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ON EXISTENCE THEOREMS FOR NONLINEAR 
INTEGRAL EQUATIONS IN BANACH 

ALGEBRAS VIA FIXED POINT TECHNIQUES

B C Dhage

Abstract In this paper an improved version of a fixed point the­
orem of the present author [3] in Banach algebras is obtained under 
the weaker conditions with a different method and using measure of 
non-compactness. The newly developed fixed point theorem 均 fur­
ther applied to certain nonlinear integral equations of mixed type for 
proving the existence theorems and stability of the solution in Banach 
algebras

1. Introduction

Recently the present author [2, 3, 4] initiated the study of the nonlin­

ear integral equations of mixed type in Banach algebras via fixed point 

techniques. The present author in [3] proved the existence theorem for 

the nonlinear integral equation (in short IE)of the form, 

(1-1) t a

x(i) =q(t) + / fci(t,s)/1(s,x(s))ds + h(t)[加(t, s)J3(s, c(s))ds 
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under the mixed type of conditions, namely, Lipschitz type and com­

pactness on the functions involved in the IE (1.1). The special cases 

of the IE (1.1) include Kammerstein, Fredholm and Hammerstein- 

Fredholm integral equations of mixed type [5,6], Also the special 

cases of the IE (1.1) occur in several physical problems such as Chan­

drasekhar's integral equation in heat transfer [6], in some biological 

processes and queuing theory etc(cf.[2.6]). Therefore, it is of interest 

to study the integral equations of the type (1.1) for different aspects of 

the solution. In the present paper we study the existence and stability 

of certain nonlinear IE of the type (1.1) via the fixed point techniques. 

The following fixed point theorem is proved in Dhage [3].

Theorem 1.1. Let A, B and C be three operators on a nonempty, 

closed, convex and bounded subset S of a Banach algebra into itself 

such that

(i) A and C are contractions with contractions constants a and 0 

respectively,

(ii) B is complete continuous, and

(iii) AxBy + Cx € S, whenever x、y W S.

Then the operator equation

(1-2) AxBx + Cx = x

has a solution in Sf whenever aM + /3 < 1, where

M = |B(S)| = sup{|田끼I : x € S}.

In the following section we shall prove an improved version of The­

orem 1.1 under weaker conditions with a different method which will 

be further used for proving the existence and stability of solution of 

certain nonlinear integral equations which is more general than (1.1) 

in the subsequent part of this paper.

2. Fixed point theorem

Before proving the main fixed point theorem, we give some prelim­

inaries which will be used in the sequel. Let X denote a Banach space 
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and a the Kuratowskii [8, page 492] measure of non compactness in X 

defined by

(2.1) a(S) = inf (7 > 0 : S C U：、/，diam(直;)< 7 for all i }

for any bounded set S in X. Now we give a few properties of a:

(a) q(S) = 0 V* S is precompact,

(b) Si U S2。a(S) <。作)：
(c) a(人S) =
(dj 2, + S2) < a(S\) + 01(82), and

(e) a(conv(S)) = a(s) = q(S),

where conv(S) and S denote the convex hull and closure of S respec­

tively. The details of the Kuratowskii measure of non compactness may 

be found in Deimling [2] and Sadovskii [7].

DEFINITION 2.1. An operator 7" : X —* X is said to be(f>— Lipschztzian 

if there exists a continuous nondecreasing function 枷:脂 + t sat­

isfying

(2-2) ||I* —7이I V 如새c — g||)

for all x^y E X. In particular if < 7, 7 > 0, T is called a 

nonlinear contraction on X. FuHheE 迁 饥*V) = 0* fe > 0, T is called 

a Lipschitzian^ and moreover if fc < 1, T is called a contraction with 

contraction constant fc.

DEFINITION 2.2. A mapping T on a subset S of a Banach space X 

is said to be oi~condensmg if for any bounded subset F oi S with T(F) 

is bounded implies a(T(F)) < ct(F) for a(F) > 0.

Now we state a key theorem of Sadovskii [7] which will be used in 

the proof of the fixed point theorem.

Theorem 2.1 (Sadovskii [17]). Let S be a nonempty closed, con­

vex and bounded subset of X and let T : S S be a continuous and 

a-condensmg mapping. Then T has a fixed point.
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Theorem 2,2 Let S be a nonempty closed, convex and bounded 

subset of a Banach algebra X and let A^B^C : S X be three opera­

tors such that

(Ai) A and C cure <()~Lzpschztzzans,

(厶2)B is complete continuous,
(A3) AxBx + Cx € S for every x E. S.

