Bull. Korean Math. Soc. **47** (2010), No. 2, pp. 385–399 DOI 10.4134/BKMS.2010.47.2.385

ON QUASI-RIGID IDEALS AND RINGS

CHAN YONG HONG, NAM KYUN KIM, AND TAI KEUN KWAK

ABSTRACT. Let σ be an endomorphism and I a σ -ideal of a ring R. Pearson and Stephenson called I a σ -semiprime ideal if whenever A is an ideal of R and m is an integer such that $A\sigma^t(A) \subseteq I$ for all $t \geq m$, then $A \subseteq I$, where σ is an automorphism, and Hong et al. called I a σ -rigid ideal if $a\sigma(a) \in I$ implies $a \in I$ for $a \in R$. Notice that R is called a σ -semiprime ring (resp., a σ -rigid ring) if the zero ideal of R is a σ -semiprime ideal (resp., a σ -rigid ideal). Every σ -rigid ideal is a σ -semiprime ideal for an automorphism σ , but the converse does not hold, in general. We, in this paper, introduce the quasi σ -rigidness of ideals and rings for an automorphism σ which is in between the σ -rigidness and the σ -semiprimeness, and study their related properties. A number of connections between the quasi σ -rigidness of a ring R and one of the Ore extension $R[x; \sigma, \delta]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x; \sigma, \delta]$ is a (principally) quasi-Baer ring, when R is a quasi σ -rigid ring.

1. Definitions

Let σ be an endomorphism of a ring R, the additive map $\delta : R \to R$ is called a σ -derivation if $\delta(ab) = \delta(a)b + \sigma(a)\delta(b)$ for any $a, b \in R$. For a ring R with an endomorphism σ of R and a σ -derivation δ , the Ore extension $R[x; \sigma, \delta]$ of R is the ring obtained by giving the polynomial ring over R with new multiplication: $xr = \sigma(r)x + \delta(r)$ for all $r \in R$. If $\delta = 0$, we write $R[x; \sigma]$ for $R[x; \sigma, 0]$ and it is called the skew polynomial ring (or, an Ore extension of endomorphism type); while $R[[x; \sigma]]$ is called a skew power series ring.

An endomorphism σ of a ring R is called *rigid* [17] if $a\sigma(a) = 0$ implies a = 0 for $a \in R$. A ring R is called a σ -*rigid ring* [9] if there exists a rigid endomorphism σ of R. The Ore extension $R[x; \sigma, \delta]$ of R is reduced (i.e., it has no nonzero nilpotent elements) and σ is a monomorphism if and only if R is a σ -rigid ring if and only if $R[x; \sigma]$ is reduced by [9, Proposition 5] and [10, Proposition 3], respectively. Hence, σ -rigid rings are reduced rings, but there exists an endomorphism σ of a commutative reduced ring which is not a σ -rigid

O2010 The Korean Mathematical Society

Received November 13, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 16N60, 16S36, 16W60.

Key words and phrases. endomorphism, rigidness, semiprimeness, Ore extension, (principally) quasi-Baer ring.

ring by [9, Example 9]. An ideal I of R is called a σ -ideal if $\sigma(I) \subseteq I$. In [13], a σ -ideal I of a ring R is called a σ -rigid ideal if $a\sigma(a) \in I$ implies $a \in I$ for $a \in R$, and the connections between σ -rigid ideals of R and the related ideals of the Ore extension $R[x;\sigma,\delta]$ of R are investigated. Obviously, R is a σ -rigid ring if and only if the zero ideal of R is a σ -rigid ideal. Following [22], for an automorphism σ of a ring R, a σ -ideal I of R is called a σ -semiprime ideal if whenever A is an ideal of R and m is an integer such that $A\sigma^t(A) \subseteq I$ for all $t \geq m$, then $A \subseteq I$; the ring R is called σ -semiprime if the zero ideal of R is a σ -semiprime ideal. Notice that R is a σ -semiprime ring if and only if the skew polynomial ring $R[x;\sigma]$ is semiprime by [22, Proposition 1.1] (also, [18, Proposition 4.6]). It is well-known that for an automorphism σ of a ring R, the ring R is σ -semiprime if and only if whenever $a \in R$ and m is an integer such that $aR\sigma^t(a) = 0$ for all $t \ge m$, then a = 0. It is clear that every σ -rigid ideal (ring) is a σ -semiprime ideal (ring) for an automorphism σ . Hence, for an endomorphism σ and a σ -ideal I of a ring R, we consider the following condition

(*)
$$aR\sigma(a) \subseteq I$$
 implies $a \in I$ for $a \in R$.

