SOME FAMILIES OF IDEAL-HOMOGENEOUS POSETS

Gab-Byung Chae †, Minseok Cheong, and Sang-Mok Kim

Abstract

A partially ordered set P is ideal-homogeneous provided that for any ideals I and J, if $I \cong_{\sigma} J$, then there exists an automorphism σ^{*} such that $\left.\sigma^{*}\right|_{I}=\sigma$. Behrendt [1] characterizes the ideal-homogeneous partially ordered sets of height 1. In this paper, we characterize the idealhomogeneous partially ordered sets of height 2 and find some families of ideal-homogeneous partially ordered sets.

1. Introduction

Suppose (P, \leqslant) is a finite partially ordered set (simply called a finite poset) with a partial order relation \leqslant, which is simply denoted by P for convenience. If $Q \subset P$, we may refer to Q also as a poset, having in mind the subposet (Q, \leqslant) whose order relation is the restriction of (P, \leqslant) 's. If P is a finite ordered set and $x \in P$, then the height $h(x)$ is the maximal cardinality of a chain in $\{y \in P \mid y<x\}$. The height of a poset P, denoted by $h t(P)$, is maximum of all $h(x)$ for $x \in P$. For a poset P and $x \in P$, let $U[x]=\{y \in P \mid y \geqslant x$ in $P\}$, say the up-set of x, and $D[x]=\{y \in P \mid y \leqslant x$ in $P\}$, say the down-set of x. Also, we let $U[A]=\cup_{x \in A} U[x]$, the up-set of A, and $D[A]=\cup_{x \in A} D[x]$ the down-set of A for a nonempty subposet A of P. A map $f:(P, \leqslant) \rightarrow\left(Q, \leqslant^{\prime}\right)$ of posets is order-preserving if $x \leqslant y$ implies $f(x) \leqslant^{\prime} f(y)$ in Q for all $x, y \in P$. Two posets (P, \leqslant) and $\left(Q, \leqslant^{\prime}\right)$ are isomorphic if there exists an order-preserving bijection $f:(P, \leqslant) \rightarrow\left(Q, \leqslant^{\prime}\right)$ such that f^{-1} is also order-preserving. We denote the set of all automorphisms of a poset P by $\operatorname{Aut}(P)$. An ideal I of P is a non-empty subset of P such that if $x \leqslant y$ for $x \in P$ and $y \in I$, then $x \in I$. A poset P is ideal-homogeneous, provided that, for any ideals I and J with $I \cong{ }_{\sigma} J$, there exists an automorphism $\sigma^{*} \in$ Aut P such that $\left.\sigma^{*}\right|_{I}=\sigma$. A poset P is weakly ideal-homogeneous, provided that for each I of P and $\sigma \in \operatorname{Aut}(I)$, there is $\sigma^{*} \in \operatorname{Aut}(P)$ such that $\left.\sigma^{*}\right|_{I}=\sigma$.

It is very natural to ask whether every isomorphism between finite substructures can be extendable to an automorphism of the whole structure. In 1993,

[^0]some results on the homogeneity for finite partially ordered sets were given by G. Behrendt [1], and they made resume to investigate the relationship between the homogeneity conditions for finite partially ordered sets. The following theorem, due to Behrendt [1], characterizes the (weakly) ideal-homogeneous posets of height 1. For a positive integer $n,[n]$ is the set of positive interger less than or equal to n.

Theorem $1.1([1])$. Let (P, \leqslant) be a finite partially ordered set of height 1. The followings are equivalent.
(i) (P, \leqslant) is ideal-homogeneous.
(ii) (P, \leqslant) is weakly ideal-homogeneous.
(iii) There exist a positive integer n and a function $f:[n] \rightarrow \mathbb{N}$ such that there exists $i \in[n]$ with $f(i) \neq 0$ and (P, \leqslant) is isomorphic to (X, \leqslant), where

$$
X=[n] \cup\{(S, i) \mid \emptyset \neq S \subseteq[n], 1 \leq i \leq f(|S|)\}
$$

and for $k \in[n], \emptyset \neq S \subseteq[n], 1 \leq i \leq f(|S|)$, let

$$
k \leqslant(S, i) \quad \text { if and only if } \quad k \in S
$$

In this paper, we characterize the ideal-homogeneous partially ordered sets of height 2 and find some families of ideal-homogeneous partially ordered sets. The other definitions not written in this paper and general properties of posets follow from [2].

2. Construction

Let $X=[n]$ and $P(X)$ be the power set of X. For all $k=1, \ldots, n$, let $A_{k}(X)$ be the set of k-element subsets of X, that is, $A_{k}(X)=\left\{S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right\}$ where $\left|S_{i}\right|=k$ for $i=1, \ldots,\binom{n}{k}$. Then $\left|A_{k}(X)\right|=\binom{n}{k}$. Let $M_{1}(X)$ be a multi-set of nonempty subsets of X with the multiplicities $m_{k} \geq 0$ for $A_{k}(X)$ for each $k=1, \ldots, n$, such that
(1) every element S of $M_{1}(X)$ is a nonempty subset of X,
(2) if $S(\neq \emptyset) \in M_{1}(X)$ with $|S|=k$ for some k, then it has multiplicity m_{k}, that means it appears m_{k} times in $M_{1}(X)$.
(3) if $S(\neq \emptyset) \in M_{1}(X)$ with $|S|=k$ for some k, then $T \in M_{1}(X)$ for any $T \in A_{k}(X)$.
Therefore, if $S, T \in M_{1}(X)$ with $|S|=|T|=k$, then both S and T appear m_{k} times in $M_{1}(X)$. Hence for each k, it can be said that m_{k} is not only the multiplicity of an element S of $A_{k}(X)$ but also the multiplicity of $A_{k}(X)$. Thus we may write $M_{1}(X)$ using $A_{k}(X)$'s as

$$
\begin{align*}
M_{1}(X)= & \left(A_{1}, 1\right) \cup \cdots \cup\left(A_{1}, m_{1}\right) \\
& \bigcup\left(A_{2}, 1\right) \cup \cdots \cup\left(A_{2}, m_{2}\right) \bigcup \cdots \tag{1}\\
& \bigcup\left(A_{n}, 1\right) \cup \cdots \cup\left(A_{n}, m_{n}\right)
\end{align*}
$$

where $\left(A_{k}, i\right)=\left(A_{k}(X), i\right)$ is the i-th copy of $A_{k}(X)$ for $1 \leq i \leq m_{k}$ and $m_{k} \geq 0$. Hence if $S \in A_{k}(X)$ for some k, then we may notice $(S, i) \in\left(A_{k}(X), i\right)$ for all i and we say (S, i) is the i-th copy of S also, denote $S_{i}=(S, i)$. Note that if $m_{k}=0$ for some k, then $\left(A_{k}, i\right)=\phi$ for all i.

