Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.1.31

Evaluation of Oxygen Reduction and Surface Chemical State of Ti-48Al-2Cr-2Nb Powder by Ca Vapor  

Kim, Taeheon (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University)
Kwon, Hanjung (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University)
Lim, Jae-Won (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University)
Publication Information
Journal of Powder Materials / v.28, no.1, 2021 , pp. 31-37 More about this Journal
Abstract
This study explores reducing the oxygen content of a commercial Ti-48Al-2Cr-2Nb powder to less than 400 ppm by deoxidation in the solid state (DOSS) using Ca vapor, and investigates the effect of Ca vapor on the surface chemical state. As the deoxidation temperature increases, the oxygen concentration of the Ti-48Al-2Cr-2Nb powder decreases, achieving a low value of 745 ppm at 1100℃. When the deoxidation time is increased to 2 h, the oxygen concentration decreases to 320ppm at 1100℃, and the oxygen reduction rate is approximately 78% compared to that of the raw material. The deoxidized Ti-48Al-2Cr-2nb powder maintains a spherical shape, but the surface shape changes slightly owing to the reaction of Ca and Al. The oxidation state of Ti and Al on the surface of the Ti-48Al-2Cr-2Nb powder corresponds to a mixture of TiO2 and Al2O3. As a result, the peaks of metallic Ti and Ti suboxide intensify as TiO2 and Al2O3 in the surface oxide layer are reduced by Ca vapor deposition.
Keywords
Ti-48Al-2Cr-2Nb; ${\gamma}$-TiAl; Calcium; Oxygen; Deoxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Clemens and H. Kestler: Adv. Eng. Mater., 2 (2000) 551.   DOI
2 F. Appel, J. D. H. Paul and M. Oehring: Gamma Titanium Aluminide Alloys: Science and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2011).
3 D. M. Dimiduk: Mater. Sci. Eng. A., 263 (1999) 281.   DOI
4 B. P. Bewlay, M. Weimer, T. Kelly, A. Suzuki and P. R. Subramanian: MRS Online Proc. Libr., 1516 (2013) 49.   DOI
5 S. F. Clark: 787 Propulsion System, Aero Quart., 3 (2012) 5.
6 R. K. Gupta, B. Pant and P. P. Sinha: Trans. Indian Inst. Met., 67 (2014) 143.   DOI
7 X. Wu: Intermetallics, 14 (2006) 1114.   DOI
8 J. Schwerdtfeger and C. Korner: Intermetallics, 49 (2014) 29.   DOI
9 V. Juechter, M. M. Franke, T. Merenda, A. Stich, C. Korner and R. F. Singer: Addit. Manuf., 22 (2018) 118.   DOI
10 I. Polozov, V. Sufiiarov, A. Kantyukov and A. Popovich: Intermetallics, 112 (2019) 106554.   DOI
11 S. K. Rittinghaus, V. R. Molina Ramirez, J. Zielinski and U. Hecht: J. Laser Appl., 31 (2019) 042005.   DOI
12 S. L. Draper and B. A. Lerch: Durability assessment of TiAl alloys, The Minerals, Metals and Materials Society, New Orleans (2008) 39.
13 M. Lamirand, J. L. Bonnentien, G. Ferriere, S. Guerin and J. P. Chevalier: Scr. Mater., 56 (2007) 325.   DOI
14 M. Lamirand, J. L. Bonnentien, G. Ferriere, S. Guerin and J. P. Chevalier: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 37 (2006) 2369.   DOI
15 D. S. Lee, J. M. Oh, J. H. Seo and J. W. Lim: Jpn. J. Appl. Phys., 59 (2020) SAAB07.   DOI
16 J. Reitz, C. Lochbichler and B. Friedrich: Intermetallics, 19 (2011) 762.   DOI
17 T. H. Okabe, T. Oishi and K. Ono: Mater. Trans. B, 23 (1992) 583.   DOI
18 J. M. Oh, B. K. Lee, C. Y. Suh, S. W. Cho and J. W. Lim: Powder Metall., 55 (2012) 402.   DOI
19 M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St and C. Smart: Appl. Surf. Sci., 257 (2010) 887.   DOI
20 T. Kim, J. M. Oh, G. H. Cho, J. S. Park and J. W. Lim: J. Alloys Compd., 828 (2020) 154220.   DOI
21 B. Liu, M. Wang, Y. Du and J. Li: Materials (Basel), 13 (2020) 161.   DOI
22 G. S. Choi and D. H. Lee: J. of the Korea Inst. of Met. & Mater., 30 (1992) 904.
23 J. Guyon, A. Hazotte and E. Bouzy: J. Alloys Compd., 656 (2015) 667.
24 I. Polozov, A. Kantyukov, I. Goncharov, N. Razumov, A. Silin, V. Popovich, J. N. Zhu and A. Popovich: Materials (Basel), 13 (2020) 3952.   DOI
25 Y. Zhang, Z. Z. Fang, Y. Xia, P. Sun, B. Van Devener, M. Free, H. Lefler and S. Zheng: Chem. Eng. J., 308 (2017) 299.   DOI
26 R. J. Wasilewski and G. L. Kehl: J. Inst. Met., 55 (1954) 94.
27 M. H. Song, S. M. Han, D. J. Min, G. S. Choi and J. H. Park: Scr. Mater., 59 (2008) 623.   DOI
28 T. Kim, K. Kim, J. M. Oh, J. S. Park and J. W. Lim: Mater. Sci. Technol., 35 (2019) 1.   DOI
29 N. F. Mogale and W. R. Matizamhuka: Metals (Basel), 10 (2020) 1.   DOI
30 E. Bakan, G. Mauer, Y. J. Sohn, A. Schwedt, M. W. Rackel, F. Riedlberger, F. Pyczak, J. O. Peters, M. Mecklenburg, T. M. Gartner and R. VaBen: Surf. Coatings Technol., 371 (2019) 203.   DOI
31 D. J. Miller, M. C. Biesinger and N. S. McIntyre: Surf. Interface Anal., 33 (2002) 299.   DOI
32 V. Maurice, G. Despert, S. Zanna, P. Josso, M. P. Bacos and P. Marcus: Acta Mater., 55 (2007) 3315.   DOI
33 T. Song, Q. Liu, J. Liu, W. Yang, R. Chen, X. Jing, K. Takahashi and J. Wang: Appl. Surf. Sci., 355 (2015) 495.   DOI