SKEW POLYNOMIAL RINGS OVER σ -QUASI-BAER AND σ -PRINCIPALLY QUASI-BAER RINGS

JUNCHEOL HAN

ABSTRACT. Let R be a ring R and σ be an endomorphism of R. R is called σ -rigid (resp. reduced) if $a\sigma(a)=0$ (resp. $a^2=0$) for any $a\in R$ implies a=0. An ideal I of R is called a σ -ideal if $\sigma(I)\subseteq I$. R is called σ -quasi-Baer (resp. right (or left) σ -p.q.-Baer) if the right annihilator of every σ -ideal (resp. right (or left) principal σ -ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring $A=R[x;\sigma]$ of a ring R is investigated as follows: For a σ -rigid ring R, (1) R is σ -quasi-Baer if and only if A is quasi-Baer if and only if A is right σ -p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is right p.q.-Baer if and only if A is right p.q.-Baer if and only if A is right A-p.q.-Baer if and only if A is right A-p.q.-Baer if and only if A is right A-p.q.-Baer if and only if A-p.q.-Baer if

1. Introduction and some definitions

Throughout this paper, R will denote an associative ring with identity, σ will be an endomorphism of R, and A will be the skew polynomial ring $R[x;\sigma]$, i.e., A is a ring of polynomials over R in an indeterminate x with multiplication subject to the relation $xr = \sigma(r)x$ for all $r \in R$. When σ is identity 1, we write R[x] for R[x;1]. In [11] Kaplansky introduced the Baer rings (i.e., rings in which the right annihilator of every nonempty subset is generated (as a right ideal) by an idempotent) to abstract various properties of rings of operators on Hilbert spaces. In [8]. Clark introduced the quasi-Baer rings (i.e., rings in which the right annihilator of every right ideal is generated (as a right ideal) by an

Received June 30, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 16S36.

Key words and phrases: σ -rigid ring, σ -Baer ring, σ -quasi-Baer ring, σ -p.q.-Baer ring, σ -p.p. ring, skew polynomial ring.

This work was supported by Korea Research Foundation Grant (KRF-2001-015-DP0002).

idempotent) which are generalizations of Baer rings and used them to characterize a finite dimensional twisted matrix units semigroup algebra over an algebraically closed field. Further works on quasi-Baer rings appear in [12], [3], [4] and [5]. The study of Baer and quasi-Baer rings has its roots in functional analysis. Recently, in [6] Birkenmeier, Kim and Park defined a right (or left) principally quasi-Baer (simply, called right (or left) p.q.-Baer) ring as a generalization of quasi-Baer ring by the rings in which the right (or left) annihilator of every right (or left) principal ideal of R is generated by an idempotent of R. R is called a p.q.-Baer ring if it is both right p.q.-Baer and left p.q.-Baer. Another generalization of Baer ring is a p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if the right (resp. left) annihilator of any element of R is generated by an idempotent of R. R is called a p.p.-ring if it is both right and left p.p.-ring.

A subset S of a ring R is called a σ -set if S is a σ -stable set, i.e., $\sigma(S)$ $\subseteq S$. In particular, if a singleton set $S = \{a\}$ of R is σ -set, i.e., $\sigma(a) = a$, then a is called a σ -element of R. A left (right, two-sided) ideal I of R is called a left (right, two-sided) σ -ideal if I is a σ -set. By analog, we can define a σ -Baer ring (resp. σ -quasi-Baer-ring) by the ring in which the right annihilator of every σ -set (resp. σ -ideal) is generated by an idempotent. We also define a right (or left) σ -p.q.-Baer ring (resp. right (or left) σ -p.p.-ring) by the ring in which the right (or left) annihilator of every right (or left) principal σ -ideal (resp. σ -element) is generated by an idempotent. R is called a σ -p.q.-Baer ring (resp. σ -p.p.-ring) if it is both right σ -p.q.-Baer (resp. right σ -p.p.) and left σ -p.q.-Baer (resp. left σ -p.p.). In this paper, we denote the right (resp. left) annihilator of a subset S of a ring R by $r_R(S) = \{a \in R \mid Sa = 0\}$ (resp. $l_R(S) = \{a \in R \mid Sa = 0\}$) $R \mid aS = 0$). We recall that R is a σ -rigid (resp. reduced) ring if for some endomorphism σ of R, $a\sigma(a)=0$ (resp. $a^2=0$) implies that a=0 for each $a \in R$. We can note that any σ -rigid ring is reduced and this endomorphism σ is a monomorphism. Now we can observe the following implications: Baer (resp. quasi-Baer) $\Rightarrow \sigma$ -Baer (resp. σ -quasi-Baer); right (or left) p.q.-Baer (resp. right (or left) p.p.) \Rightarrow right (or left) σ -p.q.-Baer (resp. right (or left) σ -p.p.); σ -Baer $\Rightarrow \sigma$ -quasi-Baer \Rightarrow σ -p.q.-Baer. All the implications are strict by the following examples;

