DOI QR코드

DOI QR Code

삼광 금-은 광상에서 산출되는 함 티타늄 광물들의 산상 및 화학조성

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea

  • 유봉철 (한국지질자원연구원 DMR융합연구단)
  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2020.07.21
  • 심사 : 2020.09.03
  • 발행 : 2020.09.30

초록

삼광 금-은 광상은 과거 한국에서 가장 큰 금-은 광상들 중의 하나였다. 이 광상은 선캠브리아기의 변성퇴적암류내에 발달된 열극대를 충진한 8개조의 석영맥으로 구성된 조산형 금-은 광상이다. 이 광상에서 함 티타늄 광물로는 설석, 티탄철석 및 금홍석이며 설석과 티탄철석은 모암에서만 산출되나 금홍석은 모암과 엽리상 석영맥에서 산출된다. 이들 광물들은 모암에선 흑운모, 백운모, 녹니석, 백색운모, 모나자이트, 저어콘 및 인회석과 엽리상 석영맥에선 백색운모, 녹니석 및 유비철석 등과 함께 산출된다. 설석은 최대 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) 및 0.43 wt.% (V2O5) 값을 갖는다. 이 설석은 0.06~0.14 (Fe/Al 비) 값으로 변성기원의 설석이고 XAl (=Al/Al+Fe3++Ti) 값이 0.06~0.15 값으로 저 함량 알루미늄 설석에 해당된다. 티탄철석은 최대 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3), 1.59 wt.% (ZnO)로써 As2O5 함량이 높게 산출된다. 금홍석의 화학조성은 모암과 엽리상 석영맥에서 각각 최대 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3), 4.76 wt.%, 3.17 wt.% (FeO)로써 엽리상 석영맥의 금홍석에서 HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 및 FeO 원소들의 함량이 모암의 금홍석보다 높지만 WO3 원소의 함량은 낮다. 이 미량원소들은 모암의 금홍석[(Fe3+, Al3+, Cr3+) + Hf4++(W5+, As5+, Nb5+) ⟵⟶; 2Ti4++ V4+, 2Fe2++(Al3+, Cr3+) + Hf4++(W5+, As5+, Nb5+) ⟵⟶ 2Ti4++2V4+], 엽리상 석영맥의 금홍석 [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4++ V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4++Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4++(W5+, Nb5+) + Cr3+]로써 치환관계가 있었다. 이들 자료를 근거로, 모암내 산출되는 설석, 티탄철석 및 금홍석은 광역변성작용 동안 모암광물들의 변질 시 광물내 존재했던 W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+ 등과 같은 양이온들의 재 용해 및 농집에 의해 형성되었다. 그후 계속된 연성전단 시 엽리상 석영맥내 금홍석은 열수 용액의 유입에 따른 백색운모와 녹니석의 모암변질작용에 의한 양이온들의 재 용해 및 재 농집과 더불어 초기에 형성된 설석, 티탄철석 및 금홍석과의 반응에 의해 기존에 이들 광물내에 존재하였던 Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+과 같은 양이온들의 재농집에 의해 형성된 것으로 생각된다.

The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.

