DOI QR코드

DOI QR Code

Evaluation of Oxygen Reduction and Surface Chemical State of Ti-48Al-2Cr-2Nb Powder by Ca Vapor

칼슘 증기에 의한 Ti-48Al-2Cr-2Nb 분말의 산소 저감 및 표면 화학적 상태 분석

  • Kim, Taeheon (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University) ;
  • Kwon, Hanjung (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University) ;
  • Lim, Jae-Won (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University)
  • 김태헌 (전북대학교 신소재공학부) ;
  • 권한중 (전북대학교 신소재공학부) ;
  • 임재원 (전북대학교 신소재공학부)
  • Received : 2021.02.08
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

This study explores reducing the oxygen content of a commercial Ti-48Al-2Cr-2Nb powder to less than 400 ppm by deoxidation in the solid state (DOSS) using Ca vapor, and investigates the effect of Ca vapor on the surface chemical state. As the deoxidation temperature increases, the oxygen concentration of the Ti-48Al-2Cr-2Nb powder decreases, achieving a low value of 745 ppm at 1100℃. When the deoxidation time is increased to 2 h, the oxygen concentration decreases to 320ppm at 1100℃, and the oxygen reduction rate is approximately 78% compared to that of the raw material. The deoxidized Ti-48Al-2Cr-2nb powder maintains a spherical shape, but the surface shape changes slightly owing to the reaction of Ca and Al. The oxidation state of Ti and Al on the surface of the Ti-48Al-2Cr-2Nb powder corresponds to a mixture of TiO2 and Al2O3. As a result, the peaks of metallic Ti and Ti suboxide intensify as TiO2 and Al2O3 in the surface oxide layer are reduced by Ca vapor deposition.

