Bull. Korean Math. Soc. **53** (2016), No. 4, pp. 971–983 http://dx.doi.org/10.4134/BKMS.b150204 pISSN: 1015-8634 / eISSN: 2234-3016

### SOME FAMILIES OF IDEAL-HOMOGENEOUS POSETS

GAB-BYUNG CHAE<sup>†</sup>, MINSEOK CHEONG, AND SANG-MOK KIM

ABSTRACT. A partially ordered set P is *ideal-homogeneous* provided that for any ideals I and J, if  $I \cong_{\sigma} J$ , then there exists an automorphism  $\sigma^*$ such that  $\sigma^*|_I = \sigma$ . Behrendt [1] characterizes the ideal-homogeneous partially ordered sets of height 1. In this paper, we characterize the idealhomogeneous partially ordered sets of height 2 and find some families of ideal-homogeneous partially ordered sets.

#### 1. Introduction

Suppose  $(P, \leq)$  is a finite partially ordered set (simply called a finite poset) with a partial order relation  $\leq$ , which is simply denoted by P for convenience. If  $Q \subset P$ , we may refer to Q also as a poset, having in mind the subposet  $(Q, \leq)$  whose order relation is the restriction of  $(P, \leq)$ 's. If P is a finite ordered set and  $x \in P$ , then the height h(x) is the maximal cardinality of a chain in  $\{y \in P \mid y < x\}$ . The *height* of a poset P, denoted by ht(P), is maximum of all h(x) for  $x \in P$ . For a poset P and  $x \in P$ , let  $U[x] = \{y \in P \mid y \ge x \text{ in } P\}$ , say the up-set of x, and  $D[x] = \{y \in P \mid y \leq x \text{ in } P\}$ , say the down-set of x. Also, we let  $U[A] = \bigcup_{x \in A} U[x]$ , the up-set of A, and  $D[A] = \bigcup_{x \in A} D[x]$  the down-set of A for a nonempty subposet A of P. A map  $f: (P, \leq) \to (Q, \leq')$  of posets is order-preserving if  $x \leq y$  implies  $f(x) \leq f(y)$  in Q for all  $x, y \in P$ . Two posets  $(P, \leq)$  and  $(Q, \leq')$  are *isomorphic* if there exists an order-preserving bijection  $f: (P, \leq) \to (Q, \leq')$  such that  $f^{-1}$  is also order-preserving. We denote the set of all automorphisms of a poset P by Aut(P). An *ideal* I of P is a non-empty subset of P such that if  $x \leq y$  for  $x \in P$  and  $y \in I$ , then  $x \in I$ . A poset P is *ideal-homogeneous*, provided that, for any ideals I and J with  $I \cong_{\sigma} J$ , there exists an automorphism  $\sigma^* \in \operatorname{Aut} P$  such that  $\sigma^*|_I = \sigma$ . A poset P is weakly ideal-homogeneous, provided that for each I of P and  $\sigma \in Aut(I)$ , there is  $\sigma^* \in \operatorname{Aut}(P)$  such that  $\sigma^*|_I = \sigma$ .

It is very natural to ask whether every isomorphism between finite substructures can be extendable to an automorphism of the whole structure. In 1993,

©2016 Korean Mathematical Society

Received March 20, 2015; Revised October 19, 2015.

<sup>2010</sup> Mathematics Subject Classification. 06A06, 20B25.

Key words and phrases. poset, finite ordered set, homogeneity.

<sup>†</sup>This paper was supported by Wonkwang University in 2014.

some results on the homogeneity for finite partially ordered sets were given by G. Behrendt [1], and they made resume to investigate the relationship between the homogeneity conditions for finite partially ordered sets. The following theorem, due to Behrendt [1], characterizes the (weakly) ideal-homogeneous posets of height 1. For a positive integer n, [n] is the set of positive integer less than or equal to n.

**Theorem 1.1** ([1]). Let  $(P, \leq)$  be a finite partially ordered set of height 1. The followings are equivalent.

- (i)  $(P, \leq)$  is ideal-homogeneous.
- (ii)  $(P, \leq)$  is weakly ideal-homogeneous.
- (iii) There exist a positive integer n and a function  $f : [n] \to \mathbb{N}$  such that there exists  $i \in [n]$  with  $f(i) \neq 0$  and  $(P, \leq)$  is isomorphic to  $(X, \leq)$ , where

$$X = [n] \cup \{(S,i) \mid \emptyset \neq S \subseteq [n], \ 1 \le i \le f(|S|)\}$$

and for  $k \in [n], \ \emptyset \neq S \subseteq [n], \ 1 \leq i \leq f(|S|), \ let$ 

$$k \leq (S, i)$$
 if and only if  $k \in S$ .

In this paper, we characterize the ideal-homogeneous partially ordered sets of height 2 and find some families of ideal-homogeneous partially ordered sets. The other definitions not written in this paper and general properties of posets follow from [2].

#### 2. Construction

Let X = [n] and P(X) be the power set of X. For all k = 1, ..., n, let  $A_k(X)$ be the set of k-element subsets of X, that is,  $A_k(X) = \{S_1, S_2, ..., S_{\binom{n}{k}}\}$  where  $|S_i| = k$  for  $i = 1, ..., \binom{n}{k}$ . Then  $|A_k(X)| = \binom{n}{k}$ . Let  $M_1(X)$  be a multi-set of nonempty subsets of X with the multiplicities  $m_k \ge 0$  for  $A_k(X)$  for each k = 1, ..., n, such that

- (1) every element S of  $M_1(X)$  is a nonempty subset of X,
- (2) if  $S(\neq \emptyset) \in M_1(X)$  with |S| = k for some k, then it has multiplicity  $m_k$ , that means it appears  $m_k$  times in  $M_1(X)$ .
- (3) if  $S \neq \emptyset \in M_1(X)$  with |S| = k for some k, then  $T \in M_1(X)$  for any  $T \in A_k(X)$ .

