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SOME FAMILIES OF IDEAL-HOMOGENEOUS POSETS

Gab-Byung Chae†, Minseok Cheong, and Sang-Mok Kim

Abstract. A partially ordered set P is ideal-homogeneous provided that

for any ideals I and J , if I ∼=σ J , then there exists an automorphism σ∗

such that σ∗|I = σ. Behrendt [1] characterizes the ideal-homogeneous
partially ordered sets of height 1. In this paper, we characterize the ideal-

homogeneous partially ordered sets of height 2 and find some families of
ideal-homogeneous partially ordered sets.

1. Introduction

Suppose (P,6) is a finite partially ordered set (simply called a finite poset)
with a partial order relation 6, which is simply denoted by P for convenience.
If Q ⊂ P, we may refer to Q also as a poset, having in mind the subposet
(Q,6) whose order relation is the restriction of (P,6)’s. If P is a finite ordered
set and x ∈ P , then the height h(x) is the maximal cardinality of a chain in
{y ∈ P | y < x}. The height of a poset P , denoted by ht(P ), is maximum of all
h(x) for x ∈ P . For a poset P and x ∈ P, let U [x] = {y ∈ P | y > x in P}, say
the up-set of x, and D[x] = {y ∈ P | y 6 x in P}, say the down-set of x. Also,
we let U [A] = ∪x∈AU [x], the up-set of A, and D[A] = ∪x∈AD[x] the down-set
of A for a nonempty subposet A of P . A map f : (P,6)→ (Q,6′) of posets is
order-preserving if x 6 y implies f(x) 6′ f(y) in Q for all x, y ∈ P. Two posets
(P,6) and (Q,6′) are isomorphic if there exists an order-preserving bijection
f : (P,6)→ (Q,6′) such that f−1 is also order-preserving. We denote the set
of all automorphisms of a poset P by Aut(P ). An ideal I of P is a non-empty
subset of P such that if x 6 y for x ∈ P and y ∈ I, then x ∈ I. A poset
P is ideal-homogeneous, provided that, for any ideals I and J with I ∼=σ J ,
there exists an automorphism σ∗ ∈ AutP such that σ∗|I = σ. A poset P is
weakly ideal-homogeneous, provided that for each I of P and σ ∈ Aut(I), there
is σ∗ ∈ Aut(P ) such that σ∗|I = σ.

It is very natural to ask whether every isomorphism between finite substruc-
tures can be extendable to an automorphism of the whole structure. In 1993,
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some results on the homogeneity for finite partially ordered sets were given by
G. Behrendt [1], and they made resume to investigate the relationship between
the homogeneity conditions for finite partially ordered sets. The following theo-
rem, due to Behrendt [1], characterizes the (weakly) ideal-homogeneous posets
of height 1. For a positive integer n, [n] is the set of positive interger less than
or equal to n.

Theorem 1.1 ([1]). Let (P,6) be a finite partially ordered set of height 1. The
followings are equivalent.

(i) (P,6) is ideal-homogeneous.
(ii) (P,6) is weakly ideal-homogeneous.
(iii) There exist a positive integer n and a function f : [n] → N such that

there exists i ∈ [n] with f(i) 6= 0 and (P,6) is isomorphic to (X,6),
where

X = [n] ∪ {(S, i) | ∅ 6= S ⊆ [n], 1 ≤ i ≤ f(|S|)}
and for k ∈ [n], ∅ 6= S ⊆ [n], 1 ≤ i ≤ f(|S|), let

k 6 (S, i) if and only if k ∈ S.

In this paper, we characterize the ideal-homogeneous partially ordered sets
of height 2 and find some families of ideal-homogeneous partially ordered sets.
The other definitions not written in this paper and general properties of posets
follow from [2].

2. Construction

Let X = [n] and P (X) be the power set of X. For all k = 1, . . . , n, let Ak(X)
be the set of k-element subsets of X, that is, Ak(X) = {S1, S2, . . . , S(n

k)} where

|Si| = k for i = 1, . . . ,
(
n
k

)
. Then |Ak(X)| =

(
n
k

)
. Let M1(X) be a multi-set

of nonempty subsets of X with the multiplicities mk ≥ 0 for Ak(X) for each
k = 1, . . . , n, such that

(1) every element S of M1(X) is a nonempty subset of X,
(2) if S(6= ∅) ∈ M1(X) with |S| = k for some k, then it has multiplicity

mk, that means it appears mk times in M1(X).
(3) if S(6= ∅) ∈ M1(X) with |S| = k for some k, then T ∈ M1(X) for any

T ∈ Ak(X).