키워드

참고문헌

  1. Agangi, A., Reddy, S.M., Plavsa, D., Fougerouse, D., Clark, C., Roberts, M. and Johnson, T.E., 2019, Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geology Reviews, 106, 1-11. https://doi.org/10.1016/j.oregeorev.2019.01.018
  2. Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M. and Dorais, M.J., 2002, U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study. Chemical Geology, 188, 125-147. https://doi.org/10.1016/S0009-2541(02)00076-1
  3. Bauer, J.E., 2015, Complex zoning patterns and rare earth element variations across titanite crystals from the half dome granodiorite, central Sierra Nevada, California. University of North Carolina, Department of Geological Science, Master Degree, 76p.
  4. Bernau, R. and Franz, G., 1987, Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. Canadian Mineralogist, 25, 695-705.
  5. Bromiley, G.D. and Hilairet, N., 2005, Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine, 69, 345-358. https://doi.org/10.1180/0026461056930256
  6. Brugger, J. and Giere, R., 1999, As, Sb, Be and Ce enrichment in minerals from a metamorphosed Fe-Mn deposit, Val Ferrera, Eastern Swiss Alps. Canadian Mineralogist, 37, 37-52.
  7. Calderon, M., Prades, C.F., Herve, F., Avendano, V., Fanning, C.M., Massonne, H.J., Theye, T. and Simonetti, A., 2013, Petrological vestiges of the Late Jurassic-Early Cretaceous transition from rift to back-arc basin in southernmost Chile: New age and geochemical data from the Capitan Aracena, Carlos III, and Tortuga ophiokitic complexes. Geochemical Journal, 47, 201-217. https://doi.org/10.2343/geochemj.2.0235
  8. Carruzzo, S., Clarke, D.B., Pelrine, K.M. and MacDonald, M.A., 2006, Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 44, 715-729. https://doi.org/10.2113/gscanmin.44.3.715
  9. Cave, B.J., Stepanov, A.S., Craw, D., Large, R.R., Halpin, J.A. and Thompson, J., 2015, Release of trace elements through the sub-greenschist facies breakdown of detrital rutile to metamorphic titanite in the Otago schist, New Zealand. Canadian Mineralogist, 53, 379-400. https://doi.org/10.3749/canmin.1400097
  10. Cempirek, J., Houzar, S. and Novak, M., 2008, Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitutions $Al(Nb,Ta)Ti_{-2},\;Al(F,OH)(TiO)_{-1}\;and\;SnTi_{-1}$. Mineralogical Magazine, 72, 1293-1305. https://doi.org/10.1180/minmag.2008.072.6.1293
  11. Cerny, P., Novak, M. and Chapman, R., 1995, The Al(Nb,Ta)$Ti_{-2}$ substitution in titanite: the emergence of a new species?. Mineralogy and Petrology, 52, 61-73. https://doi.org/10.1007/BF01163126
  12. Chakhmouradian, A.R., 2004, Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zrrich) titanite from Afrikanda, Russia. American Mineralogist, 89, 1752-1762. https://doi.org/10.2138/am-2004-11-1222
  13. Clark, J.R. and Williams-Jones, A.E., 2004, Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-projet SC2, Montreal, Canada. 17p.
  14. Craw, D. and MacKenzie, D., 2016, Macraes orogenic gold deposit (New Zealand) Origin and development of a world class gold mine. Springer, 127p.
  15. Craw, D., Upton, P. and Mackenzie, D.J., 2009, Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand. New Zealand Journal of Geology & Geophysics, 52, 11-26. https://doi.org/10.1080/00288300909509874
  16. Deer, W.A., Howie, R.A. and Zussman, J., 1992, An introduction to the rock-forming minerals. Longman Scientific & Technical, 696p.
  17. Della Ventura, G. and Bellatreccia, F., 1999, Zr- and LREErich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy). Mineralogical Magazine, 63, 123-130. https://doi.org/10.1180/002646199548240
  18. Dostal, J., Kontak, D.J. and Chatterjee, A.K., 2009, Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications. Mineralogy and Petrology, 97, 95-109. https://doi.org/10.1007/s00710-009-0067-0
  19. Doyle, M.C., Fletcher, I.R., Foster, J., Large, R.R., Mathur, R., McNaughton, N.J., Meffre, S., Muhling, J.R., Phillips, D. and Rasmussen, B., 2015, Geochronological constraints on the Tropicana gold deposit and Albany-Fraser orogen, Western Australia. Economic Geology, 110, 355-386. https://doi.org/10.2113/econgeo.110.2.355
