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A FUNDAMENTAL THEOREM OF CALCULUS FOR THE

Mα-INTEGRAL

Abraham Perral Racca

Abstract. This paper presents a fundamental theorem of calculus, an

integration by parts formula and a version of equiintegrability convergence
theorem for the Mα-integral using the Mα-strong Lusin condition. In the

convergence theorem, to be able to relax the condition of being point-wise
convergent everywhere to point-wise convergent almost everywhere, the

uniform Mα-strong Lusin condition was imposed.

1. Introduction

Recently, in [9], a new Henstock-type integral was introduced by Park, Ryu,
and Lee, and they named it Mα-integral. This new integral uses McShane
partition. Several properties of this new integral were proved in [8], [9] and
[10]. It was shown further in [10] that it is equivalent to the C-integral. Most
of the properties are parallel to the usual properties of an integral including the
Saks-Henstock Lemma [9, Lemma 2.5]. Convergence theorems for this integral
were discussed in [3] and [7]. Cauchy extension and absolute Mα-integrability
were discussed in [4].

It is well known that in the real line f is Henstock-Kurzweil integrable
on [a, b] if and only if there exists a function F satisfying the strong Lusin
(SL) condition with F ′(x) = f(x) almost everywhere. See for example the
discussion in [6]. Since the Mα-integral is a Henstock-type integral it is natural
to ask whether a similar type of characterization exists for the Mα-integral. An
affirmative answer is given to this query and as a consequence an integration
by parts and a convergence theorem are given.
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2. Preliminaries

Let α > 0 be a constant, and [a, b] a non-degenerate closed and bounded
interval in R. A subset S of [a, b] is of measure zero when it is of Lebesgue
measure zero. A McShane partial partition D = {(I, x)} of [a, b] is a finite
collection of interval-point pairs such that x ∈ [a, b], I ⊂ [a, b] and {I : (I, x) ∈
D} are non-overlapping. A positive function on [a, b] is called a gauge on [a, b].
We say that a McShane partial partition D of [a, b] is

(1) S-tagged, where S ⊂ [a, b], if for all (I, x) ∈ D we have x ∈ S,
(2) a McShane partition if

⋃
(I,x)∈D I = [a, b],

(3) δ-fine if for (I, x) ∈ D we have I ⊂ (x− δ(x), x+ δ(x)) for a gauge δ,
(4) a partial Mα-partition if

(D)
∑

dist(x, I) < α,

where dist(x, I) = inf{|x− y| : y ∈ I}.
We say that a McShane partial partition D = {(I, x)} is a Henstock partial
partition, if for each (I, x) ∈ D, x ∈ I. Given a gauge δ on [a, b], the existence
of a δ-fine Mα-partition of [a, b] is guaranteed by [5, Lemma 2.1]. The said
lemma is known as the Cousin’s Lemma.

We are now ready to present the definition of the Mα-integral.

Definition ([9, Definition 2.1]). A function f : [a, b] → R is Mα-integrable if
there exists a real number A such that for each ε > 0 there exists a gauge δ on
[a, b] such that for any δ-fine Mα-partition D = {(I, x)} of [a, b]∣∣∣(D)

∑
f(x)|I| −A

∣∣∣ < ε.

The number A is called the Mα-integral of f on [a, b] and we write (Mα)
∫ b
a
f =

A.

In the definition above, (D)
∑
f(x)|I| denotes the Riemann sum of f over

the Mα-partition D.
It f is Mα-integrable on [a, b], then f is Mα-integrable on any subinterval

I of [a, b] [9, Theorem 2.3(1)]. For an Mα-integrable function f , define its
primitive function F by

F (x) = (Mα)

∫ x

a

f, if x ∈ (a, b]

and F (a) = 0. For any subinterval I = [u, v] of [a, b] and a function F on [a, b],
we put F (I) = F (u, v) = F (v)− F (u). A primitive function is additive, in the
sense that, for any subinterval I1 and I2 of [a, b] whose union is also an interval,
F (I1 ∪ I2) = F (I1) + F (I2).

Lemma 2.1 (Saks-Henstock, [9, Lemma 2.5]). Let f be Mα-integrable on [a, b]
with primitive F . Then for every ε > 0 there is a gauge δ on [a, b] such that



A FUNDAMENTAL THEOREM OF CALCULUS FOR THE Mα-INTEGRAL 417

for any δ-fine Mα-partial partition D of [a, b] we have

(D)
∑
|F (I)− f(x)|I|| < ε.

Recall from [5] that a function f : [a, b]→ R is Henstock-Kurzweil integrable
if there exists a real number A such that for each ε > 0 there exists a gauge δ
on [a, b] such that for any δ-fine Henstock partition D = {(I, x)} of [a, b]∣∣∣(D)

∑
f(x)|I| −A

∣∣∣ < ε.

