Browse > Article
http://dx.doi.org/10.22807/KJMP.2020.33.3.195

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea  

Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Korean Journal of Mineralogy and Petrology / v.33, no.3, 2020 , pp. 195-214 More about this Journal
Abstract
The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.
Keywords
Samgwang Au-Ag deposit; Titanite; Ilmenite; Rutile; Occurrence; Chemical composition;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Agangi, A., Reddy, S.M., Plavsa, D., Fougerouse, D., Clark, C., Roberts, M. and Johnson, T.E., 2019, Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geology Reviews, 106, 1-11.   DOI
2 Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M. and Dorais, M.J., 2002, U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study. Chemical Geology, 188, 125-147.   DOI
3 Bauer, J.E., 2015, Complex zoning patterns and rare earth element variations across titanite crystals from the half dome granodiorite, central Sierra Nevada, California. University of North Carolina, Department of Geological Science, Master Degree, 76p.
4 Bernau, R. and Franz, G., 1987, Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. Canadian Mineralogist, 25, 695-705.
5 Bromiley, G.D. and Hilairet, N., 2005, Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine, 69, 345-358.   DOI
6 Brugger, J. and Giere, R., 1999, As, Sb, Be and Ce enrichment in minerals from a metamorphosed Fe-Mn deposit, Val Ferrera, Eastern Swiss Alps. Canadian Mineralogist, 37, 37-52.
7 Calderon, M., Prades, C.F., Herve, F., Avendano, V., Fanning, C.M., Massonne, H.J., Theye, T. and Simonetti, A., 2013, Petrological vestiges of the Late Jurassic-Early Cretaceous transition from rift to back-arc basin in southernmost Chile: New age and geochemical data from the Capitan Aracena, Carlos III, and Tortuga ophiokitic complexes. Geochemical Journal, 47, 201-217.   DOI
8 Carruzzo, S., Clarke, D.B., Pelrine, K.M. and MacDonald, M.A., 2006, Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 44, 715-729.   DOI
9 Cave, B.J., Stepanov, A.S., Craw, D., Large, R.R., Halpin, J.A. and Thompson, J., 2015, Release of trace elements through the sub-greenschist facies breakdown of detrital rutile to metamorphic titanite in the Otago schist, New Zealand. Canadian Mineralogist, 53, 379-400.   DOI
10 Scott, K.M., Radford, N.W., Hough, R.M. and Reddy, S.M., 2011, Rutile compositions in the Kalgoorlie Goldfields and their implications for exploration. Australian Journal of Earth Sciences, 58, 803-812.   DOI
11 Smith, D. and Perseil, E.-A., 1997, Sb-rich rutile in the manganese concentrations at St.Marcel-Praborna, Aosta Valley, Italy; petrology and crystal-chemistry. Mineralogical Magazine, 61, 655-669.   DOI
12 Stepanov, A.V., Bekenova, G.K., Levin, V.L. and Hawthorne, F.C., 2012, Natrotitanite, ideally $(Na_{0.5}Y_{0.5})Ti(SiO_{4})O$, a new mineral from the Verkhnee Espe deposit, Akjailyautas Mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure. Mineralogical Magazine, 76, 37-44.   DOI
13 Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R. and Mortensen, J.K., 1999, Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34, 323-334.   DOI
14 Uher, P., Broska, I., Krzeminska, E., Ondrejka, M., Mikus, T. and Vaculovic, T., 2019, Titanite composition and SHRIMP U-Pb dating as indicators of post-magmatic tectono-thermal activity: Variscan I-type tonalites to granodiorites, the Western Carpathians. Geologica Caprathica, 70, 449-470.   DOI
15 Urban, A.J., Hoskins, B.F. and Grey, I.E., 1992, Characterization of V-Sb-W-bearing rutile from the Hemlo gold deposit, Ontario. Canadian Mineralogist, 30, 319-326.