  20. Enami, M., Suzuki, K., Liou, J.G. and Bird, D.K., 1993, Al-$Fe^{3+}$ and F-OH substitutions in titanite and constraints on their P-T depence. European Journal of Mineralogy, 5, 219-231. https://doi.org/10.1127/ejm/5/2/0219
  21. Foley, S.F., Barth, M.G. and Jenner, G.A., 2000, Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64, 933-938. https://doi.org/10.1016/S0016-7037(99)00355-5
  22. Force, E.R., 1991, Geology of titanium mineral deposits. Geological Society of America Special Paper, 259, 1-120. https://doi.org/10.1130/SPE259-p1
  23. Forster, B., Aulbach, S., Symes, C., Gerdes, A., Hofer, H.E. and Chacko, T., 2017, A reconnaissance study of Ti-minerals in cratonic granulite xenoliths and their potential as recorders of lower crust formation and evolution. Journal of Petrology, 58, 2007-2034. https://doi.org/10.1093/petrology/egx080
  24. Frost, B.R., Chamberlain, K.R. and Schumacher, J.C., 2000, Sphene (titanite): phase relations and role as a geochronometer. Chemical Geology, 172, 131-148. https://doi.org/10.1016/S0009-2541(00)00240-0
  25. Gao, X.Y., Zheng, Y.F., Chen, Y.X. and Guo, J., 2012, Geochemical and U-Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos, 136-139, 93-108. https://doi.org/10.1016/j.lithos.2011.03.020
  26. Giere, R., 1992, Compositional variation of metasomatic titanite from Adamello (Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 72, 167-177.
  27. Graham, J. and Morris, R.C., 1973, Tungsten- and antimonysubstituted rutile. Mineralogical Magazine, 39, 470-473. https://doi.org/10.1180/minmag.1973.039.304.11
  28. Grigsby, J.D., 1992, Chemical fingerprinting in detrital ilmenite: A viable alternative in provenance research?. Journal of Sedimentary Research, 62, 331-337.
  29. Hamisi, J., MacKenzie, D., Pitcairn, I., Blakemore, H., Zack, T. and Craw, D., 2017, Hydrothermal footprint of the Birthday Reef, Reefton goldfield, New Zealand. New Zealand Journal of Geology and Geophysics, 60, 59-72. https://doi.org/10.1080/00288306.2016.1274332
  30. Harlov, D., Tropper, P., Seifert, W., Nijland, T. and Forster, H., 2006, Formation of Al-rich titanite ($CaTiSiO_4O-CaAl-SiO_4OH$) reaction rims on ilmenite in metamorphic rocks as a function of $fH_2O\;and\;fO_2$. Lithos, 88, 72-84. https://doi.org/10.1016/j.lithos.2005.08.005
  31. Hassan, W.F., 1994, Geochemistry and mineralogy of Ta-Nb rutile from Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 10, 11-23. https://doi.org/10.1016/0743-9547(94)90005-1
  32. Hirajima, T., Zhang, R., Li, J. and Cong, B., 1992, Petrology of nyboite-bearing eclogite in the Dongshai area, Jiangsu province, eastern China. Mineralogical Magazine, 56, 37-49. https://doi.org/10.1180/minmag.1992.056.382.05
  33. Klemme, S., Gunther, D., Hametner, K., Prowatke, S. and Zack, T., 2006, The partitioning of trace elements between ilmenite, ulvospinel, annalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234, 251-263. https://doi.org/10.1016/j.chemgeo.2006.05.005
  34. Knoche, R., Angel, R.J., Seifert, F. and Fliervoet, T.F., 1998, Complete substitution of Si for Ti in titanite $Ca(Ti_{1-x}Si_{x})^{VI}Si^{IV}O_5$. American Mineralogist, 83, 1168-1175. https://doi.org/10.2138/am-1998-11-1204
  35. Kohn, M.J., 2017, Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83, 419-441. https://doi.org/10.2138/rmg.2017.83.13
  36. Lee, H.K., Yoo, B.C., Kim, K.W. and Choi, S.G., 1998, Mode of occurrence and chemical composition of electrums from the Samkwang gold-silver deposits, Korea. Journal of the Korean Institute of Mineral and Energy Resource Engineers, 35, 8-18.
  37. Ling, X.X., Schmadicke, E., Li, Q.L., Gose, J., Wu, R.H., Wang, S.Q., Liu, Y., Tang, G.Q. and Li, X.H., 2015, Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China. Lithos, 220-223, 289-299. https://doi.org/10.1016/j.lithos.2015.02.019