We may define $M_{1}(Y)$ for any non-empty set Y. Let us consider $M_{1}(Y)$, where $Y=\left(A_{k}(X), i\right)$ for fixed i and k. For all $t=1, \ldots,\binom{n}{k}$, let $B_{t}(Y)$ be the set of t-element subsets of Y, that is, $B_{t}(Y)=\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{\left(\begin{array}{c}n \\ k \\ t\end{array}\right)}^{\substack{n \\ k}}\right\}$ where $\left|\Sigma_{i}\right|=t$ for $i=1, \ldots,\left(\begin{array}{c}\left(\begin{array}{c}n \\ k \\ t\end{array}\right)\end{array}\right)$. Then $M_{1}\left(\left(A_{k}(X), i\right)\right)$ is the multi-set of nonempty subsets of $\left(A_{k}(X), i\right)$ with the multiplicities $a_{t}^{k} \geq 0$ for $B_{t}(Y)$ for all $t=1, \ldots,\binom{n}{k}$, such that
(1) every element Σ_{i} of $M_{1}\left(A_{k}(X), i\right)$ is a nonempty subset of $\left(A_{k}(X), i\right)$,
(2) if $\Sigma_{i}(\neq \emptyset) \in M_{1}\left(A_{k}(X), i\right)$ with $\left|\Sigma_{i}\right|=t$ for some t, then it has multiplicity a_{t}^{k}, that means it appears a_{t}^{k} times in $M_{1}\left(A_{k}(X), i\right)$.
Let $M_{1}\left(\left(A_{k}(X), i\right)\right)=M_{1}\left(A_{k}(X), i\right)$ and $\Omega_{\binom{n}{k}}=\left(a_{1}^{k}, a_{2}^{k}, \ldots, a_{\binom{n}{k}}^{k}\right)$ for convenience. Hence $\left(\Sigma_{i}, j\right) \in M_{1}\left(A_{k}, i\right)$ is defined as the j-th copy of Σ_{i} in $M_{1}\left(A_{k}, i\right)$, where $1 \leq j \leq a_{\left|\Sigma_{i}\right|}^{k}$. We write $\left(\Sigma_{i}, j\right)=\left\{\Sigma_{i}\right\}_{j}$.

Now we define a (second level) multi-set $M_{2}(X)$ of X as:

$$
\begin{equation*}
M_{2}(X)=\bigcup_{k=1}^{n} \bigcup_{i=1}^{m_{k}} \bigcup_{r=1}^{b_{k}} M_{1}\left(A_{k}(X), i\right)^{r}, \tag{2}
\end{equation*}
$$

where $\left(m_{1}, m_{2}, \ldots, m_{n}\right), m_{k} \geq 0, \Omega_{\binom{n}{k}}=\left(a_{1}^{k}, a_{2}^{k}, \ldots, a_{\binom{n}{k}}^{k}\right)$ with $a_{t}^{k} \geq 0$ for $t=1, \ldots,\binom{n}{k}$, and $b=\left(b_{1}, b_{2}, \cdots, b_{n}\right), b_{k} \geq 1$ are the multiplicities for A_{k} of $M_{1}(X)$, the nonempty subsets of $B_{t}\left(\left(A_{k}, i\right)\right)$ of $M_{2}(X)$, and $M_{1}\left(A_{k}(X), i\right)$ for all $1 \leq i \leq m_{k}, k=1, \ldots, n$, respectively and $1 \leq r \leq b_{k}$. If $m_{k}=0$ for some k, then $M_{2}(X)$ does not have $M_{1}\left(A_{k}, i\right)$ for $i=1, \ldots, m_{k}$. And if $a_{t}^{k}=0$ for some k and t, then $M_{2}(X)$ does not have t-elements subset of $\left(A_{k}, i\right)$ for all $i=1,2, \ldots, m_{k}$. The next example shows a construct process of $X, M_{1}(X)$, and $M_{2}(X)$ for given n.

Example 1. Let $n=3$ and hence $X=[3]$. Then we have

$$
\begin{equation*}
P(X)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}, \tag{3}
\end{equation*}
$$

where $A_{1}=\{\{1\},\{2\},\{3\}\}, A_{2}=\{\{1,2\},\{1,3\},\{2,3\}\}$, and $A_{3}=\{\{1,2,3\}\}$. Suppose $\left(m_{1}, m_{2}, m_{3}\right)=(1,3,2)$ is the multiplicities of A_{k} for $k=1,2,3$. Then we have

$$
\begin{align*}
\left(A_{1}, 1\right) & =(\{\{1\},\{2\},\{3\}\}, 1)=\{(\{1\}, 1),(\{2\}, 1),(\{3\}, 1)\} \\
& =\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}, \\
\left(A_{2}, i\right) & =(\{\{1,2\},\{1,3\},\{2,3\}\}, i) \tag{4}\\
& =\{(\{1,2\}, i),(\{1,3\}, i),(\{2,3\}, i)\}
\end{align*}
$$

$$
\begin{aligned}
& =\left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\} \quad \text { for } i=1,2,3, \\
\left(A_{3}, i\right) & =(\{\{1,2,3\}\}, i)=\{(\{1,2,3\}, 1),(\{1,2,3\}, 2)\} \\
& =\left\{\{1,2,3\}_{1},\{1,2,3\}_{2}\right\} .
\end{aligned}
$$

Therefore we can write $M_{1}(X)$ as:

$$
\begin{align*}
M_{1}(X)= & \left\{\{1\}_{1},\{2\}_{1},\{3\}_{1},\{1,2\}_{1},\{1,3\}_{1},\{2,3\}_{1},\right. \\
& \{1,2\}_{2},\{1,3\}_{2},\{2,3\}_{2},\{1,2\}_{3},\{1,3\}_{3},\{2,3\}_{3} \tag{5}\\
& \left.\{1,2,3\}_{1},\{1,2,3\}_{2}\right\} .
\end{align*}
$$

Suppose $\Omega_{\binom{3}{1}}=(1,2,2), \Omega_{\binom{3}{2}}=(1,1,3), \Omega_{\binom{3}{3}}=(2), b=\left(b_{1}, b_{2}, b_{3}\right)=(2,1,2)$. Then we have

$$
\begin{aligned}
M_{1}\left(A_{1}, 1\right)^{j}= & M_{1}\left(\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}\right) \text { with } \Omega_{\binom{3}{1}}=(1,2,2) \\
= & \left\{\left(\left\{\{1\}_{1}\right\}, 1\right)^{j},\left(\left\{\{2\}_{1}\right\}, 1\right)^{j},\left(\left\{\{3\}_{1}\right\}, 1\right)^{j},\right. \\
& \left(\left\{\{1\}_{1},\{2\}_{1}\right\}, 1\right)^{j},\left(\left\{\{1\}_{1},\{3\}_{1}\right\}, 1\right)^{j},\left(\left\{\{2\}_{1},\{3\}_{1}\right\}, 1\right)^{j}, \\
& \left(\left\{\{1\}_{1},\{2\}_{1}\right\}, 2\right)^{j},\left(\left\{\{1\}_{1},\{3\}_{1}\right\}, 2\right)^{j},\left(\left\{\{2\}_{1},\{3\}_{1}\right\}, 2\right)^{j}, \\
& \left.\left(\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}, 1\right)^{j},\left(\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}, 2\right)^{j}\right\}
\end{aligned}
$$