16 Williams, S.A. and Cesbron, F.P., 1977, Rutile and apatite: useful prospecting guides for porphyry copper deposits. Mineralogical Magazine, 41, 288-292.   DOI
17 Clark, J.R. and Williams-Jones, A.E., 2004, Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-projet SC2, Montreal, Canada. 17p.
18 Cempirek, J., Houzar, S. and Novak, M., 2008, Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitutions $Al(Nb,Ta)Ti_{-2},\;Al(F,OH)(TiO)_{-1}\;and\;SnTi_{-1}$. Mineralogical Magazine, 72, 1293-1305.   DOI
19 Cerny, P., Novak, M. and Chapman, R., 1995, The Al(Nb,Ta)$Ti_{-2}$ substitution in titanite: the emergence of a new species?. Mineralogy and Petrology, 52, 61-73.   DOI
20 Chakhmouradian, A.R., 2004, Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zrrich) titanite from Afrikanda, Russia. American Mineralogist, 89, 1752-1762.   DOI
21 Craw, D. and MacKenzie, D., 2016, Macraes orogenic gold deposit (New Zealand) Origin and development of a world class gold mine. Springer, 127p.
22 Craw, D., Upton, P. and Mackenzie, D.J., 2009, Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand. New Zealand Journal of Geology & Geophysics, 52, 11-26.   DOI
23 Deer, W.A., Howie, R.A. and Zussman, J., 1992, An introduction to the rock-forming minerals. Longman Scientific & Technical, 696p.
24 Della Ventura, G. and Bellatreccia, F., 1999, Zr- and LREErich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy). Mineralogical Magazine, 63, 123-130.   DOI
25 Dostal, J., Kontak, D.J. and Chatterjee, A.K., 2009, Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications. Mineralogy and Petrology, 97, 95-109.   DOI
26 Force, E.R., 1991, Geology of titanium mineral deposits. Geological Society of America Special Paper, 259, 1-120.   DOI
27 Xie, L., Wang, R.C., Chen, J. and Zhu, J.C., 2010, Mineralogical evidence for magmatic and hydrothermal processes in the Qitianling oxidized tin-bearing granite (Hunan, South China): EMP and (MC)-LA-ICPMS investigations of three types of titanite. Chemical Geology, 276, 53-68.   DOI
28 Doyle, M.C., Fletcher, I.R., Foster, J., Large, R.R., Mathur, R., McNaughton, N.J., Meffre, S., Muhling, J.R., Phillips, D. and Rasmussen, B., 2015, Geochronological constraints on the Tropicana gold deposit and Albany-Fraser orogen, Western Australia. Economic Geology, 110, 355-386.   DOI
29 Enami, M., Suzuki, K., Liou, J.G. and Bird, D.K., 1993, Al-$Fe^{3+}$ and F-OH substitutions in titanite and constraints on their P-T depence. European Journal of Mineralogy, 5, 219-231.   DOI
30 Foley, S.F., Barth, M.G. and Jenner, G.A., 2000, Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64, 933-938.   DOI
31 Forster, B., Aulbach, S., Symes, C., Gerdes, A., Hofer, H.E. and Chacko, T., 2017, A reconnaissance study of Ti-minerals in cratonic granulite xenoliths and their potential as recorders of lower crust formation and evolution. Journal of Petrology, 58, 2007-2034.   DOI
32 Frost, B.R., Chamberlain, K.R. and Schumacher, J.C., 2000, Sphene (titanite): phase relations and role as a geochronometer. Chemical Geology, 172, 131-148.   DOI
33 Gao, X.Y., Zheng, Y.F., Chen, Y.X. and Guo, J., 2012, Geochemical and U-Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos, 136-139, 93-108.   DOI
34 Giere, R., 1992, Compositional variation of metasomatic titanite from Adamello (Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 72, 167-177.
