Commun. Korean Math. Soc. **37** (2022), No. 2, pp. 415–421 https://doi.org/10.4134/CKMS.c210043 pISSN: 1225-1763 / eISSN: 2234-3024

A FUNDAMENTAL THEOREM OF CALCULUS FOR THE M_{α} -INTEGRAL

Abraham Perral Racca

ABSTRACT. This paper presents a fundamental theorem of calculus, an integration by parts formula and a version of equiintegrability convergence theorem for the M_{α} -integral using the M_{α} -strong Lusin condition. In the convergence theorem, to be able to relax the condition of being point-wise convergent everywhere to point-wise convergent almost everywhere, the uniform M_{α} -strong Lusin condition was imposed.

1. Introduction

Recently, in [9], a new Henstock-type integral was introduced by Park, Ryu, and Lee, and they named it M_{α} -integral. This new integral uses McShane partition. Several properties of this new integral were proved in [8], [9] and [10]. It was shown further in [10] that it is equivalent to the *C*-integral. Most of the properties are parallel to the usual properties of an integral including the Saks-Henstock Lemma [9, Lemma 2.5]. Convergence theorems for this integral were discussed in [3] and [7]. Cauchy extension and absolute M_{α} -integrability were discussed in [4].

It is well known that in the real line f is Henstock-Kurzweil integrable on [a, b] if and only if there exists a function F satisfying the strong Lusin (SL) condition with F'(x) = f(x) almost everywhere. See for example the discussion in [6]. Since the M_{α} -integral is a Henstock-type integral it is natural to ask whether a similar type of characterization exists for the M_{α} -integral. An affirmative answer is given to this query and as a consequence an integration by parts and a convergence theorem are given.

O2022Korean Mathematical Society

415

Received February 4, 2021; Accepted May 17, 2021.

²⁰¹⁰ Mathematics Subject Classification. Primary 26A39.

Key words and phrases. M_{α} -integral, M_{α} -SL, fundamental theorem of calculus, integration by parts.

The author would like to thank the referees for carefully reading his manuscript and for the valuable suggestions.

A. P. RACCA

2. Preliminaries

Let $\alpha > 0$ be a constant, and [a, b] a non-degenerate closed and bounded interval in \mathbb{R} . A subset S of [a, b] is of measure zero when it is of Lebesgue measure zero. A McShane partial partition $D = \{(I, x)\}$ of [a, b] is a finite collection of interval-point pairs such that $x \in [a, b], I \subset [a, b]$ and $\{I : (I, x) \in D\}$ are non-overlapping. A positive function on [a, b] is called a gauge on [a, b]. We say that a McShane partial partition D of [a, b] is

- (1) S-tagged, where $S \subset [a, b]$, if for all $(I, x) \in D$ we have $x \in S$,
- (2) a McShane partition if $\bigcup_{(I,x)\in D} I = [a,b]$,

(3) δ -fine if for $(I, x) \in D$ we have $I \subset (x - \delta(x), x + \delta(x))$ for a gauge δ , (4) a partial M_{α} -partition if

$$(D)\sum {\rm dist}(x,I)<\alpha,$$

where $\operatorname{dist}(x, I) = \inf\{|x - y| : y \in I\}.$

We say that a McShane partial partition $D = \{(I, x)\}$ is a Henstock partial partition, if for each $(I, x) \in D$, $x \in I$. Given a gauge δ on [a, b], the existence of a δ -fine M_{α} -partition of [a, b] is guaranteed by [5, Lemma 2.1]. The said lemma is known as the Cousin's Lemma.

We are now ready to present the definition of the M_{α} -integral.

Definition ([9, Definition 2.1]). A function $f : [a, b] \to \mathbb{R}$ is M_{α} -integrable if there exists a real number A such that for each $\epsilon > 0$ there exists a gauge δ on [a, b] such that for any δ -fine M_{α} -partition $D = \{(I, x)\}$ of [a, b]

$$\left| (D) \sum f(x) |I| - A \right| < \epsilon.$$

The number A is called the M_{α} -integral of f on [a, b] and we write $(M_{\alpha}) \int_{a}^{b} f = A$.

In the definition above, $(D) \sum f(x) |I|$ denotes the Riemann sum of f over the M_{α} -partition D.

