• 제목/요약/키워드: ${\sigma}$-ideal

검색결과 53건 처리시간 0.017초

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • 제18권2호
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • 대한수학회보
    • /
    • 제42권3호
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].

ON QUASI-RIGID IDEALS AND RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • 대한수학회보
    • /
    • 제47권2호
    • /
    • pp.385-399
    • /
    • 2010
  • Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.

WIJSMAN REGULARLY IDEAL INVARIANT CONVERGENCE OF DOUBLE SEQUENCES OF SETS

  • DUNDAR, ERDINC;TALO, OZER
    • Journal of applied mathematics & informatics
    • /
    • 제39권3_4호
    • /
    • pp.277-294
    • /
    • 2021
  • In this paper, we introduce the notions of Wijsman regularly invariant convergence types, Wijsman regularly (${\mathcal{I}}_{\sigma}$, ${\mathcal{I}}^{\sigma}_2$)-convergence, Wijsman regularly (${\mathcal{I}}^*_{\sigma}$, ${\mathcal{I}}^{{\sigma}*}_2$)-convergence, Wijsman regularly (${\mathcal{I}}_{\sigma}$, ${\mathcal{I}}^{\sigma}_2$) -Cauchy double sequence and Wijsman regularly (${\mathcal{I}}^*_{\sigma}$, ${\mathcal{I}}^{{\sigma}*}_2$)-Cauchy double sequence of sets. Also, we investigate the relationships among this new notions.

SOME FAMILIES OF IDEAL-HOMOGENEOUS POSETS

  • Chae, Gab-Byung;Cheong, Minseok;Kim, Sang-Mok
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.971-983
    • /
    • 2016
  • A partially ordered set P is ideal-homogeneous provided that for any ideals I and J, if $$I{\sim_=}_{\sigma}J$$, then there exists an automorphism ${\sigma}^*$ such that ${\sigma}^*{\mid}_I={\sigma}$. Behrendt [1] characterizes the ideal-homogeneous partially ordered sets of height 1. In this paper, we characterize the ideal-homogeneous partially ordered sets of height 2 and nd some families of ideal-homogeneous partially ordered sets.

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • 대한수학회지
    • /
    • 제42권1호
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

ON GENERALIZED LIE IDEALS IN SEMI-PRIME RINGS WITH DERIVATION

  • Ozturk, M. Ali;Ceven, Yilmaz
    • East Asian mathematical journal
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2005
  • The object of this paper is to study($\sigma,\;\tau$)-Lie ideals in semi-prime rings with derivation. Main result is the following theorem: Let R be a semi-prime ring with 2-torsion free, $\sigma$ and $\tau$ two automorphisms of R such that $\sigma\tau=\tau\sigma$=, U be both a non-zero ($\sigma,\;\tau$)-Lie ideal and subring of R. If $d^2(U)=0$, then d(U)=0 where d a non-zero derivation of R such that $d\sigma={\sigma}d,\;d\tau={\tau}d$.

  • PDF

SOME RESULTS ON GENERALIZED LIE IDEALS WITH DERIVATION

  • Aydin, Neset;Kaya, Kazim;Golbasi, Oznur
    • East Asian mathematical journal
    • /
    • 제17권2호
    • /
    • pp.225-232
    • /
    • 2001
  • Let R be a prime ring with characteristic not two. U a (${\sigma},{\tau}$)-left Lie ideal of R and d : R$\rightarrow$R a non-zero derivation. The purpose of this paper is to invesitigate identities satisfied on prime rings. We prove the following results: (1) [d(R),a]=0$\Leftrightarrow$d([R,a])=0. (2) if $(R,a)_{{\sigma},{\tau}}$=0 then $a{\in}Z$. (3) if $(R,a)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $a{\in}Z$. (4) if $(U,a){\subset}Z$ then $a^2{\in}Z\;or\;{\sigma}(u)+{\tau}(u){\in}Z$, for all $u{\in}U$. (5) if $(U,R)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $U{\subset}Z$.

  • PDF

SOME RESULTS ON FUZZY COSETS AND HOMOMORPHISMS OF N-GROUPS

  • Satyanarayana, Bhavanari;Syam Prasad, Kuncaham;Venkata Pradeep Kumar, Tumurukora;Thota, Srinivas
    • East Asian mathematical journal
    • /
    • 제23권1호
    • /
    • pp.23-36
    • /
    • 2007
  • In this paper we consider the fuzzy ideals of N-group G where N is a nearring. We introduce fuzzy ideal ${\theta}_{\mu}$ of the quotient N-group $G/{\mu}$ with respect to a fuzzy ideal $\mu$ of G. If $\mu$ is a fuzzy ideal of G and $\theta$ a fuzzy ideal of $G/{\mu}$ such that ${\theta}_{\mu}\;{\subseteq}\;{\theta}$ and ${\theta}_{\mu}(0)\;=\;{\theta}(0)$, then corresponding ${\sigma}_{\theta}\;:\;G\;{\rightarrow}\;[0,\;1]$ is defined and proved that it is a fuzzy ideal of G such that ${\mu}\;{\subseteq}\;{\sigma}_{\theta}$ and ${\mu}(0)\;=\;{\sigma}_{\theta}(0)$. We also prove some results on homomorphisms and fuzzy ideals of N-groups. The image and preimage of fuzzy ideal $\mu$ under N-group homomorphism were studied. Finally it is obtained that if $f\;:\;G\;{\rightarrow}\;G^1$ is an epimorphism of N-groups, then there is an order preserving bijection between the fuzzy ideals of $G^1$ and the fuzzy ideals of G that are constant on kerf. Some examples related to these concepts were illustrated.

  • PDF

On Commutativity of σ-Prime Γ-Rings

  • DEY, KALYAN KUMAR;PAUL, AKHIL CHANDRA;DAVVAZ, BIJAN
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.827-835
    • /
    • 2015
  • Let U be a ${\sigma}$-square closed Lie ideal of a 2-torsion free ${\sigma}$-prime ${\Gamma}$-ring M. Let $d{\neq}1$ be an automorphism of M such that $[u,d(u)]_{\alpha}{\in}Z(M)$ on U, $d{\sigma}={\sigma}d$ on U, and there exists $u_0$ in $Sa_{\sigma}(M)$ with $M{\Gamma}u_0{\subseteq}U$. Then, $U{\subseteq}Z(M)$. By applying this result, we generalize the results of Oukhtite and Salhi respect to ${\Gamma}$-rings. Finally, for a non-zero derivation of a 2-torsion free ${\sigma}$-prime $\Gamma$-ring, we obtain suitable conditions under which the $\Gamma$-ring must be commutative.