  38. Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Munker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E. and von Eynatten, H., 2009, Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology, 261, 346-369. https://doi.org/10.1016/j.chemgeo.2008.04.012
  39. MacChesney, J.N. and Muan, A., 1959, Studies in the system iron oxide-titanium oxide. American Mineralogist, 44, 926-945.
  40. Markl, G. and Piazolo, S., 1999, Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and hostrock composition. American Mineralogist, 84, 37-47. https://doi.org/10.2138/am-1999-1-204
  41. Mclnnes, B., Brown, A., Evans, N., McNaughton, N., Liffers, M. and Wingate, M., 2015, Integration of electron, laser and ion microprobe techniques to create an open source digital mineral library of Western Australia. Goldschmidt 2015, Session 12a/3016.
  42. Meinhold, G., 2010, Rutile and its applications in earth sciences. Earth-Science Reviews, 102, 1-28. https://doi.org/10.1016/j.earscirev.2010.06.001
  43. Murad, E., Cashion, J.D., Noble, C.J. and Pilbrow, J.R., 1995, The chemical state of Fe in rutile from an albitite in Norway. Mineralogical Magazine, 59, 557-560. https://doi.org/10.1180/minmag.1995.059.396.17
  44. Nichols, B.I., 2016, Hydrothermal alteration mineralogy and zonation in the orogenic Frog's Leg gold deposit, Yilgarn craton, Western Australia. Master thesis, University of Western Australia, 188p.
  45. Oberti, R., Smith, D.C., Rossi, G. and Caucia, F., 1991. The crystal-chemistry of high-aluminium titanites. European Journal of Mineralogy, 3, 777-792. https://doi.org/10.1127/ejm/3/5/0777
  46. Perseil, E.A. and Smith, D.C., 1995, Sb-rich titanite in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrography and crystal-chemistry. Mineralogical Magazine, 59, 717-734. https://doi.org/10.1180/minmag.1995.059.397.13
  47. Pieczka, A., Hawthorne, F.C., Ma, C., Rossman, G.R., Szeleg, E., Szuszkiewicz, A., Turniak, K., Nejbert, K., Ilnicki, S.S., Buffat, P. and Rutkowski, B., 2017, Zabinskiite, ideally $Ca(Al_{0.5}Ta_{0.5})(SiO_{4})O$, a new mineral of the titanite group from the Pilawa Gorna pegmatite, the Gory Sowie Block, southwestern Poland. Mineralogical Magazine, 81, 591-610. https://doi.org/10.1180/minmag.2016.080.110
  48. Plavsa, D., Reddy, S.M., Agangi, A., Clark, C., Kylander-Clark, A. and Tiddy, C.J., 2018, Microstructural, trace element and geochronological characterization of $TiO_2$ polymorphs and implications for mineral exploration. Chemical Geology, 476, 130-149. https://doi.org/10.1016/j.chemgeo.2017.11.011
  49. Porter, J.K., McNaughton, N.J., Evans, N.J. and McDonald, B.J., 2020, Rutile as a pathfinder for metals exploration. Ore Geology Reviews, 120, 103406. https://doi.org/10.1016/j.oregeorev.2020.103406
  50. Rabbia, O.M., Hernandez, L.B., French, D.H., King, R.W. and Ayers, J.C., 2009, The El Teniente porphry Cu-Mo deposi from a hydrothermal rutile perspective. Mineralium Deposita, 44, 849-866. https://doi.org/10.1007/s00126-009-0252-4
  51. Rasmussen, B., Fletcher, I.R. and Muhling, J.R., 2013, Dating deposition and low-grade metamorphism by in situ U/Pb geochronology of titanite in the Paleoproterozoic Timeball Hill Formation, southern Africa. Chemical Geology, 351, 29-39. https://doi.org/10.1016/j.chemgeo.2013.04.015
  52. Ribbe, P.H., 1980, Titanite. Reviews in Mineralogy and Geochemistry, 5, 137-154.
  53. Rice, C., Darke, K. and Still, J., 1998, Tungsten-bearing rutile from the Kori Kollo gold mine Bolivia. Mineralogical Magazine, 62, 421-429. https://doi.org/10.1180/002646198547684
  54. Robinson, B.A. and Scott, J.M., 2019, Late Devonian contact metamorphism and a possible upper age to gold mineralisation in the northernmost portion of the Reefton goldfield. New Zealand Journal of Geology and Geophysics, 62, 121-130. https://doi.org/10.1080/00288306.2018.1534745
  55. Rudnick, R.L., Barth, M., Horn, I. and McDonough, W.F., 2000, Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278-281. https://doi.org/10.1126/science.287.5451.278