35 Graham, J. and Morris, R.C., 1973, Tungsten- and antimonysubstituted rutile. Mineralogical Magazine, 39, 470-473.   DOI
36 Yoo, B.C., Lee, H.K. and White, N.C., 2010, Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)-a mesothermal, vein-hosted gold-silver deposit. Mineralium Deposita, 45, 161-187.   DOI
37 Yoo, B.C., 2020b, Occurrence and chemical composition of W-bearing rutile from the Unsan Au deposit. Korean Journal of Mineralogy and Petrology, 33, 115-127.   DOI
38 Yoo, B.C., Lee, G.J., Lee, J.K., Ji, E.K. and Lee, H.K., 2009, Element dispersion and wallrock alteration from Samgwang deposit. Economic and Environmental Geology, 42, 177-193.
39 Yoo, B.C., Lee, H.K. and Choi, S.G., 2002, Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Economic and Environmental Geology, 35, 299-316.
40 Zack, T., Kronz, A., Foley, S.F. and Rivers, T., 2002, Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184, 97-122.   DOI
41 Hassan, W.F., 1994, Geochemistry and mineralogy of Ta-Nb rutile from Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 10, 11-23.   DOI
42 Grigsby, J.D., 1992, Chemical fingerprinting in detrital ilmenite: A viable alternative in provenance research?. Journal of Sedimentary Research, 62, 331-337.
43 Hamisi, J., MacKenzie, D., Pitcairn, I., Blakemore, H., Zack, T. and Craw, D., 2017, Hydrothermal footprint of the Birthday Reef, Reefton goldfield, New Zealand. New Zealand Journal of Geology and Geophysics, 60, 59-72.   DOI
44 Harlov, D., Tropper, P., Seifert, W., Nijland, T. and Forster, H., 2006, Formation of Al-rich titanite ($CaTiSiO_4O-CaAl-SiO_4OH$) reaction rims on ilmenite in metamorphic rocks as a function of $fH_2O\;and\;fO_2$. Lithos, 88, 72-84.   DOI
45 Hirajima, T., Zhang, R., Li, J. and Cong, B., 1992, Petrology of nyboite-bearing eclogite in the Dongshai area, Jiangsu province, eastern China. Mineralogical Magazine, 56, 37-49.   DOI
46 Klemme, S., Gunther, D., Hametner, K., Prowatke, S. and Zack, T., 2006, The partitioning of trace elements between ilmenite, ulvospinel, annalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234, 251-263.   DOI
47 Knoche, R., Angel, R.J., Seifert, F. and Fliervoet, T.F., 1998, Complete substitution of Si for Ti in titanite $Ca(Ti_{1-x}Si_{x})^{VI}Si^{IV}O_5$. American Mineralogist, 83, 1168-1175.   DOI
48 Kohn, M.J., 2017, Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83, 419-441.   DOI
49 Lee, H.K., Yoo, B.C., Kim, K.W. and Choi, S.G., 1998, Mode of occurrence and chemical composition of electrums from the Samkwang gold-silver deposits, Korea. Journal of the Korean Institute of Mineral and Energy Resource Engineers, 35, 8-18.
50 Yoo, B.C., 2020a, Occurrence and chemical composition of white mica and ankerite from laminated quartz vein of Samgwang Au-Ag deposit, Republic of Korea. Korean Journal of Mineralogy and Petrology, 33, 53-64.   DOI
51 Markl, G. and Piazolo, S., 1999, Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and hostrock composition. American Mineralogist, 84, 37-47.   DOI
52 Ling, X.X., Schmadicke, E., Li, Q.L., Gose, J., Wu, R.H., Wang, S.Q., Liu, Y., Tang, G.Q. and Li, X.H., 2015, Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China. Lithos, 220-223, 289-299.   DOI
53 Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Munker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E. and von Eynatten, H., 2009, Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology, 261, 346-369.   DOI
54 MacChesney, J.N. and Muan, A., 1959, Studies in the system iron oxide-titanium oxide. American Mineralogist, 44, 926-945.
55 Mclnnes, B., Brown, A., Evans, N., McNaughton, N., Liffers, M. and Wingate, M., 2015, Integration of electron, laser and ion microprobe techniques to create an open source digital mineral library of Western Australia. Goldschmidt 2015, Session 12a/3016.