Therefore, if S, T ∈ M1(X) with |S| = |T | = k, then both S and T appear
mk times in M1(X). Hence for each k, it can be said that mk is not only the
multiplicity of an element S of Ak(X) but also the multiplicity of Ak(X). Thus
we may write M1(X) using Ak(X)’s as

(1)

M1(X) =(A1, 1) ∪ · · · ∪ (A1,m1)⋃
(A2, 1) ∪ · · · ∪ (A2,m2)

⋃
· · ·⋃

(An, 1) ∪ · · · ∪ (An,mn),
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where (Ak, i) = (Ak(X), i) is the i-th copy of Ak(X) for 1 ≤ i ≤ mk and
mk ≥ 0. Hence if S ∈ Ak(X) for some k, then we may notice (S, i) ∈ (Ak(X), i)
for all i and we say (S, i) is the i-th copy of S also, denote Si = (S, i). Note
that if mk = 0 for some k, then (Ak, i) = φ for all i.

We may define M1(Y ) for any non-empty set Y . Let us consider M1(Y ),
where Y = (Ak(X), i) for fixed i and k. For all t = 1, . . . ,

(
n
k

)
, let Bt(Y )

be the set of t-element subsets of Y , that is, Bt(Y ) =
{

Σ1,Σ2, . . . ,Σ
((

n
k)
t

)

}
where |Σi| = t for i = 1, . . . ,

((n
k)
t

)
. Then M1((Ak(X), i)) is the multi-set of

nonempty subsets of (Ak(X), i) with the multiplicities akt ≥ 0 for Bt(Y ) for all
t = 1, . . . ,

(
n
k

)
, such that

(1) every element Σi of M1(Ak(X), i) is a nonempty subset of (Ak(X), i),
(2) if Σi(6= ∅) ∈ M1(Ak(X), i) with |Σi| = t for some t, then it has multi-

plicity akt , that means it appears akt times in M1(Ak(X), i).

Let M1((Ak(X), i)) = M1(Ak(X), i) and Ω(n
k) =

(
ak1 , a

k
2 , . . . , a

k

(n
k)

)
for conve-

nience. Hence (Σi, j) ∈M1(Ak, i) is defined as the j-th copy of Σi in M1(Ak, i),
where 1 ≤ j ≤ ak|Σi|. We write (Σi, j) = {Σi}j .

Now we define a (second level) multi-set M2(X) of X as:

(2) M2(X) =

n⋃
k=1

mk⋃
i=1

bk⋃
r=1

M1(Ak(X), i)r,

where (m1,m2, . . . ,mn), mk ≥ 0, Ω(n
k) =

(
ak1 , a

k
2 , . . . , a

k

(n
k)

)
with akt ≥ 0 for

t = 1, . . . ,
(
n
k

)
, and b = (b1, b2, · · · , bn), bk ≥ 1 are the multiplicities for Ak of

M1(X), the nonempty subsets of Bt((Ak, i)) of M2(X), and M1(Ak(X), i) for
all 1 ≤ i ≤ mk, k = 1, . . . , n, respectively and 1 ≤ r ≤ bk. If mk = 0 for some
k, then M2(X) does not have M1(Ak, i) for i = 1, . . . ,mk. And if akt = 0 for
some k and t, then M2(X) does not have t-elements subset of (Ak, i) for all
i = 1, 2, . . . ,mk. The next example shows a construct process of X, M1(X),
and M2(X) for given n.

Example 1. Let n = 3 and hence X = [3]. Then we have

(3) P (X) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},
where A1 = {{1}, {2}, {3}}, A2 = {{1, 2}, {1, 3}, {2, 3}}, and A3 = {{1, 2, 3}}.
Suppose (m1,m2,m3) = (1, 3, 2) is the multiplicities of Ak for k = 1, 2, 3. Then
we have

(A1, 1) = ({{1}, {2}, {3}}, 1) = {({1}, 1), ({2}, 1), ({3}, 1)}
= {{1}1, {2}1, {3}1},

(A2, i) = ({{1, 2}, {1, 3}, {2, 3}}, i)(4)

= {({1, 2}, i), ({1, 3}, i), ({2, 3}, i)}
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= {{1, 2}i, {1, 3}i, {2, 3}i} for i = 1, 2, 3,

(A3, i) = ({{1, 2, 3}}, i) = {({1, 2, 3}, 1), ({1, 2, 3}, 2)}
= {{1, 2, 3}1, {1, 2, 3}2}.

Therefore we can write M1(X) as:

(5)

M1(X) =
{
{1}1, {2}1, {3}1, {1, 2}1, {1, 3}1, {2, 3}1,
{1, 2}2, {1, 3}2, {2, 3}2, {1, 2}3, {1, 3}3, {2, 3}3
{1, 2, 3}1, {1, 2, 3}2

}
.