Since every Henstock partition is an Mα-partition, every Mα-integrable func-
tion is also Henstock-Kurzweil integrable, [9, Theorem 2.10(b)] and [10, Theo-
rem 2.10(b)].

3. Fundamental theorem of calculus

We say that an additive interval function F on [a, b] satisfies the Mα-strong
Lusin (Mα-SL) condition if given ε > 0 and a set S ⊂ [a, b] of measure zero
there exists a gauge δ on [a, b] such that for any δ-fine S-tagged partial Mα-
partition D = {(I, x)} of [a, b] we have (D)

∑
|F (I)| < ε. Since every partial

Henstock-partition is a partial Mα-partition, we have the following lemma.

Lemma 3.1. If a function F is Mα-SL, then it is also SL.

Theorem 3.2 (Main Result). Let f be a function on [a, b] and F be an additive
interval function on [a, b]. Then f is Mα-integrable on [a, b] with primitive F
if and only if F ′(x) = f(x) almost everywhere on [a, b] and F satisfies the Mα-

strong Lusin condition on [a, b]. In this case, we have (Mα)
∫ b
a
f = F (b)−F (a).

Proof. Suppose f is Mα-integrable and F is its primitive. Let ε > 0 and
a subset S of [a, b] with measure zero be given. By [9, Lemma 2.11] there
exists a gauge δ on [a, b] such that for any δ-fine S-tagged partial Mα-partition
D = {(I, x)} of [a, b] we have

(D)
∑
|f(x)||I| < ε

2
.

Since f is Mα-integrable on [a, b] with primitive F , we may further choose δ
appropriately so that for any δ-fine partial Mα-partition D of [a, b] we have

(D)
∑
|f(x)|I| − F (I)| < ε

2
.

Let D be any δ-fine S-tagged partial Mα-partition of [a, b]. Then

(D)
∑
|F (I)| ≤ (D)

∑
|f(x)|I| − F (I)|+ (D)

∑
|f(x)||I| < ε

2
+
ε

2
= ε.

Therefore F is Mα-SL. By [9, Theorem 2.10(b)], Mα-integrability implies
Henstock-Kurzweil integrability, it follows from [1, Theorem 5.9] that F ′(x) =
f(x) almost everywhere on [a, b].

For the converse, suppose that F is Mα-SL and F ′(x) = f(x) almost ev-
erywhere. Then there exists S ⊂ [a, b] with measure zero such that for all
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x ∈ [a, b]\S, F ′(x) = f(x). By [9, Lemma 2.11] given ε > 0 there exists a gauge
δ on S such that for any δ-fine X-tagged partial Mα-partition D of [a, b] we
have

(1) (D)
∑
|f(x)||I| < ε0,

where ε0 = ε
3 . Further, since F is Mα-SL we can choose δ so that

(2) (D)
∑
|F (I)| < ε0.

Now, since F ′(x) = f(x) for all x ∈ [a, b]\S, we can further modify our gauge
δ on [a, b]\S such that for any δ-fine Mα-pair (I, x) with x ∈ [a, b] \ S we have

(3) |F (I)− f(x)|I|| < ε

6(α+ (b− a))
|I|.

Let D be a δ-fine partial Mα-partition of [a, b]. Split D into D1 and D2,
where D1 contains those pairs with tags in S and D2 otherwise. It follows from
(1) and (2) that

(D1)
∑
|f(x)||I| < ε0 and (D1)

∑
|F (I)| < ε0

and from (3) that for D2, we have

(D2)
∑
|f(x)|I| − F (I)| ≤ ε

3(α+ (b− a))
(D2)

∑
(dist(x, I) + |I|)

<
ε

3(α+ (b− a))
(α+ (b− a))

=
ε

3
.

Hence, (D)
∑
|f(x)|I| −F (I)| < ε. Therefore f is integrable and F is its prim-

itive. The proof is complete. �

Theorem 3.3. A function F on E is a primitive of some Mα-integrable func-
tion if and only if F satisfies the Mα-SL condition.

Proof. In view of Theorem 3.2, if F is a primitive of an Mα-integrable function,
then F is Mα-SL.

For the converse, if F is Mα-SL on [a, b], then, by Lemma 3.1, F is SL. It
follows from [2] that F is differentiable almost everywhere on [a, b]. Define a
function f on [a, b] such that f(x) = F ′(x) whenever F ′(x) exists and f(x) = 0,
otherwise. Then f is Mα-integrable and F is its primitive. �

Since every isolated point is of measure zero, we have the following result.

Lemma 3.4. If a function F satisfies the Mα-SL condition on [a, b], then F
is continuous on [a, b].