Therefore, if  $S, T \in M_1(X)$  with |S| = |T| = k, then both S and T appear  $m_k$  times in  $M_1(X)$ . Hence for each k, it can be said that  $m_k$  is not only the multiplicity of an element S of  $A_k(X)$  but also the multiplicity of  $A_k(X)$ . Thus we may write  $M_1(X)$  using  $A_k(X)$ 's as

(1)  

$$M_1(X) = (A_1, 1) \cup \dots \cup (A_1, m_1)$$

$$\bigcup (A_2, 1) \cup \dots \cup (A_2, m_2) \bigcup \dots$$

$$\bigcup (A_n, 1) \cup \dots \cup (A_n, m_n),$$

where  $(A_k, i) = (A_k(X), i)$  is the *i*-th copy of  $A_k(X)$  for  $1 \le i \le m_k$  and  $m_k \ge 0$ . Hence if  $S \in A_k(X)$  for some k, then we may notice  $(S, i) \in (A_k(X), i)$  for all i and we say (S, i) is the *i*-th copy of S also, denote  $S_i = (S, i)$ . Note that if  $m_k = 0$  for some k, then  $(A_k, i) = \phi$  for all i.

We may define  $M_1(Y)$  for any non-empty set Y. Let us consider  $M_1(Y)$ , where  $Y = (A_k(X), i)$  for fixed i and k. For all  $t = 1, \ldots, \binom{n}{k}$ , let  $B_t(Y)$ be the set of t-element subsets of Y, that is,  $B_t(Y) = \left\{ \sum_{1}, \sum_{2}, \ldots, \sum_{\binom{n}{t}} \right\}$ 

where  $|\Sigma_i| = t$  for  $i = 1, \ldots, \binom{\binom{n}{k}}{t}$ . Then  $M_1((A_k(X), i))$  is the multi-set of nonempty subsets of  $(A_k(X), i)$  with the multiplicities  $a_t^k \ge 0$  for  $B_t(Y)$  for all  $t = 1, \ldots, \binom{n}{k}$ , such that

- (1) every element  $\Sigma_i$  of  $M_1(A_k(X), i)$  is a nonempty subset of  $(A_k(X), i)$ ,
- (2) if  $\Sigma_i \neq \emptyset \in M_1(A_k(X), i)$  with  $|\Sigma_i| = t$  for some t, then it has multiplicity  $a_t^k$ , that means it appears  $a_t^k$  times in  $M_1(A_k(X), i)$ .

Let  $M_1((A_k(X), i)) = M_1(A_k(X), i)$  and  $\Omega_{\binom{n}{k}} = \begin{pmatrix} a_1^k, a_2^k, \dots, a_{\binom{n}{k}}^k \end{pmatrix}$  for convenience. Hence  $(\Sigma_i, j) \in M_1(A_k, i)$  is defined as the *j*-th copy of  $\Sigma_i$  in  $M_1(A_k, i)$ , where  $1 \leq j \leq a_{|\Sigma_i|}^k$ . We write  $(\Sigma_i, j) = \{\Sigma_i\}_j$ .

Now we define a (second level) multi-set  $M_2(X)$  of X as:

(2) 
$$M_2(X) = \bigcup_{k=1}^n \bigcup_{i=1}^{m_k} \bigcup_{r=1}^{b_k} M_1(A_k(X), i)^r,$$

where  $(m_1, m_2, \dots, m_n), m_k \ge 0, \Omega_{\binom{n}{k}} = \left(a_1^k, a_2^k, \dots, a_{\binom{n}{k}}^k\right)$  with  $a_t^k \ge 0$  for

 $t = 1, \ldots, \binom{n}{k}$ , and  $b = (b_1, b_2, \cdots, b_n)$ ,  $b_k \ge 1$  are the multiplicities for  $A_k$  of  $M_1(X)$ , the nonempty subsets of  $B_t((A_k, i))$  of  $M_2(X)$ , and  $M_1(A_k(X), i)$  for all  $1 \le i \le m_k$ ,  $k = 1, \ldots, n$ , respectively and  $1 \le r \le b_k$ . If  $m_k = 0$  for some k, then  $M_2(X)$  does not have  $M_1(A_k, i)$  for  $i = 1, \ldots, m_k$ . And if  $a_t^k = 0$  for some k and t, then  $M_2(X)$  does not have t-elements subset of  $(A_k, i)$  for all  $i = 1, 2, \ldots, m_k$ . The next example shows a construct process of X,  $M_1(X)$ , and  $M_2(X)$  for given n.

**Example 1.** Let n = 3 and hence X = [3]. Then we have

(3) 
$$P(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\},\$$

where  $A_1 = \{\{1\}, \{2\}, \{3\}\}, A_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ , and  $A_3 = \{\{1, 2, 3\}\}$ . Suppose  $(m_1, m_2, m_3) = (1, 3, 2)$  is the multiplicities of  $A_k$  for k = 1, 2, 3. Then we have

$$(A_{1}, 1) = (\{\{1\}, \{2\}, \{3\}\}, 1) = \{(\{1\}, 1), (\{2\}, 1), (\{3\}, 1)\} \\ = \{\{1\}_{1}, \{2\}_{1}, \{3\}_{1}\},$$

$$(4) \qquad (A_{2}, i) = (\{\{1, 2\}, \{1, 3\}, \{2, 3\}\}, i) \\ = \{(\{1, 2\}, i), (\{1, 3\}, i), (\{2, 3\}, i)\}$$

$$= \{\{1,2\}_i, \{1,3\}_i, \{2,3\}_i\} \quad \text{for } i = 1,2,3,$$
  
$$(A_3,i) = (\{\{1,2,3\}\},i) = \{(\{1,2,3\},1), (\{1,2,3\},2)\}$$
  
$$= \{\{1,2,3\}_1, \{1,2,3\}_2\}.$$

Therefore we can write  $M_1(X)$  as:

(5)  
$$M_{1}(X) = \{\{1\}_{1}, \{2\}_{1}, \{3\}_{1}, \{1, 2\}_{1}, \{1, 3\}_{1}, \{2, 3\}_{1}, \{1, 2\}_{2}, \{1, 3\}_{2}, \{2, 3\}_{2}, \{1, 2\}_{3}, \{1, 3\}_{3}, \{2, 3\}_{3}, \{1, 2, 3\}_{1}, \{1, 2, 3\}_{2}\}.$$