EXAMPLE 1. [9, Example 9] Let Z be the ring of integers and consider the ring $Z \oplus Z$ with the usual addition and multiplication. Then the subring $R = \{(a, b) \in Z \oplus Z \mid a \equiv b \pmod{2}\}$ of $Z \oplus Z$ is a commutative reduced ring which has only two idempotents (0, 0) and (1, 1). Observe

that R is not p.p. (and then R is not Baer). Indeed, for $a=(2,0)\in R$, $r_R(a)=(0)\oplus 2Z$ which is not generated by an idempotent of R. Since R is reduced, R is not p.q.-Baer and hence it is not quasi-Baer. Let $\sigma:R\to R$ be a map defined by $\sigma((a,b))=(b,a)$ for all $(a,b)\in R$. Then σ is an endomorphism of R. Note that all the σ -sets of R are $S\oplus S$ for some subset S of S. Let $S\oplus S$. If $S\oplus S$. If $S\oplus S$ is $S\oplus S$ for some subset $S\oplus S$ is $S\oplus S$. If $S\oplus S$ is $S\oplus S$ for some subset $S\oplus S$. If $S\oplus S$ is $S\oplus S$ for some subset $S\oplus S$ for some subset $S\oplus S$ for some subset $S\oplus S$. If $S\oplus S$ for some subset $S\oplus S$ for

EXAMPLE 2. Let Z be the ring of integers. Let $R = \begin{pmatrix} Z & Z \\ 0 & Z \end{pmatrix}$ be the upper 2×2 triangular matrix ring over Z. Since Z is quasi-Baer, R is quasi-Baer by [12, Proposition 9]. But it is neither left p.p. nor right p.p. by [7, Example 8.1] and hence it is not p.p.. Consider an endomorphism $\sigma: R \to R$ given by

$$\sigma \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & -b \\ 0 & c \end{pmatrix} \text{ for all } \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in R.$$

We claim that R is σ -p.p. but it is not σ -Baer. First, note that every σ -element of R is of the form

$$\alpha = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}.$$

Let
$$\beta = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in r_R(\alpha)$$
 be arbitrary. Then $\alpha\beta = \begin{pmatrix} ax & ay \\ 0 & cz \end{pmatrix} = 0$.

Consider the following four cases;

- (i) If a and $c \neq 0$, then x = y = z = 0. Thus $r_R(\alpha) = (0)$, which is generated by idempotent 0 of R.
 - (ii) If $a \neq 0$ and c = 0, then x = y = 0 and z is arbitrary. Thus

$$r_R(\alpha) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & z \end{pmatrix} \in R \right\} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} R,$$

i.e., it is generated by an idempotent $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ of R.

(iii) If a = 0 and $c \neq 0$, then x, y are arbitrary and z = 0. Thus

$$r_R(\alpha) = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \in R \right\} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} R,$$

i.e., it is generated by an idempotent $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ of R.

(iv) If a and c = 0, then x, y and z are arbitrary. Thus $r_R(\alpha) = R$, which is generated by idempotent 1 of R. Hence R is a right σ -p.p. ring. Similarly, we can show that R is a left σ -p.p. ring.

Consequently, R is a σ -p.p. ring.

EXAMPLE 3. [6, Example 1.3] Let Z_2 be the field of two elements and consider $R = \{(x_n) \in \prod_{i=1}^{\infty} Z_2 \mid x_n \text{ is eventually constant}\}$. Then R is a Boolean ring which is not self-injective. By [12, p.79, p.249 and p.250], R is not Baer and hence it is not quasi-Baer since R is reduced. But R is p.q.-Baer and hence it is p.p. since R is reduced.