(6)
or we can write it for convenience

$$
\begin{align*}
M_{1}\left(A_{1}, 1\right)^{j}= & \left\{\left\{\{1\}_{1}\right\}_{1}^{j},\left\{\{2\}_{1}\right\}_{1}^{j},\left\{\{3\}_{1}\right\}_{1}^{j},\right. \\
& \left\{\{1\}_{1},\{2\}_{1}\right\}_{1}^{j},\left\{\{1\}_{1},\{3\}_{1}\right\}_{1}^{j},\left\{\{2\}_{1},\{3\}_{1}\right\}_{1}^{j}, \tag{7}\\
& \left\{\{1\}_{1},\{2\}_{1}\right\}_{2}^{j},\left\{\{1\}_{1},\{3\}_{1}\right\}_{2}^{j},\left\{\{2\}_{1},\{3\}_{1}\right\}_{2}^{j}, \\
& \left.\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}_{1}^{j},\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}_{2}^{j}\right\},
\end{align*}
$$

where $j=1,2$ which means we have 2 copies of $M_{1}\left(A_{1}, 1\right)$ since $b_{1}=2$,
(8) $\quad M_{1}\left(A_{2}, i\right)^{1}$

$$
\begin{aligned}
= & M_{1}\left(\left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\} \quad \text { with } \quad \Omega_{\substack{3 \\
2 \\
2}}=(1,1,3)\right. \\
= & \left\{\left(\left\{\{1,2\}_{i}\right\}, 1\right)^{1},\left(\left\{\{1,3\}_{i}\right\}, 1\right)^{1},\left(\left\{\{2,3\}_{i}\right\}, 1\right)^{1},\right. \\
& \left(\left\{\{1,2\}_{i},\{1,3\}_{i}\right\}, 1\right)^{1},\left(\left\{\{1,2\}_{i},\{2,3\}_{i}\right\}, 1\right)^{1},\left(\left\{\{1,3\}_{i},\{2,3\}_{i}\right\}, 1\right)^{1}, \\
& \left(\left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\}, 1\right)^{1},\left(\left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\}, 2\right)^{1}, \\
& \left.\left(\left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\}, 3\right)^{1}\right\} \\
= & \left\{\left\{\{1,2\}_{i}\right\}_{1}^{1},\left\{\{1,3\}_{i}\right\}_{1}^{1},\left\{\{2,3\}_{i}\right\}_{1}^{1},\right. \\
& \left\{\{1,2\}_{i},\{1,3\}_{i}\right\}_{1}^{1},\left\{\{1,2\}_{i},\{2,3\}_{i}\right\}_{1}^{1},\left\{\{1,3\}_{i},\{2,3\}_{i}\right\}_{1}^{1}, \\
& \left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\}_{1}^{1},\left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\}_{2}^{1}, \\
& \left.\left\{\{1,2\}_{i},\{1,3\}_{i},\{2,3\}_{i}\right\}_{3}^{1}\right\}
\end{aligned}
$$

so that we have only one copy of $M_{1}\left(A_{2}, i\right)$ for each for $i=1,2,3$, since $b_{2}=1$ and

$$
\begin{align*}
M_{1}\left(A_{3}, i\right)^{j} & =M_{1}\left(\{1,2,3\}_{i}\right)^{j} \quad \text { with } \quad \Omega_{\binom{3}{3}}=(2) \\
& =\left\{\left(\left\{\{1,2,3\}_{i}\right\}, 1\right)^{j},\left(\left\{\{1,2,3\}_{i}\right\}, 2\right)^{j}\right\} \tag{9}\\
& =\left\{\left\{\{1,2,3\}_{i}\right\}_{1}^{j},\left\{\{1,2,3\}_{i}\right\}_{2}^{j}\right\},
\end{align*}
$$

where $j=1,2$ which means we have 2 copies of $M_{1}\left(A_{3}, i\right)$ for each $i=1,2$ since $b_{3}=2$. Therefore, the second-level multi-set $M_{2}(X)$, where $\left(m_{1}, m_{2}, m_{3}\right)=$ $(1,3,2), \Omega_{\binom{3}{1}}=(1,2,2), \Omega_{\binom{3}{2}}=(1,1,3), \Omega_{\binom{3}{3}}=(2)$, and $b=\left(b_{1}, b_{2}, b_{3}\right)=$ $(2,1,2)$ as