  56. Russell, J.K., Groat, L.A. and Halleran, A.A.D., 1994, LREE-rich niobian titanite from Mount Bisson, British Columbia: Chemistry and exchange mechanisms. Canadian Mineralogist, 32, 575-587.
  57. Scott, K.M., 1988, Phyllosilicate and rutile compositions as indicators of Sn specialization in some southeastern Australian granites. Mineralium Deposita, 23, 159-165. https://doi.org/10.1007/BF00204294
  58. Scott, K.M., 2005, Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia. Geochemistry: Exploration, Environment, Analysis, 5, 247-253. https://doi.org/10.1144/1467-7873/03-055
  59. Scott, K.M. and Radford, N.W., 2007, Rutile compositions at the Bg Bell Au deposit as a guide for exploration. Geochemistry: Exploration, Environment, Analysis, 7, 353-361. https://doi.org/10.1144/1467-7873/07-135
  60. Scott, K.M., Radford, N.W., Hough, R.M. and Reddy, S.M., 2011, Rutile compositions in the Kalgoorlie Goldfields and their implications for exploration. Australian Journal of Earth Sciences, 58, 803-812. https://doi.org/10.1080/08120099.2011.600334
  61. Smith, D. and Perseil, E.-A., 1997, Sb-rich rutile in the manganese concentrations at St.Marcel-Praborna, Aosta Valley, Italy; petrology and crystal-chemistry. Mineralogical Magazine, 61, 655-669. https://doi.org/10.1180/minmag.1997.061.408.04
  62. Stepanov, A.V., Bekenova, G.K., Levin, V.L. and Hawthorne, F.C., 2012, Natrotitanite, ideally $(Na_{0.5}Y_{0.5})Ti(SiO_{4})O$, a new mineral from the Verkhnee Espe deposit, Akjailyautas Mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure. Mineralogical Magazine, 76, 37-44. https://doi.org/10.1180/minmag.2012.076.1.37
  63. Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R. and Mortensen, J.K., 1999, Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34, 323-334. https://doi.org/10.1007/s001260050207
  64. Uher, P., Broska, I., Krzeminska, E., Ondrejka, M., Mikus, T. and Vaculovic, T., 2019, Titanite composition and SHRIMP U-Pb dating as indicators of post-magmatic tectono-thermal activity: Variscan I-type tonalites to granodiorites, the Western Carpathians. Geologica Caprathica, 70, 449-470. https://doi.org/10.2478/geoca-2019-0026
  65. Urban, A.J., Hoskins, B.F. and Grey, I.E., 1992, Characterization of V-Sb-W-bearing rutile from the Hemlo gold deposit, Ontario. Canadian Mineralogist, 30, 319-326.
  66. Williams, S.A. and Cesbron, F.P., 1977, Rutile and apatite: useful prospecting guides for porphyry copper deposits. Mineralogical Magazine, 41, 288-292. https://doi.org/10.1180/minmag.1977.041.318.18
  67. Xie, L., Wang, R.C., Chen, J. and Zhu, J.C., 2010, Mineralogical evidence for magmatic and hydrothermal processes in the Qitianling oxidized tin-bearing granite (Hunan, South China): EMP and (MC)-LA-ICPMS investigations of three types of titanite. Chemical Geology, 276, 53-68. https://doi.org/10.1016/j.chemgeo.2010.05.020
  68. Yoo, B.C., 2020a, Occurrence and chemical composition of white mica and ankerite from laminated quartz vein of Samgwang Au-Ag deposit, Republic of Korea. Korean Journal of Mineralogy and Petrology, 33, 53-64. https://doi.org/10.22807/KJMP.2020.33.1.53
  69. Yoo, B.C., 2020b, Occurrence and chemical composition of W-bearing rutile from the Unsan Au deposit. Korean Journal of Mineralogy and Petrology, 33, 115-127. https://doi.org/10.22807/KJMP.2020.33.2.115
  70. Yoo, B.C., Lee, G.J., Lee, J.K., Ji, E.K. and Lee, H.K., 2009, Element dispersion and wallrock alteration from Samgwang deposit. Economic and Environmental Geology, 42, 177-193.
  71. Yoo, B.C., Lee, H.K. and Choi, S.G., 2002, Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Economic and Environmental Geology, 35, 299-316.
  72. Yoo, B.C., Lee, H.K. and White, N.C., 2010, Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)-a mesothermal, vein-hosted gold-silver deposit. Mineralium Deposita, 45, 161-187. https://doi.org/10.1007/s00126-009-0268-9
  73. Zack, T., Kronz, A., Foley, S.F. and Rivers, T., 2002, Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184, 97-122. https://doi.org/10.1016/S0009-2541(01)00357-6