Suppose Ω(3
1)

= (1, 2, 2), Ω(3
2)

= (1, 1, 3), Ω(3
3)

= (2), b = (b1, b2, b3) = (2, 1, 2).

Then we have

(6)

M1(A1, 1)j = M1({{1}1, {2}1, {3}1}) with Ω(3
1)

= (1, 2, 2)

=
{

({{1}1}, 1)j , ({{2}1}, 1)j , ({{3}1}, 1)j ,

({{1}1, {2}1}, 1)j , ({{1}1, {3}1}, 1)j , ({{2}1, {3}1}, 1)j ,

({{1}1, {2}1}, 2)j , ({{1}1, {3}1}, 2)j , ({{2}1, {3}1}, 2)j ,

({{1}1, {2}1, {3}1}, 1)j , ({{1}1, {2}1, {3}1}, 2)j
}

or we can write it for convenience

(7)

M1(A1, 1)j =
{
{{1}1}j1, {{2}1}

j
1, {{3}1}

j
1,

{{1}1, {2}1}j1, {{1}1, {3}1}
j
1, {{2}1, {3}1}

j
1,

{{1}1, {2}1}j2, {{1}1, {3}1}
j
2, {{2}1, {3}1}

j
2,

{{1}1, {2}1, {3}1}j1, {{1}1, {2}1, {3}1}
j
2

}
,

where j = 1, 2 which means we have 2 copies of M1(A1, 1) since b1 = 2,

M1(A2, i)
1(8)

= M1({{1, 2}i, {1, 3}i, {2, 3}i} with Ω(3
2)

= (1, 1, 3)

=
{

({{1, 2}i}, 1)1, ({{1, 3}i}, 1)1, ({{2, 3}i}, 1)1,

({{1, 2}i, {1, 3}i}, 1)1, ({{1, 2}i, {2, 3}i}, 1)1, ({{1, 3}i, {2, 3}i}, 1)1,

({{1, 2}i, {1, 3}i, {2, 3}i}, 1)1, ({{1, 2}i, {1, 3}i, {2, 3}i}, 2)1,

({{1, 2}i, {1, 3}i, {2, 3}i}, 3)1
}

=
{
{{1, 2}i}11, {{1, 3}i}11, {{2, 3}i}11,
{{1, 2}i, {1, 3}i}11, {{1, 2}i, {2, 3}i}11, {{1, 3}i, {2, 3}i}11,
{{1, 2}i, {1, 3}i, {2, 3}i}11, {{1, 2}i, {1, 3}i, {2, 3}i}12,
{{1, 2}i, {1, 3}i, {2, 3}i}13

}
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so that we have only one copy of M1(A2, i) for each for i = 1, 2, 3, since b2 = 1
and

(9)

M1(A3, i)
j = M1({1, 2, 3}i)j with Ω(3

3)
= (2)

=
{

({{1, 2, 3}i}, 1)j , ({{1, 2, 3}i}, 2)j
}

=
{
{{1, 2, 3}i}j1, {{1, 2, 3}i}

j
2

}
,

where j = 1, 2 which means we have 2 copies of M1(A3, i) for each i = 1, 2 since
b3 = 2. Therefore, the second-level multi-set M2(X), where (m1,m2,m3) =
(1, 3, 2), Ω(3

1)
= (1, 2, 2), Ω(3

2)
= (1, 1, 3), Ω(3

3)
= (2), and b = (b1, b2, b3) =

(2, 1, 2) as

M2(X)(10)

=

3⋃
k=1

mk⋃
i=1

bk⋃
r=1

M1(Ak, i)
r

= M1(A1, 1)1 ∪M1(A1, 1)2

∪M1(A2, 1)1 ∪M1(A2, 2)1 ∪M1(A2, 3)1

∪M1(A3, 1)1 ∪M1(A3, 1)2 ∪M1(A3, 2)1 ∪M1(A3, 2)2

=
{
{{1}1}11, {{2}1}11, {{3}1}11,
{{1}1, {2}1}11, {{1}1, {3}1}11, {{2}1, {3}1}11,
{{1}1, {2}1}12, {{1}1, {3}1}12, {{2}1, {3}1}12,
{{1}1, {2}1, {3}1}11, {{1}1, {2}1, {3}1}12, (M1(A1, 1)1 part)