Suppose  $\Omega_{\binom{3}{1}} = (1, 2, 2), \ \Omega_{\binom{3}{2}} = (1, 1, 3), \ \Omega_{\binom{3}{3}} = (2), \ b = (b_1, b_2, b_3) = (2, 1, 2).$ Then we have

$$M_{1}(A_{1},1)^{j} = M_{1}(\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}) \text{ with } \Omega_{\binom{3}{1}} = (1,2,2)$$

$$= \{(\{\{1\}_{1},1)^{j},(\{\{2\}_{1}\},1)^{j},(\{\{3\}_{1}\},1)^{j},(\{\{1\}_{1},\{2\}_{1}\},1)^{j},(\{\{1\}_{1},\{3\}_{1}\},1)^{j},(\{\{2\}_{1},\{3\}_{1}\},1)^{j},(\{\{1\}_{1},\{2\}_{1}\},2)^{j},(\{\{1\}_{1},\{3\}_{1}\},2)^{j},(\{\{2\}_{1},\{3\}_{1}\},2)^{j},(\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\},2)^{j},(\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\},2)^{j}\}$$

or we can write it for convenience

(7)  

$$M_{1}(A_{1},1)^{j} = \{\{\{1\}_{1}\}_{1}^{j},\{\{2\}_{1}\}_{1}^{j},\{\{3\}_{1}\}_{1}^{j},\{\{1\}_{1},\{2\}_{1}\}_{1}^{j},\{\{1\}_{1},\{3\}_{1}\}_{1}^{j},\{\{2\}_{1},\{3\}_{1}\}_{1}^{j},\{\{1\}_{1},\{2\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{2\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{\{1\}_{1},\{3\}_{1}\}_{2}^{j},\{3\}_{1}\}_{2}^{j},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1},\{3\}_{1$$

where j = 1, 2 which means we have 2 copies of  $M_1(A_1, 1)$  since  $b_1 = 2$ ,

$$\begin{array}{ll} (8) & M_1(A_2,i)^1 \\ &= M_1(\{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\} \ \text{with} \ \Omega_{\binom{3}{2}} = (1,1,3) \\ &= \{(\{\{1,2\}_i\},1)^1,(\{\{1,3\}_i\},1)^1,(\{\{2,3\}_i\},1)^1,\\ & (\{\{1,2\}_i,\{1,3\}_i\},1)^1,(\{\{1,2\}_i,\{2,3\}_i\},1)^1,(\{\{1,3\}_i,\{2,3\}_i\},1)^1,\\ & (\{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\},1)^1,(\{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\},2)^1,\\ & (\{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\},3)^1\} \\ &= \{\{\{1,2\}_i\}_1^1,\{\{1,3\}_i\}_1^1,\{\{2,3\}_i\}_1^1,\\ & \{\{1,2\}_i,\{1,3\}_i\}_1^1,\{\{1,2\}_i,\{2,3\}_i\}_1^1,\\ & \{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\}_1^1,\{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\}_1^1,\\ & \{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\}_1^1,\{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\}_2^1,\\ & \{\{1,2\}_i,\{1,3\}_i,\{2,3\}_i\}_3^1\} \end{array}$$

so that we have only one copy of  $M_1(A_2, i)$  for each for i = 1, 2, 3, since  $b_2 = 1$ and

(9)  

$$M_{1}(A_{3},i)^{j} = M_{1}(\{1,2,3\}_{i})^{j} \text{ with } \Omega_{\binom{3}{3}} = (2)$$

$$= \left\{ (\{\{1,2,3\}_{i}\},1)^{j}, (\{\{1,2,3\}_{i}\},2)^{j} \right\}$$

$$= \left\{ \{\{1,2,3\}_{i}\}_{1}^{j}, \{\{1,2,3\}_{i}\}_{2}^{j} \right\},$$

where j = 1, 2 which means we have 2 copies of  $M_1(A_3, i)$  for each i = 1, 2 since  $b_3 = 2$ . Therefore, the second-level multi-set  $M_2(X)$ , where  $(m_1, m_2, m_3) = (1, 3, 2), \ \Omega_{\binom{3}{1}} = (1, 2, 2), \ \Omega_{\binom{3}{2}} = (1, 1, 3), \ \Omega_{\binom{3}{3}} = (2), \text{ and } b = (b_1, b_2, b_3) = (2, 1, 2)$  as

$$\begin{aligned} & (10) \qquad M_2(X) \\ &= \bigcup_{k=1}^{3} \bigcup_{i=1}^{m_k} \bigcup_{r=1}^{b_k} M_1(A_k, i)^r \\ &= M_1(A_1, 1)^1 \cup M_1(A_1, 1)^2 \\ &\cup M_1(A_2, 1)^1 \cup M_1(A_2, 2)^1 \cup M_1(A_2, 3)^1 \\ &\cup M_1(A_3, 1)^1 \cup M_1(A_3, 1)^2 \cup M_1(A_3, 2)^1 \cup M_1(A_3, 2)^2 \\ &= \left\{ \{\{1\}_1\}_1^1, \{\{2\}_1\}_1^1, \{\{3\}_1\}_1^1, \\ \{\{1\}_1, \{2\}_1\}_1^1, \{\{1\}_1, \{3\}_1\}_1^1, \{\{2\}_1, \{3\}_1\}_2^1, \\ \{\{1\}_1, \{2\}_1\}_2^1, \{\{1\}_1, \{3\}_1\}_2^1, \{\{2\}_1, \{3\}_1\}_2^1, \\ \{\{1\}_1, \{2\}_1, \{3\}_1\}_1^1, \{\{1\}_1, \{2\}_1, \{3\}_1\}_2^1, \\ \{\{1\}_1, \{2\}_1\}_2^2, \{\{1\}_1, \{3\}_1\}_2^2, \{\{2\}_1, \{3\}_1\}_2^2, \\ \{\{1\}_1, \{2\}_1\}_2^2, \{\{1\}_1, \{3\}_1\}_2^2, \{\{2\}_1, \{3\}_1\}_2^2, \\ \{\{1\}_1, \{2\}_1, \{3\}_1\}_1^2, \{\{1\}_1, \{2\}_1, \{3\}_1\}_2^2, \\ \{\{1\}_1, \{2\}_1, \{3\}_1\}_1^2, \{\{1\}_1, \{2\}_1, \{3\}_1\}_2^2, \\ \{\{1, 2\}_1, \{1, 3\}_1\}_1, \{\{1, 2\}_1, \{3\}_1\}_2^2, \\ \{\{1, 2\}_1, \{1, 3\}_1\}_1, \{\{1, 2\}_1, \{1, 3\}_1, \{2, 3\}_1\}_1, \\ \{\{1, 2\}_2, \{1, 3\}_2\}_1, \{\{1, 2\}_2, \{2, 3\}_2\}_1, \\ \{\{1, 2\}_2, \{1, 3\}_2, \{2, 3\}_2\}_1, \\ \{\{1, 2\}_2, \{1, 3\}_2, \{2, 3\}_2\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{1, 3\}_3\}_1, \\ \{\{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3\}_1, \\ \{\{1, 2\}_3, \{2, 3\}_3$$