- (1) Let $\sigma_1: R \to R$ be defined by $\sigma_1((x_1, x_2, \dots)) = (x_2, x_3, \dots)$. Then σ_1 is an endomorphism of R. Note that the σ_1 -ideals of R are only R and (0). Hence R is σ_1 -quasi-Baer.
- (2) Let $\sigma_2: R \to R$ be defined by $\sigma_1((x_1, x_2, x_3, \dots)) = (0, x_2, x_3, \dots)$. Then σ_1 is an endomorphism of R. Note that every ideal of R is a σ_2 -ideal of R. Hence R is not σ_2 -quasi-Baer. But R is σ_2 -p.q.-Baer.
- (3) Let $\sigma_3: R \to R$ be defined by $\sigma_3((x_1, x_2, x_3, \dots)) = (x_2, x_1, x_3, \dots)$ and consider a projection $\pi: R \to R$ given by $\pi((x_1, x_2, \dots)) = (x_3, x_4, \dots)$. Then σ_3 is an endomorphism of R. Note that every ideal of R is not always σ_3 -ideal of R, for example, $(0) \times Z_2 \times \pi(I)$ is an ideal of R for some ideal I of R but it is not σ_3 -ideal of R. On the other hand, for any ideal I of R, $J = Z_2 \times Z_2 \times \pi(I)$ and $K = (0) \times (0) \times \pi(I)$ are σ_3 -ideals of R. Then $r_R(J) = (0) \times (0) \times r_R(\pi(I))$ and $r_R(K) = Z_2 \times Z_2 \times r_R(\pi(I))$. Since R is not quasi-Baer, $\pi(R)$ is not quasi-Baer and so R is not σ_3 -quasi-Baer. But R is σ_3 -p.q.-Baer.

We begin with the following lemmas:

LEMMA 1.1. Let R be a ring with an endomorphism σ . Then

- (1) If I is a right σ -ideal of R, then RI is a right σ -ideal of R;
- (2) If I is a left σ -ideal of R, then IR is a left σ -ideal of R.

Proof. (1) Let I be a right σ -ideal of R. Clearly, RI is a right ideal of R. Let $t \in RI$ be arbitrary. Then $t = \sum_{i=1}^{n} a_i b_i$ for some $a_i \in R$, $b_i \in I$ and some integer $n \in Z^+$. Since I is a right σ -ideal of R, $\sigma(I) \subseteq I$. For each i, $\sigma(a_i b_i) = \sigma(a_i) \sigma(b_i) \in RI$, and so $\sigma(RI) \subseteq RI$. Hence RI is a right σ -ideal of R.

(2) It follows from the similar argument given as in (1).

LEMMA 1.2. Let R be a ring with an endomorphism σ . Then R is σ -quasi-Baer if and only if the right annihilator of every right σ -ideal of R is generated by an idempotent.

Proof. For any right σ -ideal I of R, RI is a σ -ideal of R and $r_R(I) = r_R(RI)$ since R has an identity.

LEMMA 1.3. Let R be a σ -rigid ring. Then R is σ -Baer if and only if R is σ -quasi-Baer.

Proof. (\Rightarrow) Clear.

(⇐) Suppose that R is σ -quasi-Baer. Let S be any σ -set of R. Consider the right ideal < S > of R generated by S. Since S is a σ -set of R, < S > is a right σ -ideal of R. Since R is σ -quasi-Baer, $r_R(< S >) = eR$ for some idempotent $e \in R$ by Lemma 1.2. We will show that $r_R(S) = r_R(< S >)$. Clearly, $r_R(< S >) \subseteq r_R(S)$. Let $b = \sum_{i=1}^n s_i x_i \in < S >$ be arbitrary. If $a \in r_R(S)$, then $s_i a = 0$ for all $s_i \in S$. Since R is reduced, $s_i a = 0$ if and only if $as_i = 0$ if and only if $as_i = 0$. Then $as_i = 0$ if and so $as_i = 0$. Thus $as_i = 0$ if $as_i = 0$ if and so $as_i = 0$. Thus $as_i = 0$ if $as_i = 0$ if and so $as_i = 0$. Thus $as_i = 0$ if $as_i = 0$ if and so $as_i = 0$. Thus $as_i = 0$ if $as_i = 0$ if and so $as_i = 0$. Thus $as_i = 0$ if $as_i = 0$ if and so $as_i = 0$. Thus $as_i = 0$ if $as_i = 0$ if and so $as_i = 0$. Thus $as_i = 0$ if as_i

COROLLARY 1.4. Let R be a reduced ring. Then R is Baer if and only if R is quasi-Baer.