{{1}1}21, {{2}1}21, {{3}1}21,
{{1}1, {2}1}21, {{1}1, {3}1}21, {{2}1, {3}1}21,
{{1}1, {2}1}22, {{1}1, {3}1}22, {{2}1, {3}1}22,
{{1}1, {2}1, {3}1}21, {{1}1, {2}1, {3}1}22, (M1(A1, 1)2 part)

{{1, 2}1}1, {{1, 3}1}1, {{2, 3}1}1,
{{1, 2}1, {1, 3}1}1, {{1, 2}1, {2, 3}1}1, {{1, 3}1, {2, 3}1}1,
{{1, 2}1, {1, 3}1, {2, 3}1}1, {{1, 2}1, {1, 3}1, {2, 3}1}2,
{{1, 2}1, {1, 3}1, {2, 3}1}3, (M1(A2, 1)1 part)

{{1, 2}2}1, {{1, 3}2}1, {{2, 3}2}1,
{{1, 2}2, {1, 3}2}1, {{1, 2}2, {2, 3}2}1, {{1, 3}2, {2, 3}2}1,
{{1, 2}2, {1, 3}2, {2, 3}2}1, {{1, 2}2, {1, 3}2, {2, 3}2}2,
{{1, 2}2, {1, 3}2, {2, 3}2}3, (M1(A2, 2)1 part)

{{1, 2}3}1, {{1, 3}3}1, {{2, 3}3}1,
{{1, 2}3, {1, 3}3}1, {{1, 2}3, {2, 3}3}1, {{1, 3}3, {2, 3}3}1,
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{{1, 2}3, {1, 3}3, {2, 3}3}1, {{1, 2}3, {1, 3}3, {2, 3}3}2,
{{1, 2}3, {1, 3}3, {2, 3}3}3, (M1(A2, 3)1 part)

{{1, 2, 3}1}11, {{1, 2, 3}1}12, {{1, 2, 3}2}11, {{1, 2, 3}2}12,
(M1(A3, 1)1 and M1(A3, 2)1 part)

{{1, 2, 3}1}21, {{1, 2, 3}1}22, {{1, 2, 3}2}21, {{1, 2, 3}2}22
}

(M1(A3, 1)2 and M1(A3, 2)2 part).

For a positive integer n, let X = [n]. Define a poset (Z,6), where

Z = [n] ∪M1(X)

and for S ∈M1(X) with |S| = k(so S ∈ Ak) and x ∈ [n],

x 6 (S, i) = Si if and only if x ∈ Si,
where 1 ≤ k ≤ n, and (S, i) = Si is the i-th copy of S in (Ak, i) for all i,
1 ≤ i ≤ mk. Then we can easily find that

(Z,6) ∼= (X,6),

where X is the poset defined in Theorem 1.1 by Behrendt [1].
Now a family of ideal-homogeneous partially ordered sets of height 2 is con-

structed.

Construction of Z2:
For a positive integer n, let X = [n]. Define a poset (Z2,6) as

Z2 = X ∪M1(X) ∪M2(X),

where (m1,m2, . . . ,mn), mk ≥ 0 is the multiplicity for Ak of M1(X), Ω(n
k) =(

ak1 , a
k
2 , . . . , a

k

(n
k)

)
with akt ≥ 0 for t = 1, . . . ,

(
n
k

)
is for Bt(Ak, i) of (Ak, i) of

M2(X), and b = (b1, b2, . . . , bn), bk ≥ 1 is for M1(Ak(X), i) for all 1 ≤ i ≤ mk,
k = 1, . . . , n. The order relations on Z2 are defined as follows:

Order 1: For Si ∈M1(X) with |Si| = k(so Si ∈ Ak) and x ∈ [n],

x 6 Si = (S, i) if and only if x ∈ Si,
where 1 ≤ i ≤ mk and Si = (S, i) is the i-th copy of S in (Ak, i) for all
i, 1 ≤ i ≤ mk, k = 1, . . . , n.

Order 2: For some k, i, and r, if Σi ∈ M1(Ak, i)
r ⊂ M2(X) and Si ∈

(Ak, i), then

Si 6 Σi if and only if Si ∈ Σi

for all Σi ∈M1(Ak, i)
r, where r = 1, . . . , bk.

Order 3: For some k, r, i and j with i 6= j, if Σj ∈M1(Ak, j)
r ⊂M2(X)

and Si ∈ (Ak, i) (Note that for i 6= j, (Ak, i) and (Ak, j) are basically
identical hence we may say Σi = Σj as a set nevertheless Σi ∈M1(Ak, i)
and Σj ∈ M1(Ak, j) and hence we may define order relation between
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Figure 1. A poset of height 2 in Example 1

Si and Σj ∈M1(Ak, j) or Sj and Σi ∈M1(Ak, i) in addition to Order
2 above) then

Si 6 Σj if and only if Si ∈ Σj

for all Σj ∈M1(Ak, j)
r, where r = 1, . . . , bk.

