Browse > Article
http://dx.doi.org/10.4134/BKMS.2010.47.2.385

ON QUASI-RIGID IDEALS AND RINGS  

Hong, Chan-Yong (DEPARTMENT OF MATHEMATICS AND RESEARCH INSTITUTE FOR BASIC SCIENCES KYUNG HEE UNIVERSITY)
Kim, Nam-Kyun (DIVISION OF GENERAL EDUCATION HANBAT NATIONAL UNIVERSITY)
Kwak, Tai-Keun (DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY)
Publication Information
Bulletin of the Korean Mathematical Society / v.47, no.2, 2010 , pp. 385-399 More about this Journal
Abstract
Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.
Keywords
endomorphism; rigidness; semiprimeness; Ore extension; (principally) quasi-Baer ring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30 (2002), no. 5, 2511–2528.   DOI   ScienceOn
2 G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639–660.   DOI   ScienceOn
3 G. F. Birkenmeier, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25–42.   DOI   ScienceOn
4 C. Y. Hong, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103–122.   DOI   ScienceOn
5 C. Y. Hong, N. K. Kim, and Y. Lee, Ore extensions of quasi-Baer rings, Comm. Algebra 37 (2009), 2030–2039.   DOI   ScienceOn
6 C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867–4878.   DOI   ScienceOn
7 M. Ba¸ser, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297.   DOI   ScienceOn
8 G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102–129, World Sci. Publ., River Edge, NJ, 1993.
9 T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287–2299.   DOI   ScienceOn
10 T. Y. Lam, A. Leroy, and J. Matczuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459–2506.   DOI   ScienceOn
11 G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113–2123.   DOI   ScienceOn
12 W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417– 423.   DOI
13 E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12 (2006), 349–356.
14 E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224.   DOI
15 C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226.   DOI   ScienceOn
16 N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings, Math. Japon. 50 (1999), no. 3, 415–420.
17 C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq. 12 (2005), no. 3, 399–412.   DOI
18 A. A. M. Kamal, Some remarks on Ore extension rings, Comm. Algebra 22 (1994), no. 10, 3637–3667.   DOI   ScienceOn
19 I. Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
20 J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
21 G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709–1724.   DOI   ScienceOn
22 K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783–794.   DOI