Then it can be easily checked that every σ -rigid ideal satisfies (*) and every σ -ideal satisfying (*) is σ -semiprime for an automorphism σ , but the converses do not hold by the next example, respectively.

Example 1.1. (1) Let $R = \operatorname{Mat}_2(\mathbb{Z}_3)$ be the 2×2 matrix ring over a field \mathbb{Z}_3 . Then $I = \{0\}$ is a maximal (and prime) ideal of R. Let $\sigma : R \to R$ be an automorphism defined by $\sigma\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$. Suppose that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} R\sigma\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \subseteq I$. Since R is a prime ring, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I$ or $\sigma\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \in I$. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I$, and therefore I satisfies (*). However, I is not a σ -rigid ideal by [13, Example 3.3].

(2) Let \mathbb{Z}_2 be the ring of integers modulo 2 and $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Then R is a commutative reduced ring. Define $\sigma: R \to R$ by $\sigma(a, b) = (b, a)$. Then the zero ideal I of R does not satisfy (*): In fact, $(1,0)R\sigma(1,0) \subseteq I$, but $(1,0) \notin I$. We now claim that $R[x;\sigma]$ is semiprime. Let $f(x)R[x;\sigma]f(x) = 0$, where $f(x) = \sum_{i=0}^{m} (a_i, b_i)x^i \in R[x;\sigma]$ with $(a_m, b_m) \neq 0$. We may assume that $a_m \neq 0$. Then $f(x)x^tf(x) = 0$ for all integer $t \geq 0$. Thus $(a_m, b_m)\sigma^{m+t}(a_m, b_m) = 0$ of all $t \geq 0$. This implies that $(a_m, b_m)\sigma^m(a_m, b_m) = 0$ and $(a_m, b_m)\sigma^{m+1}(a_m, b_m) = 0$. If m is even (or odd), then $(a_m, b_m)(a_m, b_m) = 0$ and $(a_m, b_m)(b_m, a_m) = 0$. Hence $a_m = 0 = b_m$. Thus $(a_m, b_m) = 0$; which is a contradiction. Therefore $R[x;\sigma]$ is semiprime and so R is σ -semiprime by [22, Proposition 1.1], equivalently, I is a σ -semiprime ideal.

Another generalization of σ -rigid ideals is a σ -compatible ideal. In [7], an ideal I of a ring R is called a σ -compatible ideal if for each $a, b \in R$, $ab \in I \Leftrightarrow a\sigma(b) \in I$. The next example shows that the class of σ -compatible ideals and the class of σ -ideals satisfying (*) do not depend on each other.

Example 1.2. (1) In Example 1.1(1), the zero ideal $\{0\}$ of R satisfies (*), but not a σ -compatible ideal: Indeed, $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} = 0$, but $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \sigma \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \neq 0$.

(2) Consider a ring $R = \left\{ \begin{pmatrix} f(x) & g(x) \\ 0 & f(x) \end{pmatrix} \mid f(x), g(x) \in F[x] \right\}$, where F[x] is the polynomial ring over a field F. For a nonzero element $a \in F$, let σ : $R \to R$ be an endomorphism defined by $\sigma\left(\begin{pmatrix} f(x) & g(x) \\ 0 & f(x) \end{pmatrix} \right) = \begin{pmatrix} f(x) & ag(x) \\ 0 & f(x) \end{pmatrix}$. Then the ideal $I = \left\{ \begin{pmatrix} 0 & g(x) \\ 0 & 0 \end{pmatrix} \mid g(x) \in \langle p(x) \rangle \right\}$, where $\langle p(x) \rangle$ is an ideal generated by an irreducible polynomial p(x) in F[x], is a σ -compatible ideal of R by [7, Example 2.5]. However, I does not satisfy (*): In fact, for $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \notin I$ we have $AR\sigma(A) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \subseteq I$.

Based on these facts, we define the following.

Definition 1.3. Let σ be an automorphism of a ring R. For a σ -ideal I of R, I is called a *quasi* σ -*rigid ideal* (or, a *strongly* σ -*semiprime ideal*) of R if $aR\sigma(a) \subseteq I$ implies $a \in I$ for $a \in R$. A ring R is called a *quasi* σ -*rigid ring* (or, a *strongly* σ -*semiprime ring*) if the zero ideal of R is a quasi σ -rigid ideal.