Consequently, if x 6 Si and Si 6 Σj , then x 6 Σj for every i and j, 1 ≤ i, j ≤
mk, k = 1, . . . , n.

The poset Z2 = X∪M1(X)∪M2(X) in Example 1 with n = 3 and the order
relations defined in Order 1, 2, and 3 above is roughly illustrated in Figure 1.
The lines between the circled sets means there are order relations among the
elements of them and the transitivity law holds.

3. Main results

Lemma 3.1. Let (Z2,6) be the poset in Construction of Z2 with order rela-
tions Order 1, 2, and 3. Suppose that bk = 1 for all k where b = (b1, b2, . . . , bn)
is the multiplicity M1(Ak(X), i) for all 1 ≤ i ≤ mk, k = 1, . . . , n. Then (Z2,6)
is ideal-homogeneous of height 2.

Proof. Let I1 and I2 be ideals of (Z2,6) and

α : (I1,6)→ (I2,6)

an isomorphism. Assume I∩M2(X) 6= ∅ for all ideals in this proof, if not, it is of
height 2. By the construction, it is clear that if I1 ∼= I2, then I1∩M1(Ak, ·) = ∅
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if and only if I2 ∩ M1(Ak, ·) = ∅ for all k = 1, 2, . . . , n. Hence there are
finitely many numbers of k such that I1 ∩M1(Ak, ·) 6= ∅ and I2 ∩M1(Ak, ·) 6=
∅. Without loss of generality, for finite subset K1 and Jk1 of [n] and [mk],
respectively, we can assume that

I1 ∩M2(X) ⊂
⋃
k∈K1

⋃
i∈Jk

1

M1(Ak, i)

and for finite subset K2 and Jk2 of [n] and [mk], respectively, we can assume
that

I2 ∩M2(X) ⊂
⋃
k∈K2

⋃
i∈Jk

2

M1(Ak, i).

By the consideration above, it is clear that K1 = K2, if not, we conclude that
I1 is not isomophic to I2. Therefore, without loss of generality (all other cases
can be treated in the same way), we can assume that, for some k,

I1 ∩M2(X) ⊂M1(Ak, 1) ∪M1(Ak, 2)

and

I2 ∩M2(X) ⊂M1(Ak, 1) ∪M1(Ak, 3).

Let

I1 ∩M2(X) = B ∪ E and I2 ∩M2(X) = C ∪ F,
where B = I1 ∩ M1(Ak, 1), C = I2 ∩ M1(Ak, 3), E = I1 ∩ M1(Ak, 2), and
F = I2 ∩ M1(Ak, 1). Without loss of generality again, we can assume that
B ∼=α C and E ∼=α F . If not, we have two cases (i) B ∼=α C ∪ F ′ where
F ′ ⊂ M1(Ak, 1) and (ii) B ∼=α C

′ where C ′ ⊂ C. For the case (i), there exists
F ′′ ⊂ M1(Ak, 3) such that F ′ ∼=α F

′′. Note that D[F ′] ∼= D[F ′′]. Hence new
C is obtained by replacing F ′ by F ′′ to be B ∼=α C. We may do similarly for
the case (ii).

By restriction, α induces a bijection β1 between D[B] ∩ (Ak, 1) and D[C] ∩
(Ak, 1) and bijection β2 between D[E]∩(Ak, 1) and D[F ]∩(Ak, 1) which can be
extended together to a permutation α1 on (Ak, 1). That is, α1(D[B]∩(Ak, 1)) =
D[C] ∩ (Ak, 1), α1(D[E] ∩ (Ak, 1)) = D[F ] ∩ (Ak, 1), and all other elements

in (Ak, 1) are fixed. Note that, since Ω(n
k) =

(
ak1 , a

k
2 , . . . , a

k

(n
k)