Keywords

References

  1. F. Appel, J. D. H. Paul and M. Oehring: Gamma Titanium Aluminide Alloys: Science and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2011).
  2. D. M. Dimiduk: Mater. Sci. Eng. A., 263 (1999) 281. https://doi.org/10.1016/S0921-5093(98)01158-7
  3. H. Clemens and H. Kestler: Adv. Eng. Mater., 2 (2000) 551. https://doi.org/10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U
  4. B. P. Bewlay, M. Weimer, T. Kelly, A. Suzuki and P. R. Subramanian: MRS Online Proc. Libr., 1516 (2013) 49. https://doi.org/10.1557/opl.2013.44
  5. S. F. Clark: 787 Propulsion System, Aero Quart., 3 (2012) 5.
  6. R. K. Gupta, B. Pant and P. P. Sinha: Trans. Indian Inst. Met., 67 (2014) 143. https://doi.org/10.1007/s12666-013-0334-y
  7. X. Wu: Intermetallics, 14 (2006) 1114. https://doi.org/10.1016/j.intermet.2005.10.019
  8. J. Schwerdtfeger and C. Korner: Intermetallics, 49 (2014) 29. https://doi.org/10.1016/j.intermet.2014.01.004
  9. V. Juechter, M. M. Franke, T. Merenda, A. Stich, C. Korner and R. F. Singer: Addit. Manuf., 22 (2018) 118. https://doi.org/10.1016/j.addma.2018.05.008
  10. I. Polozov, V. Sufiiarov, A. Kantyukov and A. Popovich: Intermetallics, 112 (2019) 106554. https://doi.org/10.1016/j.intermet.2019.106554
  11. S. K. Rittinghaus, V. R. Molina Ramirez, J. Zielinski and U. Hecht: J. Laser Appl., 31 (2019) 042005. https://doi.org/10.2351/1.5096974
  12. S. L. Draper and B. A. Lerch: Durability assessment of TiAl alloys, The Minerals, Metals and Materials Society, New Orleans (2008) 39.
  13. M. Lamirand, J. L. Bonnentien, G. Ferriere, S. Guerin and J. P. Chevalier: Scr. Mater., 56 (2007) 325. https://doi.org/10.1016/j.scriptamat.2006.11.024
  14. M. Lamirand, J. L. Bonnentien, G. Ferriere, S. Guerin and J. P. Chevalier: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 37 (2006) 2369. https://doi.org/10.1007/BF02586211
  15. D. S. Lee, J. M. Oh, J. H. Seo and J. W. Lim: Jpn. J. Appl. Phys., 59 (2020) SAAB07. https://doi.org/10.7567/1347-4065/ab43a0
  16. J. Reitz, C. Lochbichler and B. Friedrich: Intermetallics, 19 (2011) 762. https://doi.org/10.1016/j.intermet.2010.11.015
  17. T. H. Okabe, T. Oishi and K. Ono: Mater. Trans. B, 23 (1992) 583. https://doi.org/10.1007/BF02649718
  18. J. M. Oh, B. K. Lee, C. Y. Suh, S. W. Cho and J. W. Lim: Powder Metall., 55 (2012) 402. https://doi.org/10.1179/1743290112Y.0000000013
  19. T. Kim, J. M. Oh, G. H. Cho, J. S. Park and J. W. Lim: J. Alloys Compd., 828 (2020) 154220. https://doi.org/10.1016/j.jallcom.2020.154220
  20. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St and C. Smart: Appl. Surf. Sci., 257 (2010) 887. https://doi.org/10.1016/j.apsusc.2010.07.086
  21. B. Liu, M. Wang, Y. Du and J. Li: Materials (Basel), 13 (2020) 161. https://doi.org/10.3390/ma13010161
  22. G. S. Choi and D. H. Lee: J. of the Korea Inst. of Met. & Mater., 30 (1992) 904.
  23. J. Guyon, A. Hazotte and E. Bouzy: J. Alloys Compd., 656 (2015) 667.
  24. I. Polozov, A. Kantyukov, I. Goncharov, N. Razumov, A. Silin, V. Popovich, J. N. Zhu and A. Popovich: Materials (Basel), 13 (2020) 3952. https://doi.org/10.3390/ma13183952
  25. Y. Zhang, Z. Z. Fang, Y. Xia, P. Sun, B. Van Devener, M. Free, H. Lefler and S. Zheng: Chem. Eng. J., 308 (2017) 299. https://doi.org/10.1016/j.cej.2016.09.066
  26. R. J. Wasilewski and G. L. Kehl: J. Inst. Met., 55 (1954) 94.
  27. M. H. Song, S. M. Han, D. J. Min, G. S. Choi and J. H. Park: Scr. Mater., 59 (2008) 623. https://doi.org/10.1016/j.scriptamat.2008.05.037
  28. T. Kim, K. Kim, J. M. Oh, J. S. Park and J. W. Lim: Mater. Sci. Technol., 35 (2019) 1. https://doi.org/10.1080/02670836.2018.1495878
  29. N. F. Mogale and W. R. Matizamhuka: Metals (Basel), 10 (2020) 1. https://doi.org/10.3390/met10010001
  30. E. Bakan, G. Mauer, Y. J. Sohn, A. Schwedt, M. W. Rackel, F. Riedlberger, F. Pyczak, J. O. Peters, M. Mecklenburg, T. M. Gartner and R. VaBen: Surf. Coatings Technol., 371 (2019) 203. https://doi.org/10.1016/j.surfcoat.2018.11.092
  31. D. J. Miller, M. C. Biesinger and N. S. McIntyre: Surf. Interface Anal., 33 (2002) 299. https://doi.org/10.1002/sia.1188
  32. V. Maurice, G. Despert, S. Zanna, P. Josso, M. P. Bacos and P. Marcus: Acta Mater., 55 (2007) 3315. https://doi.org/10.1016/j.actamat.2007.01.030
  33. T. Song, Q. Liu, J. Liu, W. Yang, R. Chen, X. Jing, K. Takahashi and J. Wang: Appl. Surf. Sci., 355 (2015) 495. https://doi.org/10.1016/j.apsusc.2015.07.140