallz € §. Again let z,y € S,
then by (Hz2), onc gets

Az (t) - Ay(t)lle < /t lg(t,s,2(s)) — g(t,s,u(s))| ds = dalllz —yl),

where ¢4(v) = Loay.
Similarly, we have

[Cz — Cyll < oc(llz - yiD),

where ¢c{vy) = Liary.
Further by (H;), we obtain

M = ||B(S)|| =sup{||Bz| : = € S}

to—a
(3.7 < sup { [ |k(t, s, z(8))||pds : x € b&

LVt J
< K3a.

This shows that the set B(S) is uniformly bounded. Next we show

that the set B(S) is equi-continuous on I. Let z € S be any element.
Then by (Hjz), we have

IBx(t,) — Bz(ta)]

5 [ k(s a(s) — klta,5,(s)) s - 0

to
as t; — i,

Therefore B(S) is an equi-continuous sct. Further the hypothesis
(Hp) implies that B is continuous operator on S. Consequently B is
completely continuous on S.

Now M@ a{v) + ¢c{v) = (L, + Lokza)ay <y for vy >0

Thus all the conditions of Theorem 2.2 are satisfied and hence an
application of it yields that the operator equation AzBz +Cz = x has
a solution in § Consequently that IE (3.1) has a solution on I. This
completes the proof.

Next we prove the stability of the solution of the IE (3.1) in the
sense of the following definition
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DEFINITION 31 The IE (3.1) is said to have a stable solution p
on I if for € > 0 there exists § > 0 such that [|p(t)||z < € whenever
lg)llg < 6 forallt 1.

We need the following hypotheses in the sequel.
(Hs) The functions f(t,s,x) and g¢(t, s, z) satisfy Lipschitz type con-
ditions as follows: For € > 0, there exists a d > 0, 2e¢d < 1, such
that

| f(t,s8,2) = ft,8,0)lE < dllz—yle
and
lg(t,s,z) — g(t,s,9)|le < Sz —yle

for all (t,s,2),(t,s,y) € I x I x B with ||z| g <€ ylle <e

(Hs) f(¢,5,0) =0 and g(t,s,0) =0 for all t,s € I, where 0 is the zero
elerrent of £,

(He) The assumptions (H3) and the function k is bounded on I x I x E
with bound K, and Kza < 1.

(H7) The function k(t,s,z) satisfies the Lipschitz condition in z uni-
formly for t,s € I, i.e. there exists a constant Lz > 0 such that

"k(t>3t$) - k(t’ 8, y)uE < L3nw - yHE

for all (t,s,z),(¢,s,y) € IxI x E.

THEOREM 3 2. Assume (Hp), (Hq)-(Hy). Then IE (3.1) admits a
stable solution on I.

PROOF. Let € > 0 be given and § be chosen as in (Hy). Let & =
1 — 2ad. Then define a subset §(¢) of the Banach algebra X by

(3.8) S(e)={z e X:|z| < e

Clearly S(e) is a nonempty, closed, convex and bounded subset of
the Banach algebra X. We define three operators A, B and C on S(e)
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by (3.4), (3.5) and (3.6) respectively. Now for any z € S(¢), we have
| Ax(£) Bz(t) + Cz(t)|| g < || Az(t)]| el Bz(t)| g + ICx ()] &

< ([ 1ote,s.ztosas) (| T (5, 2(5)

to to

+la®le + / 1£(t,5,2(5)) | s
< Sallzll Ksa + be + daj|zff = «.

This shows that AzBz +Cz € S(¢) for all ¢ € S(€). Again as in the
proof of Theorem 3.1, it can be shown that B is completely continuous
and ||BS(¢)|| = Ksa < 1. After simple computation, we get

1-b
¢aly) =day = ——v
and
1—b
dc(y) =day = 3T
Since Kaza < 1, Moa(y) + dc(vy) =1 —b < 1. Now an application
of Theorem 2.1 yields that the opertor equation AxBz+Cz =z has a
solution in S(€). Consequently the IE (3.1) has a stable solution on I,
i.e. there is a solution p of the IE (3.1) such that {|p(¢)| g < ¢ whenever
la(t)|| e < be for some b € (0,1). This completes the proof.

THEOREM 3.3. Assume (Hg), (Hyq)-{H;). Assume also that g 13
bounded on I x I x E with bound K. Then IE (3.1) admits a unique

stable solution on I, whenever {|q(t)| g < be and LyeKsa® < b, where
b=1- 2dé.

PROOF By Theorem 3.2, the IE (3.1) has a stable solution on I,
whenever ||q(t)|| g < be for some b € (0,1). To prove the uniqueness, let
y be another stable solution of the IE (3.1) on I. Then by (Hy)-(Hz7),
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we obtain

i

() — y(®)lle < ( Mgl s,2(s)) - 9(t>s,y(8))lIEd8)

(/t:m "k(t’svw(S))llsds)

# ([ ot )z

ta

(]tto+a lk{t,s,z(s)) — k{¢, S)y(s))HEds)

1]

+ / 1£(t,s,2(5)) — £(t,5,3(s)) ] ds
<dalle — y||Ksa + Ky Lsea®|z — y|| + balle — )
=(2a6 + KyLzea®]{|z — y||
(L~ (b~ Loca®)lfie — ol

which is possible only when z(t) = y(¢) for all ¢t € I. Since I — (b~
L3ea?) < 1, this completes the proof.
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