)
works for

all M1(Ak, i) for all i = 1, 2, 3, and by the order relation Order 3, we have
D[B] ∩ (Ak, 1) = D[B] ∩ (Ak, 2) = D[B] ∩ (Ak, 3), D[C] ∩ (Ak, 1) = D[C] ∩
(Ak, 2) = D[C]∩ (Ak, 3), D[E]∩ (Ak, 1) = D[E]∩ (Ak, 2) = D[E]∩ (Ak, 3), and
D[F ] ∩ (Ak, 1) = D[F ] ∩ (Ak, 2) = D[F ] ∩ (Ak, 3). Therefore, by the similar
way to the case of restriction of α to α1, α induces a permutation α2 on (Ak, 2)
and permutation α3 on (Ak, 3), respectively. That is, αi(D[B] ∩ (Ak, i)) =
D[C] ∩ (Ak, i), αi(D[E] ∩ (Ak, i)) = D[F ] ∩ (Ak, i), and all other elements in
(Ak, i) are fixed for all i = 2, 3 which means that αi are identical on (Ak, i)
for all i = 1, 2, 3. That means α1(S) = α2(S) = α3(S) for all S ⊂ (Ak, ·). Let
β = α1 = α2(S) = α3(S).
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For each Σ ⊂ (Ak, i) with |Σ| = j and l ∈ {1, 2} let

Ul(Σ) = {c | 1 ≤ c ≤ akj with Σc ∈ Il}.

Then a bijection βΣ : U1(Σ) → U2(β(Σ)) can be defined in order to associate
to α(Σ, c) = (β(Σ), βΣ(c)) for all i = 1, 2, 3 and this can be extended to a
permutation τΣ of {c | 1 ≤ c ≤ akj }. Note that βΣ and τΣ work for all (Ak, i) for
all i = 1, 2, 3 in the same way. Also β induces a bijection between I1 ∩ [n] and
I2 ∩ [n], which can be extended to a permutation τ of [n]. Now let σ∗(m) =
τ(m) for m ∈ [n], σ∗(S) = β(S) for S ∈ (Ak, 1), σ∗(Σ, i) = (β(Σ), τΣ(i)) for
(Σ, i) ∈ (Ak, i) for all i = 1, 2, 3, and all other elements of the poset are fixed.
Then it is not hard to see that σ∗ is an automorphism of (Z2,6) such that
σ∗|I1 = σ. �

The following lemma is a generalization of Lemma 3.1. Because there is no
restriction to multiplicities M1(Ak(X), i) for 1 ≤ i ≤ mk, k = 1, . . . , n.

Lemma 3.2. Let (Z2,6) be the poset defined in Construction of Z2 with order
relations Order 1, 2, and 3. Then (Z2,6) is ideal-homogeneous of height 2.

Proof. If (Ak(X), i) 6= ∅, M1(Ak(X), i)r, r = 1, . . . , bk, are r copies of multi-
set of (Ak(X), i) for fixed k. Then by Order 3, every r copies of M1(Ak(X), i)
are in the up-set of (Ak(X), i) for every i ∈ {1, . . . ,mk}. Then the proof in
Lemma 3.1 can be applied to the copies of M1(Ak(X), i) in exactly the same
way. �

The following lemmas are special cases of Lemma 3.1, especially, there are
no relations between M(Ak(X), i) and (Ak(X), j) for i 6= j and there are the
restrictions on the multiplicities b = (b1, b2, . . . , bn).

Lemma 3.3. Let (Z2,6) be the poset in Construction of Z2 with order re-
lations Order 1, 2 only except 3. Suppose that bk = 1 for all k where b =
(b1, b2, . . . , bn) is multiplicities M1(Ak(X), i) for 1 ≤ i ≤ mk, k = 1, . . . , n.
Then (Z2,6) is ideal-homogeneous of height 2.

Proof. This is a corollary of Lemma 3.2. �

Now with no restrictions on the multiplicities b = (b1, b2, . . . , bn), we have
the following lemma.

Lemma 3.4. Let bk be a positive integer for each k. Let (Z2,6) be the poset in
Construction of Z2 with order relations Order 1, 2 only except 3. Then (Z2,6)
is ideal-homogeneous.

Proof. This is a corollary of Lemma 3.3. �

Therefore we conclude our main theorem as follows:

Theorem 3.5. Let (P,6) be a finite partially ordered set of height 2. The
followings are equivalent.
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(i) (P,6) is ideal-homogeneous.
(ii) (P,6) is weakly ideal-homogeneous.
(iii) (P,6) is one of the posets constructed in Lemmas 3.1-3.4.

Proof. Trivially, (i) implies (ii). Assume that (ii) holds. Let X = [n] be the set
of minimal elements of (P,6). If S1 and S2 are k-element subsets of X, where
1 ≤ k ≤ n, then there is a permutation α of X mapping S1 onto S2. Since α is
an automorphism of X, and X is an ideal of (P,6), α can be extended to an
automorphism β of (P,6) by (ii). Suppose that

Ti = {S ∈M1(X) | for x ∈ P we have x 6 S if and only if x ∈ Si}

for i ∈ {1, 2}. Then Ti is the set of points in M1(X) which is the common up-
set of all points of Si for i ∈ {1, 2}, and β has to map T1 onto T2. Therefore, for
every k-element subset Si of X there is the same number mk = |Ti| of elements
in M1(X) which cover all elements of Si and no others.