Proof. It follows from Lemma 1.3 by letting $\sigma = 1$.

LEMMA 1.5. Let R be a σ -rigid ring. Then the following statements are equivalent:

- (1) R is a right σ -p.p.-ring;
- (2) R is a σ -p.p.-ring;
- (3) R is a right σ -p.q-Baer ring;
- (4) R is a σ -p-q-Baer ring;
- (5) For any σ -element $a \in R$ and any positive integer n, $r_R(a^nR) = eR$ for some idempotent $e \in R$.

Proof. Since R is σ -rigid, $r_R(a) = l_R(a) = r_R(aR) = l_R(Ra) = r_R(a^nR)$ for any σ -element $a \in R$ and any positive integer n. Hence we have the result.

In [1], Armendariz has shown that if R is reduced, then R is a Baer ring if and only if the polynomial ring R[x] is a Baer ring. In this paper, we will generalize the result by showing that if R is σ -rigid, then R is

a σ -quasi-Baer ring if and only if the skew polynomial ring $R[x; \sigma]$ is a quasi-Baer ring; R is a right (or left) σ -p.q.-Baer ring if and only if the skew polynomial ring $R[x; \sigma]$ is a right (or left) p.q.-Baer ring.

LEMMA 1.6. Let R be a σ -rigid ring. Then for all a, b, c, and $d \in R$,

- (1) $a\sigma(b) = 0$ if and only if $\sigma(b)a = 0$:
- (2) If ab = 0 and bc + da = 0, then bc = da = 0;
- (3) If ab = 0 and ad + cb = 0, then ad = cb = 0:
- (4) If ab = 0, then $a\sigma(b) = \sigma(a)b = 0$;
- (5) If $a\sigma^k(b) = 0$ for some positive integer k, then ab = 0.

Proof. (1) is clear.

- (2) If ab = 0 and bc+da = 0, then 0 = (bc+da)b = (bc)b+(da)b = bcb, and so bc = 0. Hence da = 0.
 - (3) It is similar to the proof of (2).
 - (4) Suppose that ab = 0. Since R is reduced, ba = 0. Thus

$$a\sigma(b)\sigma(a\sigma(b)) = a\sigma(ba)\sigma^2(b) = 0.$$

Since R is σ -rigid, $a\sigma(b) = 0$. Similarly, if ab = 0, then $\sigma(a)b = 0$.

(5) If $a\sigma^k(b) = 0$ for some positive integer k, then by using (4) repeatedly we have $\sigma^k(ab) = \sigma^k(a)\sigma^k(b) = 0$, and so ab = 0 because σ is a monomorphism.

For a ring R with an endomorphism σ , there exists an endomorphism of $A = R[x; \sigma]$ which extends σ . For example, consider a map $\bar{\sigma}$ on A defined by $\bar{\sigma}(f(x)) = \sigma(a_0) + \sigma(a_1)x + \cdots + \sigma(a_n)x^n$ for all $f(x) = a_0 + a_1x + \cdots + a_nx^n \in A$. Then $\bar{\sigma}$ is an endomorphism of A and $\bar{\sigma}(a) = \sigma(a)$ for all $a \in R$, which means that $\bar{\sigma}$ is an extension of σ . We call the endomorphism of $A = R[x; \sigma]$ which extends σ an extended endomorphism of σ . Let Σ_{σ} be the set of all extended endomorphisms on A of σ . Note that $\Sigma_{\sigma} \neq \emptyset$ since $\bar{\sigma} \in \Sigma_{\sigma}$.

LEMMA 1.7. Let R be a ring with an endomorphism σ and let Σ_{σ} be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ . Then

- (1) If I is a σ -ideal of R, then IA is a θ -ideal of A for all $\theta \in \Sigma_{\sigma}$;
- (2) If I is a right principal σ -ideal of R, then IA is a right principal θ -ideal of A for all $\theta \in \Sigma_{\sigma}$;
- (3) If I is a left principal σ -ideal of R, then AI is a left principal θ -ideal of A for all $\theta \in \Sigma_{\sigma}$.