56 Meinhold, G., 2010, Rutile and its applications in earth sciences. Earth-Science Reviews, 102, 1-28.   DOI
57 Murad, E., Cashion, J.D., Noble, C.J. and Pilbrow, J.R., 1995, The chemical state of Fe in rutile from an albitite in Norway. Mineralogical Magazine, 59, 557-560.   DOI
58 Nichols, B.I., 2016, Hydrothermal alteration mineralogy and zonation in the orogenic Frog's Leg gold deposit, Yilgarn craton, Western Australia. Master thesis, University of Western Australia, 188p.
59 Oberti, R., Smith, D.C., Rossi, G. and Caucia, F., 1991. The crystal-chemistry of high-aluminium titanites. European Journal of Mineralogy, 3, 777-792.   DOI
60 Perseil, E.A. and Smith, D.C., 1995, Sb-rich titanite in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrography and crystal-chemistry. Mineralogical Magazine, 59, 717-734.   DOI
61 Pieczka, A., Hawthorne, F.C., Ma, C., Rossman, G.R., Szeleg, E., Szuszkiewicz, A., Turniak, K., Nejbert, K., Ilnicki, S.S., Buffat, P. and Rutkowski, B., 2017, Zabinskiite, ideally $Ca(Al_{0.5}Ta_{0.5})(SiO_{4})O$, a new mineral of the titanite group from the Pilawa Gorna pegmatite, the Gory Sowie Block, southwestern Poland. Mineralogical Magazine, 81, 591-610.   DOI
62 Plavsa, D., Reddy, S.M., Agangi, A., Clark, C., Kylander-Clark, A. and Tiddy, C.J., 2018, Microstructural, trace element and geochronological characterization of $TiO_2$ polymorphs and implications for mineral exploration. Chemical Geology, 476, 130-149.   DOI
63 Porter, J.K., McNaughton, N.J., Evans, N.J. and McDonald, B.J., 2020, Rutile as a pathfinder for metals exploration. Ore Geology Reviews, 120, 103406.   DOI
64 Rabbia, O.M., Hernandez, L.B., French, D.H., King, R.W. and Ayers, J.C., 2009, The El Teniente porphry Cu-Mo deposi from a hydrothermal rutile perspective. Mineralium Deposita, 44, 849-866.   DOI
65 Robinson, B.A. and Scott, J.M., 2019, Late Devonian contact metamorphism and a possible upper age to gold mineralisation in the northernmost portion of the Reefton goldfield. New Zealand Journal of Geology and Geophysics, 62, 121-130.   DOI
66 Rasmussen, B., Fletcher, I.R. and Muhling, J.R., 2013, Dating deposition and low-grade metamorphism by in situ U/Pb geochronology of titanite in the Paleoproterozoic Timeball Hill Formation, southern Africa. Chemical Geology, 351, 29-39.   DOI
67 Ribbe, P.H., 1980, Titanite. Reviews in Mineralogy and Geochemistry, 5, 137-154.
68 Rice, C., Darke, K. and Still, J., 1998, Tungsten-bearing rutile from the Kori Kollo gold mine Bolivia. Mineralogical Magazine, 62, 421-429.   DOI
69 Rudnick, R.L., Barth, M., Horn, I. and McDonough, W.F., 2000, Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278-281.   DOI
70 Russell, J.K., Groat, L.A. and Halleran, A.A.D., 1994, LREE-rich niobian titanite from Mount Bisson, British Columbia: Chemistry and exchange mechanisms. Canadian Mineralogist, 32, 575-587.
71 Scott, K.M., 1988, Phyllosilicate and rutile compositions as indicators of Sn specialization in some southeastern Australian granites. Mineralium Deposita, 23, 159-165.   DOI
72 Scott, K.M., 2005, Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia. Geochemistry: Exploration, Environment, Analysis, 5, 247-253.   DOI
73 Scott, K.M. and Radford, N.W., 2007, Rutile compositions at the Bg Bell Au deposit as a guide for exploration. Geochemistry: Exploration, Environment, Analysis, 7, 353-361.   DOI