$$\begin{split} \{\{1,2\}_3,\{1,3\}_3,\{2,3\}_3\}_1,\{\{1,2\}_3,\{1,3\}_3,\{2,3\}_3\}_2, \\ \{\{1,2\}_3,\{1,3\}_3,\{2,3\}_3\}_3, & (M_1(A_2,3)^1 \text{ part}) \\ \{\{1,2,3\}_1\}_1^1,\{\{1,2,3\}_1\}_2^1,\{\{1,2,3\}_2\}_1^1,\{\{1,2,3\}_2\}_2^1, \\ & (M_1(A_3,1)^1 \text{ and } M_1(A_3,2)^1 \text{ part}) \\ \{\{1,2,3\}_1\}_1^2,\{\{1,2,3\}_1\}_2^2,\{\{1,2,3\}_2\}_1^2,\{\{1,2,3\}_2\}_2^2\} \\ & (M_1(A_3,1)^2 \text{ and } M_1(A_3,2)^2 \text{ part}). \end{split}$$

For a positive integer n, let X = [n]. Define a poset  $(Z, \leq)$ , where

$$Z = [n] \cup M_1(X)$$

and for  $S \in M_1(X)$  with |S| = k (so  $S \in A_k$ ) and  $x \in [n]$ ,

$$x \leq (S,i) = S_i$$
 if and only if  $x \in S_i$ ,

where  $1 \leq k \leq n$ , and  $(S,i) = S_i$  is the *i*-th copy of S in  $(A_k,i)$  for all i,  $1 \leq i \leq m_k$ . Then we can easily find that

$$(Z,\leqslant) \cong (X,\leqslant)$$

where X is the poset defined in Theorem 1.1 by Behrendt [1].

Now a family of ideal-homogeneous partially ordered sets of height 2 is constructed.

## Construction of $Z^2$ :

For a positive integer n, let X = [n]. Define a poset  $(Z^2, \leqslant)$  as

$$Z^2 = X \cup M_1(X) \cup M_2(X),$$

where  $(m_1, m_2, \ldots, m_n), m_k \ge 0$  is the multiplicity for  $A_k$  of  $M_1(X), \Omega_{\binom{n}{k}} =$ 

 $\begin{pmatrix} a_1^k, a_2^k, \dots, a_{\binom{n}{k}}^k \end{pmatrix} \text{ with } a_t^k \ge 0 \text{ for } t = 1, \dots, \binom{n}{k} \text{ is for } B_t(A_k, i) \text{ of } (A_k, i) \text{ of } M_2(X), \text{ and } b = (b_1, b_2, \dots, b_n), b_k \ge 1 \text{ is for } M_1(A_k(X), i) \text{ for all } 1 \le i \le m_k, k = 1, \dots, n. \text{ The order relations on } Z^2 \text{ are defined as follows:}$ 

**Order 1:** For  $S_i \in M_1(X)$  with  $|S_i| = k$  (so  $S_i \in A_k$ ) and  $x \in [n]$ ,

 $x \leq S_i = (S, i)$  if and only if  $x \in S_i$ ,

where  $1 \leq i \leq m_k$  and  $S_i = (S, i)$  is the *i*-th copy of S in  $(A_k, i)$  for all  $i, 1 \leq i \leq m_k, k = 1, ..., n$ .

**Order 2:** For some k, i, and r, if  $\Sigma_i \in M_1(A_k, i)^r \subset M_2(X)$  and  $S_i \in (A_k, i)$ , then

$$S_i \leq \Sigma_i$$
 if and only if  $S_i \in \Sigma_i$ 

for all  $\Sigma_i \in M_1(A_k, i)^r$ , where  $r = 1, \ldots, b_k$ .

**Order 3:** For some k, r, i and j with  $i \neq j$ , if  $\Sigma_j \in M_1(A_k, j)^r \subset M_2(X)$ and  $S_i \in (A_k, i)$  (Note that for  $i \neq j$ ,  $(A_k, i)$  and  $(A_k, j)$  are basically identical hence we may say  $\Sigma_i = \Sigma_j$  as a set nevertheless  $\Sigma_i \in M_1(A_k, i)$ and  $\Sigma_j \in M_1(A_k, j)$  and hence we may define order relation between



FIGURE 1. A poset of height 2 in Example 1

 $S_i$  and  $\Sigma_j \in M_1(A_k,j)$  or  $S_j$  and  $\Sigma_i \in M_1(A_k,i)$  in addition to Order 2 above) then

 $S_i \leq \Sigma_j$  if and only if  $S_i \in \Sigma_j$ 

for all  $\Sigma_j \in M_1(A_k, j)^r$ , where  $r = 1, \ldots, b_k$ .