It f is M_{α} -integrable on [a, b], then f is M_{α} -integrable on any subinterval I of [a, b] [9, Theorem 2.3(1)]. For an M_{α} -integrable function f, define its primitive function F by

$$F(x) = (M_{\alpha}) \int_{a}^{x} f, \text{ if } x \in (a, b]$$

and F(a) = 0. For any subinterval I = [u, v] of [a, b] and a function F on [a, b], we put F(I) = F(u, v) = F(v) - F(u). A primitive function is additive, in the sense that, for any subinterval I_1 and I_2 of [a, b] whose union is also an interval, $F(I_1 \cup I_2) = F(I_1) + F(I_2)$.

Lemma 2.1 (Saks-Henstock, [9, Lemma 2.5]). Let f be M_{α} -integrable on [a, b] with primitive F. Then for every $\epsilon > 0$ there is a gauge δ on [a, b] such that

for any δ -fine M_{α} -partial partition D of [a, b] we have

$$(D)\sum |F(I) - f(x)|I|| < \epsilon.$$

Recall from [5] that a function $f : [a, b] \to \mathbb{R}$ is Henstock-Kurzweil integrable if there exists a real number A such that for each $\epsilon > 0$ there exists a gauge δ on [a, b] such that for any δ -fine Henstock partition $D = \{(I, x)\}$ of [a, b]

$$(D)\sum f(x)|I| - A \Big| < \epsilon.$$

Since every Henstock partition is an M_{α} -partition, every M_{α} -integrable function is also Henstock-Kurzweil integrable, [9, Theorem 2.10(b)] and [10, Theorem 2.10(b)].

3. Fundamental theorem of calculus

We say that an additive interval function F on [a, b] satisfies the M_{α} -strong Lusin $(M_{\alpha}-SL)$ condition if given $\epsilon > 0$ and a set $S \subset [a, b]$ of measure zero there exists a gauge δ on [a, b] such that for any δ -fine S-tagged partial M_{α} partition $D = \{(I, x)\}$ of [a, b] we have $(D) \sum |F(I)| < \epsilon$. Since every partial Henstock-partition is a partial M_{α} -partition, we have the following lemma.

Lemma 3.1. If a function F is M_{α} -SL, then it is also SL.

Theorem 3.2 (Main Result). Let f be a function on [a, b] and F be an additive interval function on [a, b]. Then f is M_{α} -integrable on [a, b] with primitive Fif and only if F'(x) = f(x) almost everywhere on [a, b] and F satisfies the M_{α} strong Lusin condition on [a, b]. In this case, we have $(M_{\alpha}) \int_{a}^{b} f = F(b) - F(a)$.

Proof. Suppose f is M_{α} -integrable and F is its primitive. Let $\epsilon > 0$ and a subset S of [a, b] with measure zero be given. By [9, Lemma 2.11] there exists a gauge δ on [a, b] such that for any δ -fine S-tagged partial M_{α} -partition $D = \{(I, x)\}$ of [a, b] we have

$$(D)\sum |f(x)||I| < \frac{\epsilon}{2}.$$

Since f is M_{α} -integrable on [a, b] with primitive F, we may further choose δ appropriately so that for any δ -fine partial M_{α} -partition D of [a, b] we have

$$(D)\sum |f(x)|I| - F(I)| < \frac{\epsilon}{2}.$$

Let D be any δ -fine S-tagged partial M_{α} -partition of [a, b]. Then

$$(D)\sum |F(I)| \le (D)\sum |f(x)|I| - F(I)| + (D)\sum |f(x)||I| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Therefore F is M_{α} -SL. By [9, Theorem 2.10(b)], M_{α} -integrability implies Henstock-Kurzweil integrability, it follows from [1, Theorem 5.9] that F'(x) = f(x) almost everywhere on [a, b].

For the converse, suppose that F is M_{α} -SL and F'(x) = f(x) almost everywhere. Then there exists $S \subset [a, b]$ with measure zero such that for all

 $x \in [a, b] \setminus S, F'(x) = f(x)$. By [9, Lemma 2.11] given $\epsilon > 0$ there exists a gauge δ on S such that for any δ -fine X-tagged partial M_{α} -partition D of [a, b] we have

(1)
$$(D)\sum |f(x)||I| < \epsilon_0$$

where $\epsilon_0 = \frac{\epsilon}{3}$. Further, since F is M_{α} -SL we can choose δ so that

(2)
$$(D)\sum |F(I)| < \epsilon_0.$$

Now, since F'(x) = f(x) for all $x \in [a,b] \setminus S$, we can further modify our gauge δ on $[a,b] \setminus S$ such that for any δ -fine M_{α} -pair (I,x) with $x \in [a,b] \setminus S$ we have