$$
\begin{align*}
& M_{2}(X) \tag{10}\\
= & \bigcup_{k=1}^{3} \bigcup_{i=1}^{m_{k}} \bigcup_{r=1}^{b_{k}} M_{1}\left(A_{k}, i\right)^{r} \\
= & M_{1}\left(A_{1}, 1\right)^{1} \cup M_{1}\left(A_{1}, 1\right)^{2} \\
& \cup M_{1}\left(A_{2}, 1\right)^{1} \cup M_{1}\left(A_{2}, 2\right)^{1} \cup M_{1}\left(A_{2}, 3\right)^{1} \\
& \cup M_{1}\left(A_{3}, 1\right)^{1} \cup M_{1}\left(A_{3}, 1\right)^{2} \cup M_{1}\left(A_{3}, 2\right)^{1} \cup M_{1}\left(A_{3}, 2\right)^{2} \\
= & \left\{\left\{\{1\}_{1}\right\}_{1}^{1},\left\{\{2\}_{1}\right\}_{1}^{1},\left\{\{3\}_{1}\right\}_{1}^{1},\right. \\
& \left\{\{1\}_{1},\{2\}_{1}\right\}_{1}^{1},\left\{\{1\}_{1},\{3\}_{1}\right\}_{1}^{1},\left\{\{2\}_{1},\{3\}_{1}\right\}_{1}^{1}, \\
& \left\{\{1\}_{1},\{2\}_{1}\right\}_{2}^{1},\left\{\{1\}_{1},\{3\}_{1}\right\}_{2}^{1},\left\{\{2\}_{1},\{3\}_{1}\right\}_{2}^{1}, \\
& \left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}_{1}^{1},\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}_{2}^{1}, \quad\left(M_{1}\left(A_{1}, 1\right)^{1} \text { part }\right) \\
& \left\{\{1\}_{1}\right\}_{1}^{2},\left\{\{2\}_{1}\right\}_{1}^{2},\left\{\{3\}_{1}\right\}_{1}^{2}, \\
& \left\{\{1\}_{1},\{2\}_{1}\right\}_{1}^{2},\left\{\{1\}_{1},\{3\}_{1}\right\}_{1}^{2},\left\{\{2\}_{1},\{3\}_{1}\right\}_{1}^{2}, \\
& \left\{\{1\}_{1},\{2\}_{1}\right\}_{2}^{2},\left\{\{1\}_{1},\{3\}_{1}\right\}_{2}^{2},\left\{\{2\}_{1},\{3\}_{1}\right\}_{2}^{2}, \\
& \left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}_{1}^{2},\left\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\right\}_{2}^{2}, \quad\left(M_{1}\left(A_{1}, 1\right)^{2} \text { part }\right) \\
& \left\{\{1,2\}_{1}\right\}_{1},\left\{\{1,3\}_{1}\right\}_{1},\left\{\{2,3\}_{1}\right\}_{1}, \\
& \left\{\{1,2\}_{1},\{1,3\}_{1}\right\}_{1},\left\{\{1,2\}_{1},\{2,3\}_{1}\right\}_{1},\left\{\{1,3\}_{1},\{2,3\}_{1}\right\}_{1}, \\
& \left\{\{1,2\}_{1},\{1,3\}_{1},\{2,3\}_{1}\right\}_{1},\left\{\{1,2\}_{1},\{1,3\}_{1},\{2,3\}_{1}\right\}_{2}, \\
& \left\{\{1,2\}_{1},\{1,3\}_{1},\{2,3\}_{1}\right\}_{3}, \\
& \left\{\{1,2\}_{2}\right\}_{1},\left\{\{1,3\}_{2}\right\}_{1},\left\{\{2,3\}_{2}\right\}_{1}, \\
& \left\{\{1,2\}_{2},\{1,3\}_{2}\right\}_{1},\left\{\{1,2\}_{2},\{2,3)_{2}^{1} \text { part }\right) \\
& \left\{\{1,2\}_{2},\{1,3\}_{2},\{2,3\}_{2}\right\}_{1},\left\{\{1,2\}_{2},\{1,3\}_{2},\left\{2,\{2,3\}_{2}\right\}_{1},\right. \\
& \left\{\{1,2\}_{2},\{1,3\}_{2},\{2,3\}_{2}\right\}_{3}, \\
& \left\{\{1,2\}_{3}\right\}_{1},\left\{\{1,3\}_{3}\right\}_{1},\left\{\{2,3\}_{3}\right\}_{1}, \\
& \left\{\{1,2\}_{3},\{1,3\}_{3}\right\}_{1},\left\{\{1,2\}_{3},\{2,3\}_{3}\right\}_{1},\left\{\{1,3\}_{3},\{2,3\}_{3}\right\}_{1},
\end{align*}
$$

$$
\begin{aligned}
& \left\{\{1,2\}_{3},\{1,3\}_{3},\{2,3\}_{3}\right\}_{1},\left\{\{1,2\}_{3},\{1,3\}_{3},\{2,3\}_{3}\right\}_{2}, \\
& \left\{\{1,2\}_{3},\{1,3\}_{3},\{2,3\}_{3}\right\}_{3}, \quad\left(M_{1}\left(A_{2}, 3\right)^{1} \text { part }\right) \\
& \left\{\{1,2,3\}_{1}\right\}_{1}^{1},\left\{\{1,2,3\}_{1}\right\}_{2}^{1},\left\{\{1,2,3\}_{2}\right\}_{1}^{1},\left\{\{1,2,3\}_{2}\right\}_{2}^{1}, \\
& \quad\left(M_{1}\left(A_{3}, 1\right)^{1} \text { and } M_{1}\left(A_{3}, 2\right)^{1} \text { part }\right) \\
& \left.\left\{\{1,2,3\}_{1}\right\}_{1}^{2},\left\{\{1,2,3\}_{1}\right\}_{2}^{2},\left\{\{1,2,3\}_{2}\right\}_{1}^{2},\left\{\{1,2,3\}_{2}\right\}_{2}^{2}\right\} \\
& \left(M_{1}\left(A_{3}, 1\right)^{2} \text { and } M_{1}\left(A_{3}, 2\right)^{2} \text { part }\right) .
\end{aligned}
$$

For a positive integer n, let $X=[n]$. Define a poset (Z, \leqslant), where

$$
Z=[n] \cup M_{1}(X)
$$

and for $S \in M_{1}(X)$ with $|S|=k$ (so $\left.S \in A_{k}\right)$ and $x \in[n]$,

$$
x \leqslant(S, i)=S_{i} \quad \text { if and only if } \quad x \in S_{i},
$$

where $1 \leq k \leq n$, and $(S, i)=S_{i}$ is the i-th copy of S in $\left(A_{k}, i\right)$ for all i, $1 \leq i \leq m_{k}$. Then we can easily find that

$$
(Z, \leqslant) \cong(X, \leqslant),
$$

where X is the poset defined in Theorem 1.1 by Behrendt [1].
Now a family of ideal-homogeneous partially ordered sets of height 2 is constructed.

Construction of $\boldsymbol{Z}^{\mathbf{2}}$:

For a positive integer n, let $X=[n]$. Define a poset $\left(Z^{2}, \leqslant\right)$ as

$$
Z^{2}=X \cup M_{1}(X) \cup M_{2}(X),
$$

where $\left(m_{1}, m_{2}, \ldots, m_{n}\right), m_{k} \geq 0$ is the multiplicity for A_{k} of $M_{1}(X), \Omega_{\binom{n}{k}}=$ $\left(a_{1}^{k}, a_{2}^{k}, \ldots, a_{\binom{n}{k}}^{k}\right)$ with $a_{t}^{k} \geq 0$ for $t=1, \ldots,\binom{n}{k}$ is for $B_{t}\left(A_{k}, i\right)$ of $\left(A_{k}, i\right)$ of $M_{2}(X)$, and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right), b_{k} \geq 1$ is for $M_{1}\left(A_{k}(X), i\right)$ for all $1 \leq i \leq m_{k}$, $k=1, \ldots, n$. The order relations on Z^{2} are defined as follows:

Order 1: For $S_{i} \in M_{1}(X)$ with $\left|S_{i}\right|=k\left(\right.$ so $\left.S_{i} \in A_{k}\right)$ and $x \in[n]$,

$$
x \leqslant S_{i}=(S, i) \quad \text { if and only if } \quad x \in S_{i},
$$

where $1 \leq i \leq m_{k}$ and $S_{i}=(S, i)$ is the i-th copy of S in $\left(A_{k}, i\right)$ for all $i, 1 \leq i \leq m_{k}, k=1, \ldots, n$.
Order 2: For some k, i, and r, if $\Sigma_{i} \in M_{1}\left(A_{k}, i\right)^{r} \subset M_{2}(X)$ and $S_{i} \in$ $\left(A_{k}, i\right)$, then

$$
S_{i} \leqslant \Sigma_{i} \quad \text { if and only if } \quad S_{i} \in \Sigma_{i}
$$

for all $\Sigma_{i} \in M_{1}\left(A_{k}, i\right)^{r}$, where $r=1, \ldots, b_{k}$.
Order 3: For some k, r, i and j with $i \neq j$, if $\Sigma_{j} \in M_{1}\left(A_{k}, j\right)^{r} \subset M_{2}(X)$ and $S_{i} \in\left(A_{k}, i\right)$ (Note that for $i \neq j,\left(A_{k}, i\right)$ and $\left(A_{k}, j\right)$ are basically identical hence we may say $\Sigma_{i}=\Sigma_{j}$ as a set nevertheless $\Sigma_{i} \in M_{1}\left(A_{k}, i\right)$ and $\Sigma_{j} \in M_{1}\left(A_{k}, j\right)$ and hence we may define order relation between