Here we want to specialize the abstract set S in Ti. Without loss generality,
let us assume that we regard the order relation on (P,6) as set inclusion.
Clearly, for any k-element subset of X, Si ∈ Ti since x 6 Si if and only if x ∈ Si.
If S ∈ Ti, then S is the common up-set of all points of Si and hence S should
contain all the elements of Si and no others. Hence we have S = Si. Since
there are

(
n
k

)
k-element subsets of X, let Ak(X) = {S1, S2, . . . , S(n

k)}, where

Si are the k-element subset of X for all k = 1, . . . , n. Then Ak(X) ⊂ M1(X)
for all k = 1, . . . , n. The number mk means that there are mk copies of Si for
1 ≤ i ≤

(
n
k

)
. Hence mk is the multiplicity of Ak(X) for all k = 1, . . . , n. If

mk = 0, then there is no Ak(X) at all for all k = 1, . . . , n.
Since for each k-element subset Si, 1 ≤ i ≤ mk, there are mk copies of it, it

deduce that there are mk copies of Ak = Ak(X) after all. Hence we have

(11) M1(X) =

n⋃
k=1

mk⋃
i=1

(Ak, i).

If Si ∈ Ti and Si = {a1, a2, . . . , ak} ⊂ X = [n], then Si can be denoted by
Si = a1a2 · · · ak or (Si, j) = (a1a2 · · · ak, j), where j, 1 ≤ j ≤ mk, means
that (Si, j) is the j-th copy of Si. Now let Σ1 and Σ2 be l-element subsets
of
⋃mk

i=1(Ak, i) that is, Σi has Si’s as elements. There are some cases to be
considered according to their membership where they belong to:

Case 1: For every k = 1, 2, . . . , n, suppose Σ1 and Σ2 are subsets of (Ak, i) for
some i, say (Ak, 1). Without loss of generality, let us assume that Σ1 = {S1, S2}
and Σ2 = {S1, S3} where Si ∈ (Ak, 1) for i = 1, 2, 3. Then β(T1∪T2) = T1∪T3.
Hence β deduces a permutation τ of (Ak, 1) mapping Σ1 onto Σ2 by restriction
and also τ is a permutation of (Ak, i) for all i since τ(T1 ∪ T2) = T1 ∪ T3 and
Tj ∩ (Ak, i) 6= ∅ for all i and j = 1, 2, 3. Suppose that

Tj = {Σ ∈M2(X) | for S ∈M1(X) we have S 6 Σ if and only if S ∈ Σj}
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for j ∈ {1, 2}. Then Tj is the set of points in M2(X) which is the common up-
set of all points of Σj for j ∈ {1, 2}, and τ has to map T1 onto T2. Therefore,
for every l-element subset Σ of (Ak, 1), there exists the same number akl of
elements which cover all elements of Σ and no others. Let Kl(X) be the
set of l-element subsets of (Ak, 1), that is, Kl = {Σ1,Σ2, . . . ,Σ

((
n
k)
l

)
} for all

l = 1, . . . ,
(
n
k

)
. Since for each l-element subset Σj , 1 ≤ j ≤

((n
k)
l

)
, there are akl

copies of it, it implies that there are akl copies of Kl for all l = 1, . . . ,
(
n
k

)
after

all. In all, we have the multiplicity Ω(n
k) =

(
ak1 , a

k
2 , . . . , a

k

(n
k)

)
, where akt ≥ 0,

for all t = 1, . . . ,
(
n
k

)
for M1(Ak, 1) for all k = 1, 2, . . . , n.

Subcase 1: For all k, suppose M1(Ak, 1) has multiplicity 1, that is bk = 1
for all k with order relations Order 1 and 2 only. It is then clear that (P,6) is
isomorphic to (Z2,6) in Lemma 3.3.

Subcase 2: Suppose M1(Ak, 1) has multiplicity bk ≥ 1 for all k with order
relations Order 1 and 2 only. It is then clear that (P,6) is isomorphic to
(Z2,6) in Lemma 3.4.