(3)
$$|F(I) - f(x)|I|| < \frac{\epsilon}{6(\alpha + (b-a))}|I|$$

Let D be a δ -fine partial M_{α} -partition of [a, b]. Split D into D_1 and D_2 , where D_1 contains those pairs with tags in S and D_2 otherwise. It follows from (1) and (2) that

$$(D_1)\sum |f(x)||I| < \epsilon_0$$
 and $(D_1)\sum |F(I)| < \epsilon_0$

and from (3) that for D_2 , we have

$$(D_2)\sum |f(x)|I| - F(I)| \leq \frac{\epsilon}{3(\alpha + (b-a))}(D_2)\sum (\operatorname{dist}(x, I) + |I|)$$
$$< \frac{\epsilon}{3(\alpha + (b-a))}(\alpha + (b-a))$$
$$= \frac{\epsilon}{3}.$$

Hence, $(D) \sum |f(x)|I| - F(I)| < \epsilon$. Therefore f is integrable and F is its primitive. The proof is complete.

Theorem 3.3. A function F on E is a primitive of some M_{α} -integrable function if and only if F satisfies the M_{α} -SL condition.

Proof. In view of Theorem 3.2, if F is a primitive of an M_{α} -integrable function, then F is M_{α} -SL.

For the converse, if F is M_{α} -SL on [a, b], then, by Lemma 3.1, F is SL. It follows from [2] that F is differentiable almost everywhere on [a, b]. Define a function f on [a, b] such that f(x) = F'(x) whenever F'(x) exists and f(x) = 0, otherwise. Then f is M_{α} -integrable and F is its primitive. \Box

Since every isolated point is of measure zero, we have the following result.

Lemma 3.4. If a function F satisfies the M_{α} -SL condition on [a, b], then F is continuous on [a, b].

Corollary 3.5. If a function F satisfies the M_{α} -SL condition on [a, b], then F is bounded on [a, b].

418

Theorem 3.6 (Integration by parts). If F and H satisfy the M_{α} -SL condition on [a,b] and F'(x) = f(x), H'(x) = h(x) almost everywhere on [a,b], then

$$(M_{\alpha})\int_{a}^{b}(Fh+Hf) = F(b)H(b) - F(a)H(a).$$

Proof. We will first show that if F and H satisfy the M_{α} -SL condition on [a, b], then the product FG also satisfies the M_{α} -SL condition on [a, b]. For $[u, v] \subset [a, b]$, we have

$$(FH)(u,v) = F(v)H(u,v) + H(u)F(u,v).$$

There exists M > 0 such that for any $x \in [a, b]$, $F(x), H(x) \leq M$. Given $\epsilon > 0$ and a subset S of [a, b] of measure zero there exists a gauge δ_F on [a, b] such that for any δ_F -fine S-tagged partial M_{α} -partition D of [a, b] we have $(D) \sum |F(u, v)| < \frac{\epsilon}{2M}$. Also, there exists a gauge δ_H on [a, b] such that for any δ_H -fine S-tagged partial M_{α} -partition D of [a, b] we have $(D) \sum |H(u, v)| < \frac{\epsilon}{2M}$. Define $\delta(x) = \min\{\delta_F(x), \delta_H(x)\}$. For any δ -fine S-tagged partial M_{α} -partition $D = \{(x, [u, v])\}$ of [a, b] we have

$$\begin{split} (D)\sum |(FH)(u,v)| &\leq (D)\sum |F(v)H(u,v)| + (D)\sum |H(u)F(u,v)| \\ &\leq M(D)\sum |H(u,v)| + M(D)\sum |F(u,v)| \\ &< M\cdot\frac{\epsilon}{2M} + M\cdot\frac{\epsilon}{2M} \\ &= \epsilon. \end{split}$$

The results follow from Theorem 3.2, since

$$[(FG)(x)]' = F(x)h(x) + H(x)f(x)$$

almost everywhere on [a, b].

We end this paper by presenting a convergence theorem. Let $\{f_n\}$ be a sequence of M_{α} -integrable functions on [a, b] with primitives $\{F_n\}$. We say that f_n is equi-integrable if for every $\epsilon > 0$ there is a gauge δ on [a, b] independent of n such that for any δ -fine M_{α} -partition D of [a, b] we have $|(D) \sum f_n(x)|I| - F_n(a, b)| < \epsilon$.

The following result was presented in [7, Theorem 3.6] and [3, Corollary 2.2].