Figure 1. A poset of height 2 in Example 1
S_{i} and $\Sigma_{j} \in M_{1}\left(A_{k}, j\right)$ or S_{j} and $\Sigma_{i} \in M_{1}\left(A_{k}, i\right)$ in addition to Order 2 above) then

$$
S_{i} \leqslant \Sigma_{j} \quad \text { if and only if } \quad S_{i} \in \Sigma_{j}
$$

for all $\Sigma_{j} \in M_{1}\left(A_{k}, j\right)^{r}$, where $r=1, \ldots, b_{k}$.
Consequently, if $x \leqslant S_{i}$ and $S_{i} \leqslant \Sigma_{j}$, then $x \leqslant \Sigma_{j}$ for every i and $j, 1 \leq i, j \leq$ $m_{k}, k=1, \ldots, n$.

The poset $Z^{2}=X \cup M_{1}(X) \cup M_{2}(X)$ in Example 1 with $n=3$ and the order relations defined in Order 1, 2, and 3 above is roughly illustrated in Figure 1. The lines between the circled sets means there are order relations among the elements of them and the transitivity law holds.

3. Main results

Lemma 3.1. Let $\left(Z^{2}, \leqslant\right)$ be the poset in Construction of Z^{2} with order relations Order 1, 2, and 3. Suppose that $b_{k}=1$ for all k where $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is the multiplicity $M_{1}\left(A_{k}(X), i\right)$ for all $1 \leq i \leq m_{k}, k=1, \ldots, n$. Then $\left(Z^{2}, \leqslant\right)$ is ideal-homogeneous of height 2 .
Proof. Let I_{1} and I_{2} be ideals of $\left(Z^{2}, \leqslant\right)$ and

$$
\alpha:\left(I_{1}, \leqslant\right) \rightarrow\left(I_{2}, \leqslant\right)
$$

an isomorphism. Assume $I \cap M_{2}(X) \neq \varnothing$ for all ideals in this proof, if not, it is of height 2. By the construction, it is clear that if $I_{1} \cong I_{2}$, then $I_{1} \cap M_{1}\left(A_{k}, \cdot\right)=\varnothing$
if and only if $I_{2} \cap M_{1}\left(A_{k}, \cdot\right)=\varnothing$ for all $k=1,2, \ldots, n$. Hence there are finitely many numbers of k such that $I_{1} \cap M_{1}\left(A_{k}, \cdot\right) \neq \varnothing$ and $I_{2} \cap M_{1}\left(A_{k}, \cdot\right) \neq$ \varnothing. Without loss of generality, for finite subset K_{1} and J_{1}^{k} of $[n]$ and $\left[m_{k}\right]$, respectively, we can assume that

$$
I_{1} \cap M_{2}(X) \subset \bigcup_{k \in K_{1}} \bigcup_{i \in J_{1}^{k}} M_{1}\left(A_{k}, i\right)
$$

and for finite subset K_{2} and J_{2}^{k} of $[n]$ and $\left[m_{k}\right]$, respectively, we can assume that

$$
I_{2} \cap M_{2}(X) \subset \bigcup_{k \in K_{2}} \bigcup_{i \in J_{2}^{k}} M_{1}\left(A_{k}, i\right)
$$

By the consideration above, it is clear that $K_{1}=K_{2}$, if not, we conclude that I_{1} is not isomophic to I_{2}. Therefore, without loss of generality (all other cases can be treated in the same way), we can assume that, for some k,

$$
I_{1} \cap M_{2}(X) \subset M_{1}\left(A_{k}, 1\right) \cup M_{1}\left(A_{k}, 2\right)
$$

and

$$
I_{2} \cap M_{2}(X) \subset M_{1}\left(A_{k}, 1\right) \cup M_{1}\left(A_{k}, 3\right)
$$

Let

$$
I_{1} \cap M_{2}(X)=B \cup E \quad \text { and } \quad I_{2} \cap M_{2}(X)=C \cup F,
$$

where $B=I_{1} \cap M_{1}\left(A_{k}, 1\right), C=I_{2} \cap M_{1}\left(A_{k}, 3\right), E=I_{1} \cap M_{1}\left(A_{k}, 2\right)$, and $F=I_{2} \cap M_{1}\left(A_{k}, 1\right)$. Without loss of generality again, we can assume that $B \cong{ }_{\alpha} C$ and $E \cong{ }_{\alpha} F$. If not, we have two cases (i) $B \cong_{\alpha} C \cup F^{\prime}$ where $F^{\prime} \subset M_{1}\left(A_{k}, 1\right)$ and (ii) $B \cong{ }_{\alpha} C^{\prime}$ where $C^{\prime} \subset C$. For the case (i), there exists $F^{\prime \prime} \subset M_{1}\left(A_{k}, 3\right)$ such that $F^{\prime} \cong{ }_{\alpha} F^{\prime \prime}$. Note that $D\left[F^{\prime}\right] \cong D\left[F^{\prime \prime}\right]$. Hence new C is obtained by replacing F^{\prime} by $F^{\prime \prime}$ to be $B \cong{ }_{\alpha} C$. We may do similarly for the case (ii).