Consequently, if  $x \leq S_i$  and  $S_i \leq \Sigma_j$ , then  $x \leq \Sigma_j$  for every *i* and *j*,  $1 \leq i, j \leq m_k, k = 1, ..., n$ .

The poset  $Z^2 = X \cup M_1(X) \cup M_2(X)$  in Example 1 with n = 3 and the order relations defined in Order 1, 2, and 3 above is roughly illustrated in Figure 1. The lines between the circled sets means there are order relations among the elements of them and the transitivity law holds.

# 3. Main results

**Lemma 3.1.** Let  $(Z^2, \leq)$  be the poset in Construction of  $Z^2$  with order relations Order 1, 2, and 3. Suppose that  $b_k = 1$  for all k where  $b = (b_1, b_2, \ldots, b_n)$ is the multiplicity  $M_1(A_k(X), i)$  for all  $1 \leq i \leq m_k, k = 1, \ldots, n$ . Then  $(Z^2, \leq)$ is ideal-homogeneous of height 2.

*Proof.* Let  $I_1$  and  $I_2$  be ideals of  $(Z^2, \leq)$  and

$$\alpha: (I_1, \leqslant) \to (I_2, \leqslant)$$

an isomorphism. Assume  $I \cap M_2(X) \neq \emptyset$  for all ideals in this proof, if not, it is of height 2. By the construction, it is clear that if  $I_1 \cong I_2$ , then  $I_1 \cap M_1(A_k, \cdot) = \emptyset$ 

if and only if  $I_2 \cap M_1(A_k, \cdot) = \emptyset$  for all  $k = 1, 2, \ldots, n$ . Hence there are finitely many numbers of k such that  $I_1 \cap M_1(A_k, \cdot) \neq \emptyset$  and  $I_2 \cap M_1(A_k, \cdot) \neq \emptyset$ . Without loss of generality, for finite subset  $K_1$  and  $J_1^k$  of [n] and  $[m_k]$ , respectively, we can assume that

$$I_1 \cap M_2(X) \subset \bigcup_{k \in K_1} \bigcup_{i \in J_1^k} M_1(A_k, i)$$

and for finite subset  $K_2$  and  $J_2^k$  of [n] and  $[m_k]$ , respectively, we can assume that

$$I_2 \cap M_2(X) \subset \bigcup_{k \in K_2} \bigcup_{i \in J_2^k} M_1(A_k, i).$$

By the consideration above, it is clear that  $K_1 = K_2$ , if not, we conclude that  $I_1$  is not isomophic to  $I_2$ . Therefore, without loss of generality (all other cases can be treated in the same way), we can assume that, for some k,

$$I_1 \cap M_2(X) \subset M_1(A_k, 1) \cup M_1(A_k, 2)$$

and

$$I_2 \cap M_2(X) \subset M_1(A_k, 1) \cup M_1(A_k, 3).$$

Let

$$M_1 \cap M_2(X) = B \cup E$$
 and  $I_2 \cap M_2(X) = C \cup F$ ,

where  $B = I_1 \cap M_1(A_k, 1)$ ,  $C = I_2 \cap M_1(A_k, 3)$ ,  $E = I_1 \cap M_1(A_k, 2)$ , and  $F = I_2 \cap M_1(A_k, 1)$ . Without loss of generality again, we can assume that  $B \cong_{\alpha} C$  and  $E \cong_{\alpha} F$ . If not, we have two cases (i)  $B \cong_{\alpha} C \cup F'$  where  $F' \subset M_1(A_k, 1)$  and (ii)  $B \cong_{\alpha} C'$  where  $C' \subset C$ . For the case (i), there exists  $F'' \subset M_1(A_k, 3)$  such that  $F' \cong_{\alpha} F''$ . Note that  $D[F'] \cong D[F'']$ . Hence new C is obtained by replacing F' by F'' to be  $B \cong_{\alpha} C$ . We may do similarly for the case (ii).

By restriction,  $\alpha$  induces a bijection  $\beta_1$  between  $D[B] \cap (A_k, 1)$  and  $D[C] \cap (A_k, 1)$  and bijection  $\beta_2$  between  $D[E] \cap (A_k, 1)$  and  $D[F] \cap (A_k, 1)$  which can be extended together to a permutation  $\alpha_1$  on  $(A_k, 1)$ . That is,  $\alpha_1(D[B] \cap (A_k, 1)) = D[C] \cap (A_k, 1)$ ,  $\alpha_1(D[E] \cap (A_k, 1)) = D[F] \cap (A_k, 1)$ , and all other elements in  $(A_k, 1)$  are fixed. Note that, since  $\Omega_{\binom{n}{k}} = \binom{a_1^k, a_2^k, \ldots, a_{\binom{n}{k}}}{\binom{n}{k}}$  works for all  $M_1(A_k, i)$  for all i = 1, 2, 3, and by the order relation Order 3, we have  $D[B] \cap (A_k, 1) = D[B] \cap (A_k, 2) = D[B] \cap (A_k, 3)$ ,  $D[C] \cap (A_k, 1) = D[C] \cap (A_k, 2) = D[C] \cap (A_k, 3)$ ,  $D[E] \cap (A_k, 1) = D[F] \cap (A_k, 3)$ , and  $D[F] \cap (A_k, 1) = D[F] \cap (A_k, 2) = D[F] \cap (A_k, 3)$ . Therefore, by the similar way to the case of restriction of  $\alpha$  to  $\alpha_1, \alpha$  induces a permutation  $\alpha_2$  on  $(A_k, 2) = D[C] \cap (A_k, i)$ ,  $\alpha_i(D[E] \cap (A_k, i)) = D[F] \cap (A_k, i)$ , and all other elements in  $(A_k, i)$  are fixed for all i = 2, 3 which means that  $\alpha_i$  are identical on  $(A_k, i)$ . Let  $\beta = \alpha_1 = \alpha_2(S) = \alpha_3(S)$ .