Then the operator equation (1.1) has a solution in S whenever

Wa(7)+ Wc(7)V 75

for 7 > 0, where M = sup{||Ba;|| : x E S}.

Proof Define a mapping T on <9 by

(2.3) Tx = AxBx + Cx, x E S.

By (As), T maps S into itself and hence T is well defined. Since 

B is completely continuous B(5) is precompact and hence bounded. 

Therefore, the number M = ||B(S)|] = sup{||Bx|| : x e S} exists and 

so IIB께 < M for all x e S. We shall show that T is continuous and 

a—condensing on S.

Let x,y e S, by (Ai),

(2.4)

\\Tx - Ty\\ =||& - Ay\\\\Bx\\ + ||，4이|||质 - By\\ + ||Cx - Cy\\

< M<f>A(\\x -例)+ 女乂脸-y\\) + ||A(5)||||Ba; - By\\.

Now S is bounded, so by (Ai),

(2.5) ||4께 < ||&o|| + ||& - &o|| < ll&oll + S，4(diam(S))

for x,xq € S, and so

= sup{』4께 : £ £ S} V 8.

First we show that T is a continuous mapping on S. For, let {xn} 

be a sequence in S such that xn x as n 00. We prove that 
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Txn —> Tx as T oo. Since the operator B is completely continuous, 

it is continuous and so Bxn t Bx as n oo.

Now from inequality (2.4), we obtain

||Txn - Tx|| < A04(临 - 께) + 如(|扇 一 께)

(2.6) + ||4(S)|| ||Bz端 一 B쎄 —> 0

as n —> oo ( since ||4(S)|| < oo).

This shows that the mapping T is continuous on S Again let e > 

0 be given and F C S. Then there exists subsets 呂，形，•…,Fn of 
F such that F = and diam(F) < cn(F) + e for each i =

1,2, Since B is completely continuous, B(F) is precompact and 

hence a(B(F)) < 卩爲[卩 where <5 > 0 is arbitrary number. There 

exist subsets Gi,G2, - • . ?Gn, of B(F) such that B(F) = 项 and

j)〈孔启)卩 Ior ax 厶、… men

F=U^1B-1(GJ)

and so

(2.7) T(F) = UX1 u^1 T(F, n 財)).

Now by definition of a, we get

(2-8)

diam^nB"1^)) < a(F)+e for all z = 1,2, - • • ,n . J 1,2, - • * ,nz.

From the inequalities (2.4)-(2.5), (2 7)-(2.8), we obtain,

(2.9)

diam0n財由t(Gj))) < 5+max{M</>A(7)+^c(7): 7 £ [0,a(F)4-€]}.

Since <f>A and <f>c are nondecreasing m R，+, the maximum on the 

right hand side of inequality (2.9) is attained at 7 = a(F) + e

But we know

(2.10) ce(T(F)) = maxdiamW(比 n B~\G3))
Z,J
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and so from (2.9), we get

a(T(F)) <6 + max{A0A(T)+</>c(7): 7 £ [0, Of(F) +e]}.

Since € and 8 are arbitrary positive numbers, we have

(2.11) a(T(F)) = M0A(a(F)) + ©c(a(F)) < a(F)

for q(F) > 0. This shows that T is a a-condensing on S. Now an 

application of Theorem 2.1 yields that the operator equation Tx = x 

has a solution in S and consequently the operator equation (1.2) has a 

solution in S. This completes the proof.

REMARK 2.1. From hypothesis (Ai) of Theorem 2.2 we note that 

the operators A.JB and C need-jiat ma호 the domain set S into itself 
and every contraction is ^-Lipschitzian. Therefore Theorem 2.2 is a 

generalization of Theorem 1.1 under the weaker hypothesis (i) and (iii) 

thereof.

When C = 0 in Theorem 2.2, we obtain the following result as a 

corollary which is again new and includes the main fixed point Theo­

rems of Dhage [2,4] as special cases under weaker conditions

Corollary 2.1. Let S be a nonempty, closed, convex and bounded 

subset of the Banach algebra X and let A、B : S — X be two operators 

such that

(i) A is(j)-Lzpschztzian,

(ii) B zs completely continuous, and

(iii) AxBx G S for every x E S.