 \Box

Proof. It is straitforward.

LEMMA 1.8. Let R be a ring with an endomorphism σ and let Σ_{σ} be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ . Then R is σ -rigid if and only if A is θ -rigid for all $\theta \in \Sigma_{\sigma}$. In this case, $\sigma(e) = e$ for every idempotent $e \in R$.

Proof. Assume that R is σ -rigid and A is not θ -rigid for some $\theta \in \Sigma_{\sigma}$. Then there exists a nonzero $f \in A$ such that $f\theta(f) = 0$. Since R is σ -rigid, $f \notin R$. Let $f = \sum_{i=0}^{m} a_i x^i$ where $a_i \in R, a_m \neq 0$ for some $m \geq 1$. Since $f\theta(f) = 0$, $a_m \sigma^m(a_m) = 0$. Since R is σ -rigid, $a_m^2 = 0$ by Lemma 1.6, and then $a_m = 0$ since R is reduced, a contradiction. Hence A is θ -rigid for all $\theta \in \Sigma_{\sigma}$. The converse is true by the definition of extended endomorphism of σ . Let e be any idempotent of R. In case that A is θ -rigid for each $\theta \in \Sigma_{\sigma}$ (and then A is reduced). Hence e is central idempotent in A, and thus $ex = xe = \sigma(e)x$, which implies that $\sigma(e) = e$.

Note that for a reduced ring R, $A = R[x; \sigma]$ is not necessarily reduced. Indeed, consider the reduced ring R and σ introduced in Example 1. Let $f = (0,2)x \in A$. Then $f^2 = (0,2)x(0,2)x = (0,2)\sigma(0,2)x^2 = (0,2)(2,0)x^2 = (0,0)x^2 = 0$. But $f \neq 0$. Hence A is not reduced.

We need the following corollary as a special case of [9, Proposition 6].

COROLLARY 1.9. Let R be a σ -rigid ring. Then for any

$$f = \sum_{i=0}^{m} a_i x^i, g = \sum_{j=0}^{n} b_j x^j \in R[x; \sigma],$$

fg = 0 if and only if $a_i b_j = 0$ for each i, j.

2. Skew polynomial rings over σ -quasi-Baer and σ -p.q.-Baer rings

We recall from [2] an idempotent $e \in R$ is left (resp. right) semicentral in R if eae = ae (resp. eae = ea), for all $a \in R$. Equivalently, an idempotent $e \in R$ is left (resp. right) semicentral if eR (resp. Re) is an ideal of R. Since the right annihilator of a right σ -ideal is an ideal, we can note that the right annihilator of a right σ -ideal is generated by a left semicentral idempotent in a σ -quasi-Baer ring. Observe that

if e_1, e_2, \ldots, e_m are left (or right) semicentral idempotents of R, then $e = e_1 e_2 \cdots e_m$ is an idempotent of R. Thus we can obtain the following lemma:

LEMMA 2.1. Let R be a ring with an endomorphism σ . Then R is a right (resp. left) σ -p.q.-Baer if and only if the right (resp. left) annihilator of every finitely generated right (resp. left) σ -ideal of R is generated by an idempotent of R.

Proof. It is enough to show the left-handed version because the right-handed version is similarly proved. Suppose that R is right σ -p.q.-Baer and let $I = \sum_{i=1}^m a_i R$ be any finitely generated right σ -ideal of R. Then $r_R(I) = \bigcap_i^m e_i R$ where $r_R(a_i R) = e_i R$. By the above observation, $r_R(I)$ is an ideal of R and e_i is a left semicentral idempotent of R. Since each e_i is left semicentral idempotents of R, $e = e_1 e_2 \cdots e_m$ is idempotent of R, and so $r_R(I) = eR$. The converse is clear.

LEMMA 2.2. Let R be a σ -rigid ring. If $e \in R$ is a left semicentral idempotent, then e is also a left semicentral idempotent in $R[x; \sigma]$.