For each 
$$\Sigma \subset (A_k, i)$$
 with  $|\Sigma| = j$  and  $l \in \{1, 2\}$  let

$$U_l(\Sigma) = \{c \mid 1 \le c \le a_i^k \text{ with } \Sigma_c \in I_l\}.$$

Then a bijection  $\beta_{\Sigma} : U_1(\Sigma) \to U_2(\beta(\Sigma))$  can be defined in order to associate to  $\alpha(\Sigma, c) = (\beta(\Sigma), \beta_{\Sigma}(c))$  for all i = 1, 2, 3 and this can be extended to a permutation  $\tau_{\Sigma}$  of  $\{c \mid 1 \leq c \leq a_j^k\}$ . Note that  $\beta_{\Sigma}$  and  $\tau_{\Sigma}$  work for all  $(A_k, i)$  for all i = 1, 2, 3 in the same way. Also  $\beta$  induces a bijection between  $I_1 \cap [n]$  and  $I_2 \cap [n]$ , which can be extended to a permutation  $\tau$  of [n]. Now let  $\sigma^*(m) =$  $\tau(m)$  for  $m \in [n], \sigma^*(S) = \beta(S)$  for  $S \in (A_k, 1), \sigma^*(\Sigma, i) = (\beta(\Sigma), \tau_{\Sigma}(i))$  for  $(\Sigma, i) \in (A_k, i)$  for all i = 1, 2, 3, and all other elements of the poset are fixed. Then it is not hard to see that  $\sigma^*$  is an automorphism of  $(Z^2, \leq)$  such that  $\sigma^*|I_1 = \sigma$ .

The following lemma is a generalization of Lemma 3.1. Because there is no restriction to multiplicities  $M_1(A_k(X), i)$  for  $1 \le i \le m_k, k = 1, ..., n$ .

**Lemma 3.2.** Let  $(Z^2, \leq)$  be the poset defined in Construction of  $Z^2$  with order relations Order 1, 2, and 3. Then  $(Z^2, \leq)$  is ideal-homogeneous of height 2.

Proof. If  $(A_k(X), i) \neq \emptyset$ ,  $M_1(A_k(X), i)^r$ ,  $r = 1, \ldots, b_k$ , are r copies of multiset of  $(A_k(X), i)$  for fixed k. Then by Order 3, every r copies of  $M_1(A_k(X), i)$ are in the up-set of  $(A_k(X), i)$  for every  $i \in \{1, \ldots, m_k\}$ . Then the proof in Lemma 3.1 can be applied to the copies of  $M_1(A_k(X), i)$  in exactly the same way.

The following lemmas are special cases of Lemma 3.1, especially, there are no relations between  $M(A_k(X), i)$  and  $(A_k(X), j)$  for  $i \neq j$  and there are the restrictions on the multiplicities  $b = (b_1, b_2, \ldots, b_n)$ .

**Lemma 3.3.** Let  $(Z^2, \leq)$  be the poset in Construction of  $Z^2$  with order relations Order 1, 2 only except 3. Suppose that  $b_k = 1$  for all k where  $b = (b_1, b_2, \ldots, b_n)$  is multiplicities  $M_1(A_k(X), i)$  for  $1 \leq i \leq m_k$ ,  $k = 1, \ldots, n$ . Then  $(Z^2, \leq)$  is ideal-homogeneous of height 2.

*Proof.* This is a corollary of Lemma 3.2.

Now with no restrictions on the multiplicities  $b = (b_1, b_2, \ldots, b_n)$ , we have the following lemma.

**Lemma 3.4.** Let  $b_k$  be a positive integer for each k. Let  $(Z^2, \leq)$  be the poset in Construction of  $Z^2$  with order relations Order 1, 2 only except 3. Then  $(Z^2, \leq)$  is ideal-homogeneous.

*Proof.* This is a corollary of Lemma 3.3.

Therefore we conclude our main theorem as follows:

**Theorem 3.5.** Let  $(P, \leq)$  be a finite partially ordered set of height 2. The followings are equivalent.

- (i)  $(P, \leq)$  is ideal-homogeneous.
- (ii)  $(P, \leq)$  is weakly ideal-homogeneous.
- (iii)  $(P, \leq)$  is one of the posets constructed in Lemmas 3.1-3.4.

*Proof.* Trivially, (i) implies (ii). Assume that (ii) holds. Let X = [n] be the set of minimal elements of  $(P, \leq)$ . If  $S_1$  and  $S_2$  are k-element subsets of X, where  $1 \leq k \leq n$ , then there is a permutation  $\alpha$  of X mapping  $S_1$  onto  $S_2$ . Since  $\alpha$  is an automorphism of X, and X is an ideal of  $(P, \leq)$ ,  $\alpha$  can be extended to an automorphism  $\beta$  of  $(P, \leq)$  by (ii). Suppose that

 $T_i = \{S \in M_1(X) \mid \text{for } x \in P \text{ we have } x \leq S \text{ if and only if } x \in S_i\}$ 

for  $i \in \{1, 2\}$ . Then  $T_i$  is the set of points in  $M_1(X)$  which is the common upset of all points of  $S_i$  for  $i \in \{1, 2\}$ , and  $\beta$  has to map  $T_1$  onto  $T_2$ . Therefore, for every k-element subset  $S_i$  of X there is the same number  $m_k = |T_i|$  of elements in  $M_1(X)$  which cover all elements of  $S_i$  and no others.

Here we want to specialize the abstract set S in  $T_i$ . Without loss generality, let us assume that we regard the order relation on  $(P, \leq)$  as set inclusion. Clearly, for any k-element subset of  $X, S_i \in T_i$  since  $x \leq S_i$  if and only if  $x \in S_i$ . If  $S \in T_i$ , then S is the common up-set of all points of  $S_i$  and hence S should contain all the elements of  $S_i$  and no others. Hence we have  $S = S_i$ . Since there are  $\binom{n}{k}$  k-element subsets of X, let  $A_k(X) = \{S_1, S_2, \ldots, S_{\binom{n}{k}}\}$ , where  $S_i$  are the k-element subset of X for all  $k = 1, \ldots, n$ . Then  $A_k(X) \subset M_1(X)$ for all  $k = 1, \ldots, n$ . The number  $m_k$  means that there are  $m_k$  copies of  $S_i$  for  $1 \leq i \leq \binom{n}{k}$ . Hence  $m_k$  is the multiplicity of  $A_k(X)$  for all  $k = 1, \ldots, n$ . If  $m_k = 0$ , then there is no  $A_k(X)$  at all for all  $k = 1, \ldots, n$ .