By restriction, α induces a bijection β_{1} between $D[B] \cap\left(A_{k}, 1\right)$ and $D[C] \cap$ $\left(A_{k}, 1\right)$ and bijection β_{2} between $D[E] \cap\left(A_{k}, 1\right)$ and $D[F] \cap\left(A_{k}, 1\right)$ which can be extended together to a permutation α_{1} on $\left(A_{k}, 1\right)$. That is, $\alpha_{1}\left(D[B] \cap\left(A_{k}, 1\right)\right)=$ $D[C] \cap\left(A_{k}, 1\right), \alpha_{1}\left(D[E] \cap\left(A_{k}, 1\right)\right)=D[F] \cap\left(A_{k}, 1\right)$, and all other elements in $\left(A_{k}, 1\right)$ are fixed. Note that, since $\Omega_{\binom{n}{k}}=\left(a_{1}^{k}, a_{2}^{k}, \ldots, a_{\binom{k}{k}}^{k}\right)$ works for all $M_{1}\left(A_{k}, i\right)$ for all $i=1,2,3$, and by the order relation Order 3, we have $D[B] \cap\left(A_{k}, 1\right)=D[B] \cap\left(A_{k}, 2\right)=D[B] \cap\left(A_{k}, 3\right), D[C] \cap\left(A_{k}, 1\right)=D[C] \cap$ $\left(A_{k}, 2\right)=D[C] \cap\left(A_{k}, 3\right), D[E] \cap\left(A_{k}, 1\right)=D[E] \cap\left(A_{k}, 2\right)=D[E] \cap\left(A_{k}, 3\right)$, and $D[F] \cap\left(A_{k}, 1\right)=D[F] \cap\left(A_{k}, 2\right)=D[F] \cap\left(A_{k}, 3\right)$. Therefore, by the similar way to the case of restriction of α to α_{1}, α induces a permutation α_{2} on $\left(A_{k}, 2\right)$ and permutation α_{3} on $\left(A_{k}, 3\right)$, respectively. That is, $\alpha_{i}\left(D[B] \cap\left(A_{k}, i\right)\right)=$ $D[C] \cap\left(A_{k}, i\right), \alpha_{i}\left(D[E] \cap\left(A_{k}, i\right)\right)=D[F] \cap\left(A_{k}, i\right)$, and all other elements in $\left(A_{k}, i\right)$ are fixed for all $i=2,3$ which means that α_{i} are identical on $\left(A_{k}, i\right)$ for all $i=1,2,3$. That means $\alpha_{1}(S)=\alpha_{2}(S)=\alpha_{3}(S)$ for all $S \subset\left(A_{k}, \cdot\right)$. Let $\beta=\alpha_{1}=\alpha_{2}(S)=\alpha_{3}(S)$.

For each $\Sigma \subset\left(A_{k}, i\right)$ with $|\Sigma|=j$ and $l \in\{1,2\}$ let

$$
U_{l}(\Sigma)=\left\{c \mid 1 \leq c \leq a_{j}^{k} \text { with } \Sigma_{c} \in I_{l}\right\}
$$

Then a bijection $\beta_{\Sigma}: U_{1}(\Sigma) \rightarrow U_{2}(\beta(\Sigma))$ can be defined in order to associate to $\alpha(\Sigma, c)=\left(\beta(\Sigma), \beta_{\Sigma}(c)\right)$ for all $i=1,2,3$ and this can be extended to a permutation τ_{Σ} of $\left\{c \mid 1 \leq c \leq a_{j}^{k}\right\}$. Note that β_{Σ} and τ_{Σ} work for all $\left(A_{k}, i\right)$ for all $i=1,2,3$ in the same way. Also β induces a bijection between $I_{1} \cap[n]$ and $I_{2} \cap[n]$, which can be extended to a permutation τ of $[n]$. Now let $\sigma^{*}(m)=$ $\tau(m)$ for $m \in[n], \sigma^{*}(S)=\beta(S)$ for $S \in\left(A_{k}, 1\right), \sigma^{*}(\Sigma, i)=\left(\beta(\Sigma), \tau_{\Sigma}(i)\right)$ for $(\Sigma, i) \in\left(A_{k}, i\right)$ for all $i=1,2,3$, and all other elements of the poset are fixed. Then it is not hard to see that σ^{*} is an automorphism of $\left(Z^{2}, \leqslant\right)$ such that $\sigma^{*} \mid I_{1}=\sigma$.

The following lemma is a generalization of Lemma 3.1. Because there is no restriction to multiplicities $M_{1}\left(A_{k}(X), i\right)$ for $1 \leq i \leq m_{k}, k=1, \ldots, n$.
Lemma 3.2. Let $\left(Z^{2}, \leqslant\right)$ be the poset defined in Construction of Z^{2} with order relations Order 1, 2, and 3. Then $\left(Z^{2}, \leqslant\right)$ is ideal-homogeneous of height 2.

Proof. If $\left(A_{k}(X), i\right) \neq \varnothing, M_{1}\left(A_{k}(X), i\right)^{r}, r=1, \ldots, b_{k}$, are r copies of multiset of $\left(A_{k}(X), i\right)$ for fixed k. Then by Order 3, every r copies of $M_{1}\left(A_{k}(X), i\right)$ are in the up-set of $\left(A_{k}(X), i\right)$ for every $i \in\left\{1, \ldots, m_{k}\right\}$. Then the proof in Lemma 3.1 can be applied to the copies of $M_{1}\left(A_{k}(X), i\right)$ in exactly the same way.

The following lemmas are special cases of Lemma 3.1, especially, there are no relations between $M\left(A_{k}(X), i\right)$ and $\left(A_{k}(X), j\right)$ for $i \neq j$ and there are the restrictions on the multiplicities $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
Lemma 3.3. Let $\left(Z^{2}, \leqslant\right)$ be the poset in Construction of Z^{2} with order relations Order 1, 2 only except 3. Suppose that $b_{k}=1$ for all k where $b=$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is multiplicities $M_{1}\left(A_{k}(X), i\right)$ for $1 \leq i \leq m_{k}, k=1, \ldots, n$. Then $\left(Z^{2}, \leqslant\right)$ is ideal-homogeneous of height 2.

Proof. This is a corollary of Lemma 3.2.
Now with no restrictions on the multiplicities $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, we have the following lemma.

Lemma 3.4. Let b_{k} be a positive integer for each k. Let $\left(Z^{2}, \leqslant\right)$ be the poset in Construction of Z^{2} with order relations Order 1, 2 only except 3. Then $\left(Z^{2}, \leqslant\right)$ is ideal-homogeneous.

Proof. This is a corollary of Lemma 3.3.
Therefore we conclude our main theorem as follows:
Theorem 3.5. Let (P, \leqslant) be a finite partially ordered set of height 2. The followings are equivalent.
(i) (P, \leqslant) is ideal-homogeneous.
(ii) (P, \leqslant) is weakly ideal-homogeneous.
(iii) (P, \leqslant) is one of the posets constructed in Lemmas 3.1-3.4.

Proof. Trivially, (i) implies (ii). Assume that (ii) holds. Let $X=[n]$ be the set of minimal elements of (P, \leqslant). If S_{1} and S_{2} are k-element subsets of X, where $1 \leq k \leq n$, then there is a permutation α of X mapping S_{1} onto S_{2}. Since α is an automorphism of X, and X is an ideal of $(P, \leqslant), \alpha$ can be extended to an automorphism β of (P, \leqslant) by (ii). Suppose that

$$
T_{i}=\left\{S \in M_{1}(X) \mid \text { for } x \in P \text { we have } x \leqslant S \text { if and only if } x \in S_{i}\right\}
$$

for $i \in\{1,2\}$. Then T_{i} is the set of points in $M_{1}(X)$ which is the common upset of all points of S_{i} for $i \in\{1,2\}$, and β has to map T_{1} onto T_{2}. Therefore, for every k-element subset S_{i} of X there is the same number $m_{k}=\left|T_{i}\right|$ of elements in $M_{1}(X)$ which cover all elements of S_{i} and no others.