Proof. Let $f = \sum_{i=0}^{m} a_i x^i \in R[x;\sigma]$ be arbitrary. Since R is σ -rigid, $\sigma(e) = e$ for any idempotent $e \in R$ by Lemma 1.8. Since e is a left semicentral idempotent, $ea_i e = a_i e$ for each i. Then $fe = \sum_{i=0}^{m} a_i \sigma^i(e) x^i = \sum_{i=0}^{m} a_i e x^i = \sum_{i=0}^{m} ea_i e x^i = efe$. Hence e is a left semicentral idempotent in $R[x;\sigma]$.

THEOREM 2.3. Let R be a ring with an endomorphism σ and let Σ_{σ} be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ . If R is σ -rigid, then the following are equivalent:

- (1) R is σ -quasi-Baer;
- (2) A is quasi-Baer;
- (3) A is θ -quasi-Baer for all $\theta \in \Sigma_{\sigma}$.

Proof. (1) \Rightarrow (2). Suppose that R is σ -quasi-Baer. Let I be an arbitrary ideal of A. If $g \in r_A(I)$, then fg = 0 for all $f \in I$. Let $f = \sum_{i=0}^m a_i x^i, g = \sum_{j=0}^n b_j x^j$. Then by Corollary 1.9, $a_i b_j = 0$ for all i, j. Consider the set I_c of all coefficients of polynomials in I. Then I_c is an ideal of R and $b_0, b_1, \ldots, b_n \in r_R(I_c)$. We can observe that I_c is an σ -ideal of R. Indeed, for any $f = \sum_{i=0}^m a_i x^i \in I$, $xf = \sum_{i=0}^{m+1} \sigma(a_i) x^i$, and so $\sigma(a_i) \in I_c$ for each i. Thus I_c is a σ -ideal of R. Since R is σ -quasi-Baer and I_c is a σ -ideal of R, $r_R(I_c) = eR$ for some idempotent $e \in R$. Thus g = ge and hence $r_A(I) \subseteq eA$. Now $I_c e = 0$. Since $\sigma(e) = eA$.

e, by Lemma 1.8, we have Ie = 0 so $eA \subseteq r_A(I)$. Therefore $r_A(I) = eA$. Hence A is quasi-Baer.

- $(2) \Rightarrow (3)$. It is clear.
- $(3) \Rightarrow (1)$. Suppose that A is θ -quasi-Baer for all $\theta \in \Sigma_{\sigma}$. Let I be any σ -ideal of R. Then by Lemma 1.7, IA is a θ -ideal of A. Since A is θ -quasi-Baer, $r_A(IA) = eA$ for some semicentral idempotent $e \in A$. Since A is θ -rigid (and so A is reduced) by Lemma 1.8, e is a central idempotent in A, and hence e is an idempotent in R by [10, Theorem 3.15]. Since $r_R(I) = r_A(IA) \cap R = eR$, R is σ -quasi-Baer.

REMARK. (1) If σ is an automorphism, we can check the condition "R is σ -rigid" does not need by using a similar method in the proof of Theorem 1.2 in [6]. (2) there is an example of a σ -quasi-Baer ring R and an endomorphism σ of R such that $R[x;\sigma]$ is not quasi-Baer (refer Example 1.4 in [6]).

COROLLARY 2.4. Let R be a ring with an endomorphism σ and let Σ_{σ} be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ . If R is σ -rigid, then the following are equivalent:

- (1) R is σ -Baer:
- (2) A is Baer;
- (3) A is θ -quasi-Baer for all $\theta \in \Sigma_{\sigma}$.

Proof. It follows from Lemma 1.3 and Theorem 2.3.

COROLLARY 2.5. [1, Theorem A] Let R be a reduced ring and let A = R[x]. Then R is Baer if and only if R[x] is Baer.

Proof. It follows from Corollary 1.4 and Corollary 2.4. \Box

THEOREM 2.6. Let R be a ring with an endomorphism σ and let Σ_{σ} be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ . If R is σ -rigid, then the following are equivalent:

- (1) R is right σ -p.q.-Baer;
- (2) R is σ -p.q.-Baer;
- (3) A is right p.q.-Baer;
- (4) A is p.g.-Baer;
- (5) A is θ -p.q.-Baer for all $\theta \in \Sigma_{\sigma}$;
- (6) A is right θ -p.q.-Baer for all $\theta \in \Sigma_{\sigma}$.

