• Title/Summary/Keyword: $Al_3Nb$

Search Result 217, Processing Time 0.023 seconds

Magnetic Properties of (Fe, Co)-Al-B-Nb Nanocrystalline Alloys on Composition and Annealing Temperature ((Fe, Co)-Al-B-Nb 초미세결정립합금의 조성 및 열처리온도에 대한 자기적 특성변화)

  • 강대병;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • ${(Fe_{0.85}Co_{0.15})}_{75}Al_{7}B_{18-x}Nb_{x}(x=2,\;4\;and\;6\;at%)\;and\;{(Fe_{0.85}Co_{0.15})}_{75}Al_{y}B_{21-y}Nb_{4}(y=3,\;5,\;7,\;9\;at%)$ alloys were prepared by a single-roll quenching method. Microstructure and magnetic properties of the alloys such as saturation magnetization, initial permeability, coercive force and power loss have been investigated as functions of composition and armea1ing temperature. Nanocrystallines are obtained by armealing of as-prepared amorphous alloys in all compositions except the alloy of 9 at% AI. Saturation magnetization increases after armea1ing and, decreases with Nb content. However, AI and B affects the saturation magnetization insignificantly. Initial perrreability of nanocrystallized alloy at 50 kHz is improved roore than twice compared to that of the as-prepared alloy. Coercive force and core loss reach less than half after armea1ing.

  • PDF

High Temperature Oxidation of Thermomechanically Treated Ti-45.4%Al-4.8%Nb Alloys (열기계적 처리한 Ti-45.4%Al-4.8%Nb 합금의 고온산화)

  • Kim Jae-Woon;Lee Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.457-461
    • /
    • 2004
  • The thermomechanically treated $Ti-45.4\%Al-4.8\%Nb(at\%)$ alloy was oxidized between 800 and $1000^{\circ}C$ in air, and the oxidation characteristics were studied. The dissolution of Nb in the oxide scale was observed from the TEM study. The Pt marker test revealed that the oxidation process was controlled by the outward diffusion of Ti ions and the inward diffusion of oxygen ions. During oxidation, the evaporation of Nb-oxides was found to occur to a small amount. Niobium tended to pile-up at the lower part of the oxide scale, which consisted primarily of an outer $TiO_2$ layer, and an intermediate $Al_{2}O_{3}-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_{3}$).

Evaluation of Oxygen Reduction and Surface Chemical State of Ti-48Al-2Cr-2Nb Powder by Ca Vapor (칼슘 증기에 의한 Ti-48Al-2Cr-2Nb 분말의 산소 저감 및 표면 화학적 상태 분석)

  • Kim, Taeheon;Kwon, Hanjung;Lim, Jae-Won
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • This study explores reducing the oxygen content of a commercial Ti-48Al-2Cr-2Nb powder to less than 400 ppm by deoxidation in the solid state (DOSS) using Ca vapor, and investigates the effect of Ca vapor on the surface chemical state. As the deoxidation temperature increases, the oxygen concentration of the Ti-48Al-2Cr-2Nb powder decreases, achieving a low value of 745 ppm at 1100℃. When the deoxidation time is increased to 2 h, the oxygen concentration decreases to 320ppm at 1100℃, and the oxygen reduction rate is approximately 78% compared to that of the raw material. The deoxidized Ti-48Al-2Cr-2nb powder maintains a spherical shape, but the surface shape changes slightly owing to the reaction of Ca and Al. The oxidation state of Ti and Al on the surface of the Ti-48Al-2Cr-2Nb powder corresponds to a mixture of TiO2 and Al2O3. As a result, the peaks of metallic Ti and Ti suboxide intensify as TiO2 and Al2O3 in the surface oxide layer are reduced by Ca vapor deposition.

Effect of Mo and Nb on High Temperature Oxidation of TiAl Alloys (Mo, Nb첨가가 TiAl합금의 산화에 미치는 영향)

  • Kim Jae-Woon;Lee Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.614-618
    • /
    • 2004
  • Alloys of $Ti46\%Al-2\%Mo-2\%Nb$ were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The alloys displayed good oxidation resistance due mainly to the beneficial effects of Mo and Nb. The oxide scales formed consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_{2}O_3-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_3$). Molybdenum and niobium dissolved in the scale effectively improved oxidation resistance. They were mainly distributed in the inner mixed layer of ($TiO_{2}+Al_{2}O_3$).

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea (삼광 금-은 광상에서 산출되는 함 티타늄 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.195-214
    • /
    • 2020
  • The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.

Study on the Reaction Characteristics of Self-reducing $Nb_2O_5$ Briquettes (자기 환원성 $Nb_2O_5$ 브리켓의 반응특성 연구)

  • Kim M. S.;You B. D.;Wi C. H.;Yun D. J.;Choi S. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.333-336
    • /
    • 2005
  • The reduction behavior of $Nb_2O_5$ in aluminum containing self-reducing briquettes(SRNB) was investigated. The time required for slag/metal equilibrium was estimated as about 20 minutes from the addition of SRNB on to the surface of molten steel. The maximum yield of Nb was expected with the slag composition of $60\%CaO-40\%Al_2O_3$. When $CaCO_3$ was used as a flux, the oxidation loss of Al by $CO_2$ should be compensated, and the chemical equivalent ratio of Al to $Nb_2O_5$ of about 1.43 was required to maximize the yield of Nb.

