Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.9.614

Effect of Mo and Nb on High Temperature Oxidation of TiAl Alloys  

Kim Jae-Woon (Center for Advanced Plasma Surface Technology, Sungkyunkwan University)
Lee Dong-Bok (Center for Advanced Plasma Surface Technology, Sungkyunkwan University)
Publication Information
Korean Journal of Materials Research / v.14, no.9, 2004 , pp. 614-618 More about this Journal
Abstract
Alloys of $Ti46\%Al-2\%Mo-2\%Nb$ were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The alloys displayed good oxidation resistance due mainly to the beneficial effects of Mo and Nb. The oxide scales formed consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_{2}O_3-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_3$). Molybdenum and niobium dissolved in the scale effectively improved oxidation resistance. They were mainly distributed in the inner mixed layer of ($TiO_{2}+Al_{2}O_3$).
Keywords
Titanium aluminide; Molybdenum; Niobium; Oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Perez, J. A. Jimenez, G. Frommeyer and P. Adeva, Mater. Sci. Eng., A284, 138 (2000)   DOI   ScienceOn
2 A. Rahmel and P. J. Spencer, Oxid. Met., 35, 53 (1991)   DOI
3 M. F. Stroosnijder, N. Zheng, W. J. Quadakkers, R. Hofman, A. Gil and F. Lanza, Oxid. Met., 46, 19 (1996)   DOI
4 S. Becker, M. Schutze and A. Rahmel, Oxid. Met., 39, 93 (1993)   DOI
5 G. Petzow and G. Effenberg, Ternary Alloys, vol.7 p.235, p.390, MSI VCH, (1993)
6 T. A. Wallace, R. K. Clark and K. E. Wiedemann, Oxid. Met., 42, 451 (1994)
7 S. Taniguchi, K. Uesaki, Y. C. Zhu, Y. Matusumoto and T. Shibata, Mater. Sci. Eng., A266, 267 (1999)   DOI   ScienceOn
8 J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schumann and M. Ruhle, Scripta Metall. Mater., 33, 997 (1995)   DOI   ScienceOn
9 D. B. Lee and Y. D. Jang, Mater. Sci. Forum, 449-452, 813 (2004)   DOI
10 D. B. Lee and S. W. Woo, Mater. Sci. Forum, 449-452, 817 (2004)   DOI
11 V. A. C. Haanappel, J. D. Sunderkotter and M. F. Stroosnijder, Intermetallics 7, 529 (1999)   DOI   ScienceOn
12 D. B. Lee, Y. D. Jang and M. Nakamura, Mater. Trans., 43, 2531 (2002)   DOI   ScienceOn
13 D. B. Lee, K. B. Park and M. Nakamura, Metals and Materials Int., 8, 319 (2002)   DOI
14 M. Yoshihara and K. Miura, Intermetallics, 3, 357 (1995)   DOI   ScienceOn
15 Y. Shida and H. Anada, Mater. Trans. JIM, 35, 623 (1994)   DOI
16 J. Beddoes, T. Cheng, D. Y. Seo, H. Saari, L. Zhao and S. Durham, Processing and Fabrication of Advanced Materials IX, p.159, ASM, OH (2000)
17 M. Maki, M. Shioda, M. Sayashi, T. Shimizu and S. Isobe, Mater. Sci. Eng., A153, 591 (1992)   DOI   ScienceOn
18 B. G. Kim, G. M. Kim and C. J. Kim, Scripta Metall. Mater., 33, 1117 (1995)   DOI   ScienceOn
19 Y. Shida and H. Anada, Oxid. Met., 45, 197 (1996)   DOI
20 G. Welsch and A. I. Kahveci, Oxidation of High Temperature Intermetallics, p.207, TMS, Warrendale, PA (1989)
21 I. C. I. Okafor and R. G. Reddy, J. Met., 51(6), 35 (1999)
22 F. H. Froes and C. Suryanarayana, Physical Metallurgy and Processing of Intermetallic Compounds, p.297, Chapman & Hall, Inc., NY (1996)