Since for each k-element subset  $S_i$ ,  $1 \le i \le m_k$ , there are  $m_k$  copies of it, it deduce that there are  $m_k$  copies of  $A_k = A_k(X)$  after all. Hence we have

(11) 
$$M_1(X) = \bigcup_{k=1}^n \bigcup_{i=1}^{m_k} (A_k, i).$$

If  $S_i \in T_i$  and  $S_i = \{a_1, a_2, \ldots, a_k\} \subset X = [n]$ , then  $S_i$  can be denoted by  $S_i = a_1 a_2 \cdots a_k$  or  $(S_i, j) = (a_1 a_2 \cdots a_k, j)$ , where  $j, 1 \leq j \leq m_k$ , means that  $(S_i, j)$  is the *j*-th copy of  $S_i$ . Now let  $\Sigma_1$  and  $\Sigma_2$  be *l*-element subsets of  $\bigcup_{i=1}^{m_k} (A_k, i)$  that is,  $\Sigma_i$  has  $S_i$ 's as elements. There are some cases to be considered according to their membership where they belong to:

Case 1: For every k = 1, 2, ..., n, suppose  $\Sigma_1$  and  $\Sigma_2$  are subsets of  $(A_k, i)$  for some i, say  $(A_k, 1)$ . Without loss of generality, let us assume that  $\Sigma_1 = \{S_1, S_2\}$ and  $\Sigma_2 = \{S_1, S_3\}$  where  $S_i \in (A_k, 1)$  for i = 1, 2, 3. Then  $\beta(T_1 \cup T_2) = T_1 \cup T_3$ . Hence  $\beta$  deduces a permutation  $\tau$  of  $(A_k, 1)$  mapping  $\Sigma_1$  onto  $\Sigma_2$  by restriction and also  $\tau$  is a permutation of  $(A_k, i)$  for all i since  $\tau(T_1 \cup T_2) = T_1 \cup T_3$  and  $T_j \cap (A_k, i) \neq \emptyset$  for all i and j = 1, 2, 3. Suppose that

$$\mathfrak{T}_{j} = \{\Sigma \in M_{2}(X) \mid \text{for } S \in M_{1}(X) \text{ we have } S \leq \Sigma \text{ if and only if } S \in \Sigma_{j}\}$$

for  $j \in \{1, 2\}$ . Then  $\mathfrak{T}_j$  is the set of points in  $M_2(X)$  which is the common upset of all points of  $\Sigma_j$  for  $j \in \{1, 2\}$ , and  $\tau$  has to map  $\mathfrak{T}_1$  onto  $\mathfrak{T}_2$ . Therefore, for every *l*-element subset  $\Sigma$  of  $(A_k, 1)$ , there exists the same number  $a_l^k$  of elements which cover all elements of  $\Sigma$  and no others. Let  $K_l(X)$  be the set of *l*-element subsets of  $(A_k, 1)$ , that is,  $K_l = \{\Sigma_1, \Sigma_2, \ldots, \Sigma_{\binom{n}{k}}\}$  for all

 $l = 1, \ldots, \binom{n}{k}$ . Since for each *l*-element subset  $\Sigma_j, 1 \leq j \leq \binom{\binom{n}{k}}{l}$ , there are  $a_l^k$  copies of it, it implies that there are  $a_l^k$  copies of  $K_l$  for all  $l = 1, \ldots, \binom{n}{k}$  after all. In all, we have the multiplicity  $\Omega_{\binom{n}{k}} = \left(a_1^k, a_2^k, \ldots, a_{\binom{n}{k}}^k\right)$ , where  $a_t^k \geq 0$ , for all  $t = 1, \ldots, \binom{n}{k}$  for  $M_1(A_k, 1)$  for all  $k = 1, 2, \ldots, n$ .

Subcase 1: For all k, suppose  $M_1(A_k, 1)$  has multiplicity 1, that is  $b_k = 1$  for all k with order relations Order 1 and 2 only. It is then clear that  $(P, \leq)$  is isomorphic to  $(\mathbb{Z}^2, \leq)$  in Lemma 3.3.

Subcase 2: Suppose  $M_1(A_k, 1)$  has multiplicity  $b_k \ge 1$  for all k with order relations Order 1 and 2 only. It is then clear that  $(P, \leq)$  is isomorphic to  $(\mathbb{Z}^2, \leq)$  in Lemma 3.4.

Case 2: For every k = 1, 2, ..., n, suppose  $\Sigma_1 \subset (A_k, 1)$  and  $\Sigma_2 \subset (A_k, 2)$ , respectively. Without loss of generality, let us assume that  $\Sigma_1 = \{S_1, S_2\}$  and  $\Sigma_2 = \{S_3, S_4\}$ . Then  $\beta(T_1 \cup T_2) = T_3 \cup T_4$ . Note that  $T_j \cap (A_k, i) \neq \emptyset$  for all i = 1, 2 and j = 1, 2, 3, 4. Let  $\Sigma'_2$  be a copy of  $\Sigma_2$  in  $T_2 \cap (A_k, 1)$  and  $\Sigma'_1$  be a copy of  $\Sigma_1$  in  $T_1 \cap (A_k, 2)$ . Hence  $\beta$  deduces a permutation  $\tau$  of  $(A_k, i)$  by restriction for all i = 1, 2 and  $\tau$  should map the common up-set of all points of  $\Sigma_1 \cup \Sigma'_2$ in  $M_1(A_k, 1)$  onto the common up-set of all points of  $\Sigma'_1 \cup \Sigma_2$  in  $M_1(A_k, 2)$ . Hence there are order relations between  $(A_k, 1)$  and  $M_1(A_k, 2)$ , and between  $(A_k, 2)$  and  $M_1(A_k, 1)$ . In general, for every *l*-element subset  $\Sigma$  of  $(A_k, i)$ , there exists the same number  $a_l^k$  of elements which cover all elements of  $\Sigma$ , and no

others. Similar to Case 1, we have the multiplicity  $\Omega_{\binom{n}{k}} = \left(a_1^k, a_2^k, \dots, a_{\binom{n}{k}}^k\right)$ where  $a_t^k \geq 0$  for all  $t = 1, \dots, \binom{n}{k}$  for  $M_1(A_k, i)$  for all  $i = 1, \dots, m_k$  and  $k = 1, \dots, n$ .