  • PDF

Preparation of $NbS_2$ thin film using PLD method (PLD 장치를 이용한 $NbS_2$ 박막의 제작)

  • Park, Jong-Man;Lee, Hea-Yeon;Jeong, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.372-376
    • /
    • 1998
  • We developed a pulsed laser deposition(PLD) apparatus for depositing various thin films. In this study, the formation of $NbS_2$ thin film was performed in the vacuum chamber by PLD method. $Al_2O_3$(012) and Si(111) were used as the substrates. In order to investigate the growth conditions of a high crystalline $NbS_2$ thin film, the S/Nb composition ratio was varied from 2.0 to 5.25 and the substrate temperature was varied from the room temperature to $600^{\circ}C$. From the result of X-ray diffraction studies of the prepared $NbS_2$ thin films, it was reported that the $NbS_2$, thin film showed a good crystallinity at substrate temperature $600^{\circ}C$ and with S/Nb composition ratio 4.0 on $Al_2O_3$(012) but did not on Si(111). The films exhibited c-axis orientation.

  • PDF

Electric Properties of MFIS Capacitors using Pt/LiNbO3/AlN/Si(100) Structure (Pt/LiNbO3/AlN/Si(100) 구조를 이용한 MFIS 커패시터의 전기적 특성)

  • Jung, Soon-Won;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1283-1288
    • /
    • 2004
  • Metal-ferroelectric-insulator-semiconductor(WFIS) capacitors using rapid thermal annealed LiNbO$_3$/AlN/Si(100) structure were fabricated and demonstrated nonvolatile memory operations. The capacitors on highly doped Si wafer showed hysteresis behavior like a butterfly shape due to the ferroelectric nature of the LiNbO$_3$ films. The typical dielectric constant value of LiNbO$_3$ film in the MFIS device was about 27, The gate leakage current density of the MFIS capacitor was 10$^{-9}$ A/cm$^2$ order at the electric field of 500 kV/cm. The typical measured remnant polarization(2P$_{r}$) and coercive filed(Ec) values were about 1.2 $\mu$C/cm$^2$ and 120 kV/cm, respectively The ferroelectric capacitors showed no polarization degradation up to 10$^{11}$ switching cycles when subjected to symmetric bipolar voltage pulses of 1 MHz. The switching charges degraded only by 10 % of their initial values after 4 days at room temperature.e.

Reinvestigation of Dion-Jacobson Phases CsCa2Nb2MO9 (M = Fe and Al)

  • Hong, Young-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.853-856
    • /
    • 2006
  • Dion-Jacobson phases $CsCa_2Nb_2FeO_9$ and $CsCa_2Nb_2AlO_9$ were reinvestigated by the Rietveld analysis of powder X-ray diffraction (XRD) method, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). These nominal compounds, previously known as the oxygen-deficient layered perovskites with the sequences of $NbO_6-MO_4-NbO_6$ in tripled slab, in fact, were mixed phases of n = 3 Dion-Jacobson phases and impurities such as $Ca_2NbFeO_6$ and $Ca_3Al_2O_6$. The difference of morphology and chemical in-homogeneity between Dion-Jacobson phases and impurities could be clearly identified by scanning electron microscopy with energy-dispersive X-ray spectroscopy. The chemical composition of $CsCa_2Nb_2FeO_9$ was calculated into $Cs_{0.59}Ca_{2.64}Nb_{2.92}Fe_{0.81}$ in small agglomerate crystals and $Cs_{0.95}Ca_{1.97}Nb_{3.08}Fe_{0.15}$ in long plate-like crystals.

Effect of Alumina Particle Size on R-curve Behavior of (Y,Nb)-TZP/${Al_2}{O_3}$ Composites (알루미나 입도가 (Y,Nb)-TZP/${Al_2}{O_3}$ 복합체의 R-curve 거동에 미치는 영향)

  • Lee, Deuk-Yong;Kim, Dae-Joon;Kim, Bae-Yeon;Song, Yo-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.936-941
    • /
    • 2001
  • The influence of the ${Al_2}{O_3}$ particle size on flaw tolerance of the $ZrO_2/{Al_2}{O_3}$ composites prepared by mixing 5.31 mol% ${Y_2}{O_3}$-4.45 mol% ${Nb_2}{O_5}$-90.31 mol% $ZrO_2$ and ${Al_2}{O_3}$ was investigated. The composites exhibited rising R-curve behavior and plateau fracture toughness of 7.9 and $8.8MPam^{1/2}$ for the additions of 20 vol% of 0.2 and $2.8{\mu}m$ ${Al_2}{O_3}$ particles, respectively. The difference in the fracture toughness resistance was attributed mainly to the grain size of tetragonal $ZrO_2$ phase in the composites, which scaled with the ${Al_2}{O_3}$ particle size.

  • PDF