Then the operator equation

(2.12) AxBx = x

has a solution m S whenever

】财输)V 7 for 7 > 0, 
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where M = ||B(S)|| = sup{j|Bz|j : x € S}.

In the following section we prove the existence and stability of the 

solution of certain nonlinear integral equations in Banach algebra which 

are more than (L고) and by the application of Theorem 2.2.

3. Nonlinear integral equations

Let IR denote the real line and let I = Ko/o + a] C R for some 

to, E R. with a > 0, be a closed and bounded interval. Let E denote 

a Banach algebra with a norm || • ||e. Now we consider the nonlinear 

IE

无(0 = q(t)+ [ /(t5s,x(s))ds

/o Jtn

for tel, where q T E and f^g^ktlxIxE-^E are continuous.

We seek the solution of the IE (3.1) in the space X = BM(Iy E) of 

all bounded and measurable £?-valued functions on I. Define a norm 

II . II in X = BM(I, E) by

(3.2) II께 = sup |旧(圳0
tel

Clearly X is a Banach algebra with this supremum norm. To prove the 

existence theorem for the IE (3.1), we need the following hypotheses: 

(Ho) q € BM(Iy E) and the functions 芦)and fc(t, s,x)

are measurable in t, s € I for all x E E.

(Hi) The functions /,p and k are bounded on I x I x E with bounds 

Ki, K2 and K3 respectively.

(H2) The functions g(t^s^x) and fc(i, 5,x) satisfy the Lip­

schitz condition in x uniformly for £, s € I, i.e. there exists con­

stants Li > 0 and L2 > 0 such that

||/(t,s,c) - f(t,s,y)\\E < Lr\\x - y\\E

||g(t,s,:r) — 饥||e < L2\\x-y\\E and

||k(t,s,w) — /(t,s浦)||e < 一 训E
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for all (£,s,x), (t,s,?/) 6 I x Z x E.

(H3) Given e > 0 there exists a number 8 a 0 such that

一 矶如禹t)||e < €,

whenever (切注)，(如，邑对 E I x I x E and |ti 一 切 < 5.

Theorem 3 1 Assume (H0)-(H3). Then IE (3.1) admits a solu­

tion, whenever (Li + L^K^a^a < 1.

Proof. Define a subset S of the Banach algebra X by

(3.3) S = {w e X : II께 < K},

where K = ||q|| + (K上 + Clearly S is a nonempty, closed,

convex and bounded subset of the Banach algebra X. We define three 

operators A, B and C on S by

(3.4) Ax(t) = I x(s))d5, t E

Jt0

(3.5) Bx(t) = / fc(t,s,;r(s))ds, tel,

Jto

and

(3.6) Cx(t) = q(t) + f t E I.

Jt0

In view of the hypotheses (Ho) and (Hi), it follows that the operators

A, B and C are well defined and Ax^ Bx^ Cx G BM(I^ E) for all x E S.

Now for any a; e 5, by (Hi) we have 

^Ax{t)Bx{t) + Cx(t)^E < II如(圳|冲诳(圳|e + ||S(圳e

< (/ llg(私s*(s))||e/s) (/ |g(t,s,c(s))||E

+ l|q(圳/ ILf(t,s,H(s))||ds 
Jto

W||g|| + (Ki + K2K3Q)Q = K.
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This shows that AxBx + Cx E S for all x E S. Again let 叫 y £ S> 
then by (H2), one gets

\\Ax(t) - Ay(t)\\E < [ ||g(t,s,z(s)) —g(t,s,g(s))||Eds=2“||c — g/||), 

Jto

where (/>4 (7) = 1膜丫

Similarly, we have

11^ - Cy\\ < 9顼||z —g||),

where ^!>c(7)= L、q丫
Further by (Hi), we obtain

M = ||B(S)|| =sup{||B께 : z £ S}

f 广圮+a )
(3.7) <sup^ / |g(t,s,z(s))||E*s ： z e S \

) 

<K3a.

This shows that the set B(S) is uniformly bounded. Next we show 

that the set B(S) is equi-continuous on I. Let x E S be any element.

Then by (H3), we have

广圮+“
ll^(ii) - Bx(t2)\\E < / ||A;(ti,s,x(s)) - k(t2,s,y(s))\\Eds T 0

Jt0
CLS *1 —> .

Therefore B(S) is an equi-continuous set. Further the hypothesis 

(H2) implies that B is continuous operator on S. Consequently B is 

completely continuous on S.