- *Proof.* (1) \Leftrightarrow (2) follows from Lemma 1.5. (3) \Leftrightarrow (4) also follows from Lemma 1.5 by letting $\sigma = 1$. (4) \Rightarrow (5) \Rightarrow (6) is clear. It remains to show that (1) \Rightarrow (3) and (6) \Rightarrow (1).
- $(1)\Rightarrow (3)$. Suppose that R is right σ -p.q.-Baer. Let I be any right principal ideal of A generated by $h=\sum_{k=0}^n a_k x^k$. If $g\in r_A(I)$, then fg=0 for all $f\in I$. Let $f=\sum_{i=0}^l c_i x^i, g=\sum_{j=0}^m b_j x^j$. Then by Lemma 1.6, $c_i b_j=0$ for all i,j. Let I_c be the set of all coefficients of all $f\in I$. Note that I_c is a right σ -ideal of R and $b_0,b_1,\ldots,b_n\in r_R(I_c)$ as given in the proof of Theorem 2.3. Since I is a right principal ideal of A, I_c is a right finitely generated ideal of R with a generating set $\{a_0,\ldots,a_n\}$. Since R is right σ -p.q.-Baer and I_c is a right finitely generated σ -ideal of R, $r_R(I_c)=eR$ for some idempotent e of R by Lemma 2.1. Hence $r_A(I)=eA$, and so A is right p.q.-Baer.
- (6) \Rightarrow (1). Suppose that A is right θ -p.q.-Baer for all $\theta \in \Sigma_{\sigma}$. Let I be any right principal σ -ideal of R. Then by Lemma 1.1, IA is a right principal θ -ideal of A. Since A is θ -p.q.-Baer, $r_A(IA) = eA$ for some semicentral idempotent $e \in A$. Since A is θ -rigid (and so reduced) by Lemma 1.8, e is a central idempotent in A, and hence e is an idempotent in R by [10, Theorem 3.15]. Since $r_R(I) = r_A(IA) \cap R = eR$, R is right σ -p.q.-Baer.

COROLLARY 2.7. Let R be a ring with an endomorphism σ and let Σ_{σ} be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ . If R is σ -rigid, then the following are equivalent:

- (1) R is right σ -p.p.;
- (2) R is σ -p.p.;
- (3) A is right p.p.;
- (4) A is p.p.;
- (5) A is θ -p.p. for all $\theta \in \Sigma_{\sigma}$;
- (6) A is right θ -p.p. for all $\theta \in \Sigma_{\sigma}$.

Proof. It follows from the Lemma 1.5 and Theorem 2.6. \Box

COROLLARY 2.8. [1, Theorem B] Let R be a reduced. Then R is p.p.-Baer if and only if R[x] is p.p.-Baer;

Proof. It follows from the Lemma 1.5 (by letting $\sigma = 1$) and Corollary 2.7.

ACKNOWLEDGEMENT. The author expresses his thanks to the referee for the thorough reading and useful suggestions for making the paper more readable.

References

- [1] E. P. Armendariz, A note on extensions of Baer and p.p. rings, Austral. Math. Soc. 18 (1974), 470-473.
- [2] S. K. Berberian, Baer *-rings, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [3] G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MSDN, Pacific J. Math. 97 (1981), 283-292.
- [4] ______, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), 567–580.
- [5] _____, Decompositions of Baer-like rings, Acta Math. Hungar. **59** (1992), 319–326.
- [6] G. F. Birkenmeier, J. K. Kim and J. K. Park, On extensions of quasi-Baer and principally quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25-42.
- [7] A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman, Boston, 1980.
- [8] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.
- [9] C. Hong, N. Kim and T. Kwak, Ore extensions of Baer and p.p-rings, J. Pure Appl. Algebra 151 (2000), 215–226.
- [10] A. A. M. Kamal, Idempotents in polynomial rings, Acta Math. Hungar. 59 (1992), no. 3-4, 355-363.
- [11] I. Kaplansky, Rings of Operators, Lecture Notes in Math., Benjamin, New York, 1965.
- [12] P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127–138.

Department of Mathematics Education Pusan National University

Pusan 609-735, Korea

E-mail: jchan@pusan.ac.kr