Here we want to specialize the abstract set S in T_{i}. Without loss generality, let us assume that we regard the order relation on (P, \leqslant) as set inclusion. Clearly, for any k-element subset of $X, S_{i} \in T_{i}$ since $x \leqslant S_{i}$ if and only if $x \in S_{i}$. If $S \in T_{i}$, then S is the common up-set of all points of S_{i} and hence S should contain all the elements of S_{i} and no others. Hence we have $S=S_{i}$. Since there are $\binom{n}{k} k$-element subsets of X, let $A_{k}(X)=\left\{S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right\}$, where S_{i} are the k-element subset of X for all $k=1, \ldots, n$. Then $A_{k}(X) \subset M_{1}(X)$ for all $k=1, \ldots, n$. The number m_{k} means that there are m_{k} copies of S_{i} for $1 \leq i \leq\binom{ n}{k}$. Hence m_{k} is the multiplicity of $A_{k}(X)$ for all $k=1, \ldots, n$. If $m_{k}=0$, then there is no $A_{k}(X)$ at all for all $k=1, \ldots, n$.

Since for each k-element subset $S_{i}, 1 \leq i \leq m_{k}$, there are m_{k} copies of it, it deduce that there are m_{k} copies of $A_{k}=A_{k}(X)$ after all. Hence we have

$$
\begin{equation*}
M_{1}(X)=\bigcup_{k=1}^{n} \bigcup_{i=1}^{m_{k}}\left(A_{k}, i\right) \tag{11}
\end{equation*}
$$

If $S_{i} \in T_{i}$ and $S_{i}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subset X=[n]$, then S_{i} can be denoted by $S_{i}=a_{1} a_{2} \cdots a_{k}$ or $\left(S_{i}, j\right)=\left(a_{1} a_{2} \cdots a_{k}, j\right)$, where $j, 1 \leq j \leq m_{k}$, means that $\left(S_{i}, j\right)$ is the j-th copy of S_{i}. Now let Σ_{1} and Σ_{2} be l-element subsets of $\bigcup_{i=1}^{m_{k}}\left(A_{k}, i\right)$ that is, Σ_{i} has S_{i} 's as elements. There are some cases to be considered according to their membership where they belong to:

Case 1: For every $k=1,2, \ldots, n$, suppose Σ_{1} and Σ_{2} are subsets of $\left(A_{k}, i\right)$ for some i, say $\left(A_{k}, 1\right)$. Without loss of generality, let us assume that $\Sigma_{1}=\left\{S_{1}, S_{2}\right\}$ and $\Sigma_{2}=\left\{S_{1}, S_{3}\right\}$ where $S_{i} \in\left(A_{k}, 1\right)$ for $i=1,2,3$. Then $\beta\left(T_{1} \cup T_{2}\right)=T_{1} \cup T_{3}$. Hence β deduces a permutation τ of $\left(A_{k}, 1\right)$ mapping Σ_{1} onto Σ_{2} by restriction and also τ is a permutation of $\left(A_{k}, i\right)$ for all i since $\tau\left(T_{1} \cup T_{2}\right)=T_{1} \cup T_{3}$ and $T_{j} \cap\left(A_{k}, i\right) \neq \emptyset$ for all i and $j=1,2,3$. Suppose that

$$
\mathfrak{T}_{\mathfrak{j}}=\left\{\Sigma \in M_{2}(X) \mid \text { for } S \in M_{1}(X) \text { we have } S \leqslant \Sigma \text { if and only if } S \in \Sigma_{j}\right\}
$$

for $j \in\{1,2\}$. Then $\mathfrak{T}_{\mathfrak{j}}$ is the set of points in $M_{2}(X)$ which is the common upset of all points of Σ_{j} for $j \in\{1,2\}$, and τ has to map \mathfrak{T}_{1} onto \mathfrak{T}_{2}. Therefore, for every l-element subset Σ of $\left(A_{k}, 1\right)$, there exists the same number a_{l}^{k} of elements which cover all elements of Σ and no others. Let $K_{l}(X)$ be the set of l-element subsets of $\left(A_{k}, 1\right)$, that is, $K_{l}=\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{\left(\begin{array}{c}\left(\begin{array}{c}n \\ k \\ l\end{array}\right)\end{array}\right)}\right\}$ for all $l=1, \ldots,\binom{n}{k}$. Since for each l-element subset $\Sigma_{j}, 1 \leq j \leq\left(\begin{array}{c}n \\ k \\ l\end{array}\right)$, there are a_{l}^{k} copies of it, it implies that there are a_{l}^{k} copies of K_{l} for all $l=1, \ldots,\binom{n}{k}$ after all. In all, we have the multiplicity $\Omega_{\binom{n}{k}}=\left(a_{1}^{k}, a_{2}^{k}, \ldots, a_{\binom{n}{k}}^{k}\right)$, where $a_{t}^{k} \geq 0$, for all $t=1, \ldots,\binom{n}{k}$ for $M_{1}\left(A_{k}, 1\right)$ for all $k=1,2, \ldots, n$.

Subcase 1: For all k, suppose $M_{1}\left(A_{k}, 1\right)$ has multiplicity 1 , that is $b_{k}=1$ for all k with order relations Order 1 and 2 only. It is then clear that (P, \leqslant) is isomorphic to $\left(Z^{2}, \leqslant\right)$ in Lemma 3.3.

Subcase 2: Suppose $M_{1}\left(A_{k}, 1\right)$ has multiplicity $b_{k} \geq 1$ for all k with order relations Order 1 and 2 only. It is then clear that (P, \leqslant) is isomorphic to $\left(Z^{2}, \leqslant\right)$ in Lemma 3.4.

Case 2: For every $k=1,2, \ldots, n$, suppose $\Sigma_{1} \subset\left(A_{k}, 1\right)$ and $\Sigma_{2} \subset\left(A_{k}, 2\right)$, respectively. Without loss of generality, let us assume that $\Sigma_{1}=\left\{S_{1}, S_{2}\right\}$ and $\Sigma_{2}=\left\{S_{3}, S_{4}\right\}$. Then $\beta\left(T_{1} \cup T_{2}\right)=T_{3} \cup T_{4}$. Note that $T_{j} \cap\left(A_{k}, i\right) \neq \emptyset$ for all $i=1,2$ and $j=1,2,3,4$. Let Σ_{2}^{\prime} be a copy of Σ_{2} in $T_{2} \cap\left(A_{k}, 1\right)$ and Σ_{1}^{\prime} be a copy of Σ_{1} in $T_{1} \cap\left(A_{k}, 2\right)$. Hence β deduces a permutation τ of $\left(A_{k}, i\right)$ by restriction for all $i=1,2$ and τ should map the commom up-set of all points of $\Sigma_{1} \cup \Sigma_{2}^{\prime}$ in $M_{1}\left(A_{k}, 1\right)$ onto the commom up-set of all points of $\Sigma_{1}^{\prime} \cup \Sigma_{2}$ in $M_{1}\left(A_{k}, 2\right)$. Hence there are order relations between $\left(A_{k}, 1\right)$ and $M_{1}\left(A_{k}, 2\right)$, and between $\left(A_{k}, 2\right)$ and $M_{1}\left(A_{k}, 1\right)$. In general, for every l-element subset Σ of $\left(A_{k}, i\right)$, there exists the same number a_{l}^{k} of elements which cover all elements of Σ, and no others. Similar to Case 1, we have the multiplicity $\Omega_{\binom{n}{k}}=\left(a_{1}^{k}, a_{2}^{k}, \ldots, a_{\binom{n}{k}}^{k}\right)$ where $a_{t}^{k} \geq 0$ for all $t=1, \ldots,\binom{n}{k}$ for $M_{1}\left(A_{k}, i\right)$ for all $i=1, \ldots, m_{k}$ and $k=1, \ldots, n$.