Case 2: For every k = 1, 2, . . . , n, suppose Σ1 ⊂ (Ak, 1) and Σ2 ⊂ (Ak, 2),
respectively. Without loss of generality, let us assume that Σ1 = {S1, S2} and
Σ2 = {S3, S4}. Then β(T1 ∪ T2) = T3 ∪ T4. Note that Tj ∩ (Ak, i) 6= ∅ for all
i = 1, 2 and j = 1, 2, 3, 4. Let Σ′2 be a copy of Σ2 in T2∩(Ak, 1) and Σ′1 be a copy
of Σ1 in T1∩ (Ak, 2). Hence β deduces a permutation τ of (Ak, i) by restriction
for all i = 1, 2 and τ should map the commom up-set of all points of Σ1 ∪ Σ′2
in M1(Ak, 1) onto the commom up-set of all points of Σ′1 ∪ Σ2 in M1(Ak, 2).
Hence there are order relations between (Ak, 1) and M1(Ak, 2), and between
(Ak, 2) and M1(Ak, 1). In general, for every l-element subset Σ of (Ak, i), there
exists the same number akl of elements which cover all elements of Σ, and no

others. Similar to Case 1, we have the multiplicity Ω(n
k) =

(
ak1 , a

k
2 , . . . , a

k

(n
k)

)
where akt ≥ 0 for all t = 1, . . . ,

(
n
k

)
for M1(Ak, i) for all i = 1, . . . ,mk and

k = 1, . . . , n.
Subcase 1: M1(Ak, i) has the multiplicities bk = 1 for k = 1, . . . , n. It is

then clear that (P,6) is isomorphic to (Z2,6) in Lemma 3.1.
Subcase 2: M1(Ak, i) has the multiplicities bk > 1 for k = 1, . . . , n. It is

then clear that (P,6) is isomorphic to (Z2,6) in Lemma 3.2. In all (iii) holds.
By Lemmas 3.1-3.4, (iii) implies (i). �

4. Applications

For a positive integer n, let X = [n]. Define a poset (P 2,6), where

P 2 = X ∪M1(X) ∪M2(X)
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and (m1,m2, . . . ,mn) = (1, 1, . . . , 1), Ω(n
k) = (1, . . . , 1) and bk = 1 for all k.

Then M1(X) is the power set of X except the empty set, and M2(X) is the set
of power sets (except the empty set) of Ak(X) for all 1 ≤ k ≤ n.

Hence we have the following corollary.

Corollary 4.1. With the order relations defined Order 1, and 2, (P 2,6) is
ideal-homogeneous.

For given posets P and Q, P ⊕ Q is represented as a poset with a prop-
erty that x 6 y if and only if x ∈ P and y ∈ Q. Let {B1, B2, . . . , Bn}
be a set of antichains. Now construct a poset P which is isomorphic to
B1⊕B2⊕· · ·⊕Bn. Let X1 = [|B1|] and the multiplicities (m1,m2, . . . ,m|B1|) =
(0, 0, . . . , |B2|). Then for all i = 1, . . . , |B2| we have (A|B1|, i). Let T2(X) =⋃|B2|
i=1 (A|B1|, i). Then |T2(X)| = |B2|. Now, let X2 = [|B2|] and the multiplic-

ities (m1,m2, . . . ,m|B2|) = (0, 0, . . . , |B3|). Then let T3(X) =
⋃|B3|
i=1 (A|B2|, i).

Then |T3(X)| = |B3|. Likewise, define a poset P , recursively, and at last
Xn−1 = [|Bn−1|] and the multiplicities (m1,m2, . . . ,m|Bn−1|) = (0, 0, . . . , |Bn|)
and Tn(X) =

⋃|Bn|
i=1 (A|Bn−1|, i). Then |Tn(X)| = |Bn|. The order relations

between Xi and Ti(Xi) in each steps i = 1, . . . , n are defined by set inclusion.
Then the poset P constructed is isomorphic to B1⊕B2⊕ · · · ⊕Bn of height n.
Therefore we have the following:

Theorem 4.2. Let {B1, B2, . . . , Bn} be a set of antichains. Then the poset P
constructed above which is isomorphic to B1⊕B2⊕· · ·⊕Bn is ideal-homogeneous
of height n.

Proof. Let I and J be ideals of P = B1 ⊕ B2 ⊕ · · · ⊕ Bn and α : (I,6) →
(J,6) is an isomorphism. Let Im and Jm be the set of maximal elements in
I and J , respectively. Then for some k, Im, Jm ⊂ Bk and by construction we
have I = D[Im] and J = D[Jm] and hence D[Im] ∼= D[Jm]. Therefore, by
restriction, α induces a bijection between Im ∩Jm, which can be extended to a
permutation on Bk. Also it can be extended to an automorphism σ∗ of P such
that σ∗|I = σ. �

We find some family of posets which are ideal homogeneous, but it is just
partial solutions for the following Behrendt’s problem [1].

Problem 2. Give a classification of all finite (weakly) ideal-homogeneous or-
dered sets.
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