Theorem 3.7. Let $\{f_n\}$ be a sequence of M_{α} -integrable functions on [a, b]. If $f_n \to f$ everywhere on [a, b] and f_n is equi-integrable, then f is M_{α} -integrable and

$$\lim_{n \to \infty} (M_{\alpha}) \int_{E} f_n = (M_{\alpha}) \int_{E} f.$$

In the theorem above we impose the condition that $f_n \to f$ everywhere. In order to relax the condition everywhere to almost everywhere we will use the concept of M_{α} -SL. A collection \mathcal{F} of M_{α} -SL functions on [a, b] is said to be M_{α} -USL if given $\epsilon > 0$ and a subset S of [a, b] with measure zero, then there exists a gauge δ on [a, b] such that for any δ -fine S-tagged partial M_{α} -partition $D = \{(I, x)\}$, and any $F \in \mathcal{F}$, we have $(D) \sum F(I) < \epsilon$.

Theorem 3.8. Let $\{f_n\}$ be a sequence of functions on [a, b] with corresponding primitives $\{F_n\}$. If $f_n \to f$ almost everywhere on [a, b], f_n is equi-integrable and F_n satisfies the M_{α} -USL condition, then f is M_{α} -integrable and

$$\lim_{n \to \infty} (M_{\alpha}) \int_{[a,b]} f_n = (M_{\alpha}) \int_{[a,b]} f.$$

Proof. Let $X = \{x \in [a, b] : f_n(x) \to f(x)\}$. Define

$$f_n^* = f_n \chi_X$$
 and $f^* = f \chi_X$,

where χ_X is the characteristic function of X. One can notice that $f_n^* \to f^*$ everywhere on [a, b]. It remains to show that f_n^* is equi-integrable.

Let $\epsilon > 0$. Since f_n is equi-integrable and F_n satisfies M_{α} -USL there is a gauge δ on [a, b] independent of n such that (i) for any δ -fine M_{α} -partition $D = \{(I, x)\}$ of [a, b] we have $(D) \sum |f_n(x)|I| - F_n(I)| < \epsilon$ and (ii) for any δ -fine $\{[a, b] \setminus X\}$ -tagged partial M_{α} -partition $D = \{(I, x)\}$ of [a, b], we have $(D) \sum |F_n(I)| < \epsilon$.

Then for any δ -fine M_{α} -partition $D = \{(I, x)\}$ of [a, b], we have

$$(D) \sum |f_n^*(x)|I| - F_n(I)| \le (D) \sum_{x \in X} |f_n(x)|I| - F_n(I)| + (D) \sum_{x \notin X} |F_n(I)| < 2\epsilon.$$

It follows from Theorem 3.7 that f^* is M_{α} -integrable and therefore, since $f = f^*$ almost everywhere and considering [9, Lemma 2.11], f is M_{α} -integrable. \Box

References

- R. G. Bartle, A modern Theory of Integration, Graduate Studies in Mathematics, 32, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/gsm/ 032
- [2] B. Bongiorno, L. Di Piazza, and V. Skvortsov, A new full descriptive characterization of Denjoy-Perron integral, Real Anal. Exchange 21 (1995/96), no. 2, 656–663.
- [3] I. J. L. Garces and A. P. Racca, Characterizing convergence conditions for the M_αintegral, Chungcheong J. Math. Soc. 24 (2011), no. 3, 469–480.
- [4] I. J. L. Garces and A. P. Racca, Cauchy extension of M_α-integral and absolute M_αintegrability, Int. J. Math. Anal. 9(27) (2015), 1323–1329.
- [5] P. Y. Lee, Lanzhou Lectures on Henstock Integration, Series in Real Analysis, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.
- [6] P. Y. Lee and R. Výborný, Integral: an easy approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series, 14, Cambridge University Press, Cambridge, 2000.
- [7] J. M. Park, B. M. Kim, Y. K. Kim, and J. T. Lim, Convergence theorems for the M_α-integral, Chungcheong J. Math. Soc. 24 (2011), no. 2, 383–391.
- [8] J. M. Park, D. H. Lee, J. H. Yoon, and H. K. Lee, The integration by parts for the M_α-integral, Chungcheong J. Math. Soc. 23 (2010), no. 4, 861–870.
- [9] J. M. Park, H. W. Ryu, and H. K. Lee, *The* M_{α} *-integral*, Chungcheong J. Math. 23 (2010), no. 1, 99–108.

[10] J. M. Park, H. W. Ryu, H. K. Lee, and D. H. Lee, *The M_α and C-integrals*, Czechoslovak Math. J. **62(137)** (2012), no. 4, 869–878. https://doi.org/10.1007/s10587-012-0070-1

Abraham Perral Racca Mathematics and Physics Department Adventist University of the Philippines Silang, Cavite, Philippines Email address: apracca@aup.edu.ph