Subcase 1: $M_{1}\left(A_{k}, i\right)$ has the multiplicities $b_{k}=1$ for $k=1, \ldots, n$. It is then clear that (P, \leqslant) is isomorphic to $\left(Z^{2}, \leqslant\right)$ in Lemma 3.1.

Subcase 2: $M_{1}\left(A_{k}, i\right)$ has the multiplicities $b_{k}>1$ for $k=1, \ldots, n$. It is then clear that (P, \leqslant) is isomorphic to $\left(Z^{2}, \leqslant\right)$ in Lemma 3.2. In all (iii) holds. By Lemmas 3.1-3.4, (iii) implies (i).

4. Applications

For a positive integer n, let $X=[n]$. Define a poset $\left(P^{2}, \leqslant\right)$, where

$$
P^{2}=X \cup M_{1}(X) \cup M_{2}(X)
$$

and $\left(m_{1}, m_{2}, \ldots, m_{n}\right)=(1,1, \ldots, 1), \Omega_{\binom{n}{k}}=(1, \ldots, 1)$ and $b_{k}=1$ for all k. Then $M_{1}(X)$ is the power set of X except the empty set, and $M_{2}(X)$ is the set of power sets (except the empty set) of $A_{k}(X)$ for all $1 \leq k \leq n$.

Hence we have the following corollary.
Corollary 4.1. With the order relations defined Order 1, and 2, $\left(P^{2}, \leqslant\right)$ is ideal-homogeneous.

For given posets P and $Q, P \oplus Q$ is represented as a poset with a property that $x \leqslant y$ if and only if $x \in P$ and $y \in Q$. Let $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ be a set of antichains. Now construct a poset P which is isomorphic to $B_{1} \oplus B_{2} \oplus \cdots \oplus B_{n}$. Let $X_{1}=\left[\left|B_{1}\right|\right]$ and the multiplicities $\left(m_{1}, m_{2}, \ldots, m_{\left|B_{\mid}\right|}\right)=$ $\left(0,0, \ldots,\left|B_{2}\right|\right)$. Then for all $i=1, \ldots,\left|B_{2}\right|$ we have $\left(A_{\left|B_{1}\right|}, i\right)$. Let $T_{2}(X)=$ $\bigcup_{i=1}^{\left|B_{2}\right|}\left(A_{\left|B_{1}\right|}, i\right)$. Then $\left|T_{2}(X)\right|=\left|B_{2}\right|$. Now, let $X_{2}=\left[\left|B_{2}\right|\right]$ and the multiplicities $\left(m_{1}, m_{2}, \ldots, m_{\left|B_{2}\right|}\right)=\left(0,0, \ldots,\left|B_{3}\right|\right)$. Then let $T_{3}(X)=\bigcup_{i=1}^{\left|B_{3}\right|}\left(A_{\left|B_{2}\right|}, i\right)$. Then $\left|T_{3}(X)\right|=\left|B_{3}\right|$. Likewise, define a poset P, recursively, and at last $X_{n-1}=\left[\left|B_{n-1}\right|\right]$ and the multiplicities $\left(m_{1}, m_{2}, \ldots, m_{\left|B_{n-1}\right|}\right)=\left(0,0, \ldots,\left|B_{n}\right|\right)$ and $T_{n}(X)=\bigcup_{i=1}^{\left|B_{n}\right|}\left(A_{\left|B_{n-1}\right|}, i\right)$. Then $\left|T_{n}(X)\right|=\left|B_{n}\right|$. The order relations between X_{i} and $T_{i}\left(X_{i}\right)$ in each steps $i=1, \ldots, n$ are defined by set inclusion. Then the poset P constructed is isomorphic to $B_{1} \oplus B_{2} \oplus \cdots \oplus B_{n}$ of height n. Therefore we have the following:

Theorem 4.2. Let $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ be a set of antichains. Then the poset P constructed above which is isomorphic to $B_{1} \oplus B_{2} \oplus \cdots \oplus B_{n}$ is ideal-homogeneous of height n.

Proof. Let I and J be ideals of $P=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{n}$ and $\alpha:(I, \leqslant) \rightarrow$ (J, \leqslant) is an isomorphism. Let I_{m} and J_{m} be the set of maximal elements in I and J, respectively. Then for some $k, I_{m}, J_{m} \subset B_{k}$ and by construction we have $I=D\left[I_{m}\right]$ and $J=D\left[J_{m}\right]$ and hence $D\left[I_{m}\right] \cong D\left[J_{m}\right]$. Therefore, by restriction, α induces a bijection between $I_{m} \cap J_{m}$, which can be extended to a permutation on B_{k}. Also it can be extended to an automorphism σ^{*} of P such that $\sigma^{*} \mid I=\sigma$.

We find some family of posets which are ideal homogeneous, but it is just partial solutions for the following Behrendt's problem [1].

Problem 2. Give a classification of all finite (weakly) ideal-homogeneous ordered sets.

References

[1] G. Behrendt, Homogeneity in Finite Ordered Sets, Order 10 (1993), no. 1, 65-75.
[2] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Second edition, Cambridge University Press, 2002.

Gab-Byung Chae
Division of Mathematics and Informational Statistics
Wonkwang University
Iksan 54538, Korea
E-mail address: rivendell@wonkwang.ac.kr
Minseok Cheong
College of Information
Information Security Convergence
Korea University
Seoul 02841, Korea
E-mail address: toset@hanmail.net
Sang-Mok Kim
Department of Mathematics
Kwangwoon University
Seoul 01897, Korea
E-mail address: smkim@kw.ac.kr

[^0]: Received March 20, 2015; Revised October 19, 2015.
 2010 Mathematics Subject Classification. 06A06, $20 B 25$.
 Key words and phrases. poset, finite ordered set, homogeneity.
 \dagger This paper was supported by Wonkwang University in 2014.