Now (7)= (Li + < 7 for 7 > 0

Thus all the conditions of Theorem 2.2 are satisfied and hence an 

application of it yields that the operator equation AxBx + Cx = x has 

a solution in S Consequently that IE (3.1) has a solution on I. This 

completes the proof.

Next we prove the stability of the solution of the IE (3.1) in the 

sense of the following definition
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Definition 3 1 The IE (3.1) is said to have a stable solution p 

on I if for € > 0 there exists 5 > 0 such that (圳< e whenever

< S for all tel.

We need the following hypotheses in the sequel.

(H4) The functions and g(tqe) satisfy Lipschitz type con­

ditions as follows: For e > 0, there exists a > 0, 2ad < 1, such 

that

||/(t,s,z) - f(t,s,y)\\E < 可恤-y\\E

and

||g(t,s,c) —g(t,s, y)|| e < 이恤 一 이*

for all (t, s,z), e I x I x E with ||께e < J ||；||e < e.

(H5) f(t, s, 0) = 0 and g(t, s, 0) = 0 for all t,s e I, where 0 is the zero 

element of E.

(He) The assumptions (H3) and the function k is bounded on I x I x E 

with bound Ka and Kg < 1.

(H7) The function satisfies the Lipschitz condition in x uni­

formly for € I, i.e. there exists a constant £3 > 0 such that

- fc(t, s, y^E < L3||a: - y^E

for all (t, 5,x), (t, s,7/) E I x I x E.

THEOREM 3 2. Assume (Ho)；(氏)-(珀).Then IE (3.1) admits a 
stable solution on I.

PROOF. Let 6 > 0 be given and 6 be 사losen as in (H4). Let b = 

1 — 2a6. Then define a subset S") of the Banach algebra X by

(3.8) 3(e) = {xeX : II씨I < c}.

Clearly S(c) is a nonempty, closed, convex and bounded subset of 

the Banach algebra X. We define three operators A, B and C on S(e) 
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by (3.4), (3.5) and (3.6) respectively. Now for any x G S(€), we have

^Ax(t)Bx(t) + Cx(t^E < ||&(圳|e||Be(圳|e + ||(侦E)||e

/ pt \ / /*圮+a
< (j ||g(t,s,z(s)네Eds丿 (/ ||fc(t,s,x(s))||£；(/.

+ Mt)^E+ / y(t,s,x(s))\\Eds 

Jt0

< 6에께Kg + be + 3쎄께 = 6.

This 나lows that AxBx + Cx 6 S(e) for all x E S(€). Again as in the 

proof of Theorem 3.1, it can be shown that B is completely continuous 

and ||BS,(t)|| = K^a < 1. After simple computation, we get

©4（7）=而=
1

and

1-&

Since K^a < 1, + ©c(丁) = 1 — 6 < 1. Now an application

of Theorem 2.1 yields that the opertor equation AxBx + Cx = x has a 

solution in S(时.Consequently the IE (3.1) has a stable solution on I, 

i.e. there is a solution p of the IE (3.1) such that ||p(圳|e < e whenever 

||q(：)||E < be for some b E (0,1). This completes the proof.

THEOREM 3.3. Assume (Ho), (H4)-(Hy). Assume also that g is 

bounded on I x I x E with bound Then IE (3.1) admits a unique 

stable solution on I, whenever ||q(圳|e < be and < b, where

b = 1 — 2a5.

PROOF By Theorem 3.2, the IE (3.1) has a stable solution on I, 

whenever ||q0)]|E < be for some b e (0,1). To prove the uniqueness, let 

y be another stable solution of the IE (3.1) on I. Then by (HQVH) 
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we obtain

l|z(t)-応)||e < (/ ||g(t,s,w(s)) - g(t,sR(s))||Eds) 

/ rto+a \
(J ||fc(t,s,x(s))||Fdsj

+ (/时(必,理))1岳在)

/广圮+a \
(J II机 t,s,s(s)) — 人0,s 浦(s))||Eds 丿

+ [ ||/(t,s*(s)) —/(t,s,g(s))||Eds

JtQ

에a? - y^K3a + K2L3€a2\[x 一 训 + 3에a: - y]|

늬2航 + K2L3€a2]\\x - y\\

니1 一 (b一 乙3珀2川恤 一 圳,

which is possible only when x(t) = y(t) for all t 6 /. Since 1 — (6 — 

乙3&“)v 1, this completes the proof.
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