Subcase 1:  $M_1(A_k, i)$  has the multiplicities  $b_k = 1$  for k = 1, ..., n. It is then clear that  $(P, \leq)$  is isomorphic to  $(Z^2, \leq)$  in Lemma 3.1.

Subcase 2:  $M_1(A_k, i)$  has the multiplicities  $b_k > 1$  for k = 1, ..., n. It is then clear that  $(P, \leq)$  is isomorphic to  $(Z^2, \leq)$  in Lemma 3.2. In all (iii) holds. By Lemmas 3.1-3.4, (iii) implies (i).

## 4. Applications

For a positive integer n, let X = [n]. Define a poset  $(P^2, \leq)$ , where

$$P^2 = X \cup M_1(X) \cup M_2(X)$$

and  $(m_1, m_2, \ldots, m_n) = (1, 1, \ldots, 1)$ ,  $\Omega_{\binom{n}{k}} = (1, \ldots, 1)$  and  $b_k = 1$  for all k. Then  $M_1(X)$  is the power set of X except the empty set, and  $M_2(X)$  is the set of power sets (except the empty set) of  $A_k(X)$  for all  $1 \le k \le n$ .

Hence we have the following corollary.

**Corollary 4.1.** With the order relations defined Order 1, and 2,  $(P^2, \leq)$  is ideal-homogeneous.

For given posets P and Q,  $P \oplus Q$  is represented as a poset with a property that  $x \leq y$  if and only if  $x \in P$  and  $y \in Q$ . Let  $\{B_1, B_2, \ldots, B_n\}$  be a set of antichains. Now construct a poset P which is isomorphic to  $B_1 \oplus B_2 \oplus \cdots \oplus B_n$ . Let  $X_1 = [|B_1|]$  and the multiplicities  $(m_1, m_2, \ldots, m_{|B_1|}) = (0, 0, \ldots, |B_2|)$ . Then for all  $i = 1, \ldots, |B_2|$  we have  $(A_{|B_1|}, i)$ . Let  $T_2(X) = \bigcup_{i=1}^{|B_2|} (A_{|B_1|}, i)$ . Then  $|T_2(X)| = |B_2|$ . Now, let  $X_2 = [|B_2|]$  and the multiplicities  $(m_1, m_2, \ldots, m_{|B_2|}) = (0, 0, \ldots, |B_3|)$ . Then let  $T_3(X) = \bigcup_{i=1}^{|B_3|} (A_{|B_2|}, i)$ . Then  $|T_3(X)| = |B_3|$ . Likewise, define a poset P, recursively, and at last  $X_{n-1} = [|B_{n-1}|]$  and the multiplicities  $(m_1, m_2, \ldots, m_{|B_{n-1}|}) = (0, 0, \ldots, |B_n|)$  and  $T_n(X) = \bigcup_{i=1}^{|B_n|} (A_{|B_{n-1}|}, i)$ . Then  $|T_n(X)| = |B_n|$ . The order relations between  $X_i$  and  $T_i(X_i)$  in each steps  $i = 1, \ldots, n$  are defined by set inclusion. Then the poset P constructed is isomorphic to  $B_1 \oplus B_2 \oplus \cdots \oplus B_n$  of height n. Therefore we have the following:

**Theorem 4.2.** Let  $\{B_1, B_2, \ldots, B_n\}$  be a set of antichains. Then the poset P constructed above which is isomorphic to  $B_1 \oplus B_2 \oplus \cdots \oplus B_n$  is ideal-homogeneous of height n.

Proof. Let I and J be ideals of  $P = B_1 \oplus B_2 \oplus \cdots \oplus B_n$  and  $\alpha : (I, \leq) \to (J, \leq)$  is an isomorphism. Let  $I_m$  and  $J_m$  be the set of maximal elements in I and J, respectively. Then for some k,  $I_m$ ,  $J_m \subset B_k$  and by construction we have  $I = D[I_m]$  and  $J = D[J_m]$  and hence  $D[I_m] \cong D[J_m]$ . Therefore, by restriction,  $\alpha$  induces a bijection between  $I_m \cap J_m$ , which can be extended to a permutation on  $B_k$ . Also it can be extended to an automorphism  $\sigma^*$  of P such that  $\sigma^* | I = \sigma$ .

We find some family of posets which are ideal homogeneous, but it is just partial solutions for the following Behrendt's problem [1].

**Problem 2.** Give a classification of all finite (weakly) ideal-homogeneous ordered sets.

#### References

- [1] G. Behrendt, Homogeneity in Finite Ordered Sets, Order 10 (1993), no. 1, 65–75.
- [2] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Second edition, Cambridge University Press, 2002.

GAB-BYUNG CHAE DIVISION OF MATHEMATICS AND INFORMATIONAL STATISTICS WONKWANG UNIVERSITY IKSAN 54538, KOREA *E-mail address*: rivendell@wonkwang.ac.kr

MINSEOK CHEONG COLLEGE OF INFORMATION INFORMATION SECURITY CONVERGENCE KOREA UNIVERSITY SEOUL 02841, KOREA *E-mail address*: toset@hanmail.net

SANG-MOK KIM DEPARTMENT OF MATHEMATICS KWANGWOON UNIVERSITY SEOUL 01897, KOREA *E-mail address*: smkim@kw.ac.kr