Corollary 3.5. If a function F satisfies the Mα-SL condition on [a, b], then
F is bounded on [a, b].
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Theorem 3.6 (Integration by parts). If F and H satisfy the Mα-SL condition
on [a, b] and F ′(x) = f(x), H ′(x) = h(x) almost everywhere on [a, b], then

(Mα)

∫ b

a

(Fh+Hf) = F (b)H(b)− F (a)H(a).

Proof. We will first show that if F and H satisfy the Mα-SL condition on
[a, b], then the product FG also satisfies the Mα-SL condition on [a, b]. For
[u, v] ⊂ [a, b], we have

(FH)(u, v) = F (v)H(u, v) +H(u)F (u, v).

There exists M > 0 such that for any x ∈ [a, b], F (x), H(x) ≤ M . Given
ε > 0 and a subset S of [a, b] of measure zero there exists a gauge δF on [a, b]
such that for any δF -fine S-tagged partial Mα-partition D of [a, b] we have
(D)

∑
|F (u, v)| < ε

2M . Also, there exists a gauge δH on [a, b] such that for any
δH -fine S-tagged partial Mα-partition D of [a, b] we have (D)

∑
|H(u, v)| <

ε
2M . Define δ(x) = min{δF (x), δH(x)}. For any δ-fine S-tagged partial Mα-
partition D = {(x, [u, v])} of [a, b] we have

(D)
∑
|(FH)(u, v)| ≤ (D)

∑
|F (v)H(u, v)|+ (D)

∑
|H(u)F (u, v)|

≤M(D)
∑
|H(u, v)|+M(D)

∑
|F (u, v)|

< M · ε

2M
+M · ε

2M
= ε.

The results follow from Theorem 3.2, since

[(FG)(x)]′ = F (x)h(x) +H(x)f(x)

almost everywhere on [a, b]. �

We end this paper by presenting a convergence theorem. Let {fn} be a
sequence of Mα-integrable functions on [a, b] with primitives {Fn}. We say
that fn is equi-integrable if for every ε > 0 there is a gauge δ on [a, b] in-
dependent of n such that for any δ-fine Mα-partition D of [a, b] we have
|(D)

∑
fn(x)|I| − Fn(a, b)| < ε.

The following result was presented in [7, Theorem 3.6] and [3, Corollary 2.2].

Theorem 3.7. Let {fn} be a sequence of Mα-integrable functions on [a, b]. If
fn → f everywhere on [a, b] and fn is equi-integrable, then f is Mα-integrable
and

lim
n→∞

(Mα)

∫
E

fn = (Mα)

∫
E

f.

In the theorem above we impose the condition that fn → f everywhere. In
order to relax the condition everywhere to almost everywhere we will use the
concept of Mα-SL. A collection F of Mα-SL functions on [a, b] is said to be
Mα-USL if given ε > 0 and a subset S of [a, b] with measure zero, then there
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exists a gauge δ on [a, b] such that for any δ-fine S-tagged partial Mα-partition
D = {(I, x)}, and any F ∈ F , we have (D)

∑
F (I) < ε.

Theorem 3.8. Let {fn} be a sequence of functions on [a, b] with corresponding
primitives {Fn}. If fn → f almost everywhere on [a, b], fn is equi-integrable
and Fn satisfies the Mα-USL condition, then f is Mα-integrable and

lim
n→∞

(Mα)

∫
[a,b]

fn = (Mα)

∫
[a,b]

f.

Proof. Let X = {x ∈ [a, b] : fn(x)→ f(x)}. Define

f∗n = fnχX and f∗ = fχX ,

where χX is the characteristic function of X. One can notice that f∗n → f∗

everywhere on [a, b]. It remains to show that f∗n is equi-integrable.
Let ε > 0. Since fn is equi-integrable and Fn satisfies Mα-USL there is

a gauge δ on [a, b] independent of n such that (i) for any δ-fine Mα-partition
D = {(I, x)} of [a, b] we have (D)

∑
|fn(x)|I| − Fn(I)| < ε and (ii) for any

δ-fine {[a, b]\X}-tagged partial Mα-partition D = {(I, x)} of [a, b], we have
(D)

∑
|Fn(I)| < ε.

Then for any δ-fine Mα-partition D = {(I, x)} of [a, b], we have

(D)
∑
|f∗n(x)|I| − Fn(I)| ≤ (D)

∑
x∈X
|fn(x)|I| − Fn(I)|+ (D)

∑
x/∈X

|Fn(I)|

< 2ε.

It follows from Theorem 3.7 that f∗ is Mα-integrable and therefore, since f =
f∗ almost everywhere and considering [9, Lemma 2.11], f is Mα-integrable. �
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