In this paper, we study both quasi σ -rigid ideals and quasi σ -rigid rings for an automorphism σ . Several relationship between the quasi σ -rigidness of a ring R and one of the Ore extension $R[x; \sigma, \delta]$ are also investigated. In particular, we show that R is a (principally) quasi-Baer ring if and only if the Ore extension $R[x; \sigma, \delta]$ of R is (principally) quasi-Baer when R is a quasi σ -rigid ring (Theorem 4.3 and Theorem 4.4).

Throughout this paper, R denotes an associative ring with identity. We assume that every endomorphism σ of a given ring is an automorphism, unless specified otherwise.

2. Structures of quasi σ -rigid ideals

Recall that for an ideal I of a ring R, the ideal I is called σ -invariant if $\sigma^{-1}(I) = I$. Note that every σ -invariant ideal is a σ -ideal.

Lemma 2.1. Every quasi σ -rigid ideal of a ring is σ -invariant and semiprime.

Proof. Let I be a quasi σ -rigid ideal of a ring R. Let $a \in \sigma^{-1}(I)$. Then $\sigma(a) \in I$, and so $aR\sigma(a) \subseteq I$ and hence $a \in I$. Thus $\sigma^{-1}(I) \subseteq I$ and therefore I is σ -invariant. Now, assume that $aRa \subseteq I$ for $a \in R$. For any $r \in R$, $ar\sigma(a)R\sigma(ar\sigma(a)) \subseteq I$ and so $ar\sigma(a) \in I$. Thus $a \in I$ and therefore I is semiprime.

The converse of Lemma 2.1 does not hold by following.

Example 2.2. Consider the ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and the endomorphism σ defined by $\sigma(a, b) = (b, a)$, in Example 1.1(2). Let *I* be the prime radical $N_*(R) = \{(0,0)\}$ of *R* (Note that the only proper σ -ideal is $\{(0,0)\}$). Then *I* is clearly a semiprime ideal and a σ -invariant ideal, but not a quasi σ -rigid ideal by Example 1.1(2).

We have the basic equivalences for quasi σ -rigid ideals as follows.

Proposition 2.3. Let I be a σ -ideal of a ring R. The following are equivalent to a quasi σ -rigid ideal I of R :

(1) $\sigma(a)Ra \subseteq I$ implies $a \in I$ for any $a \in R$.

(2) For any ideal A of R, $A\sigma(A) \subseteq I$ implies $A \subseteq I$.

(3) For any $\bar{a} \in \bar{R}$, $\bar{a}\bar{R}\bar{\sigma}(\bar{a}) = \bar{0}$ implies $\bar{a} = \bar{0}$, where $\bar{R} = R/I$, $\bar{a} = a + I$ and $\bar{\sigma} : \bar{R} \to \bar{R}$ is defined by $\bar{\sigma}(a+I) = \sigma(a) + I$ for $a \in R$.

Proof. (1) Suppose that I is a quasi σ -rigid ideal. Then I is semiprime by Lemma 2.1. If $\sigma(a)Ra \subseteq I$ for $a \in R$, then $aR\sigma(a) \subseteq I$ and thus $a \in I$. Conversely, assume that $\sigma(a)Ra \subseteq I$ implies $a \in I$ for any $a \in R$. If $bRb \subseteq I$, then $\sigma(\sigma(b)rb)R\sigma(b)rb = \sigma^2(b)\sigma(r)\sigma(bRb)rb \subseteq I$ for any $r \in R$, and so $\sigma(b)rb \in I$ and thus $b \in I$ by the assumption, entailing that I is semiprime. Hence, $aR\sigma(a) \subseteq I$ implies $\sigma(a)Ra \subseteq I$, and so $a \in I$ by the assumption, concluding that I is a quasi σ -rigid ideal. (2) Let I be a quasi σ -rigid ideal and $a \in A$. If $A\sigma(A) \subseteq I$, then $aR\sigma(a) \subseteq I$, and so $a \in I$. Consequently, $A \subseteq I$. Conversely, assume that for any ideal A of R, $A\sigma(A) \subseteq I$ implies $A \subseteq I$. If $aR\sigma(a) \subseteq I$, then $RaR\sigma(RaR) = RaR\sigma(a)R \subseteq I$ and so $RaR \subseteq I$, and hence $a \in I$, implying that I is a quasi σ -rigid ideal. (3) is obvious. \Box

For the remainder of this paper, let δ be a σ -derivation of a ring R. Recall that an ideal I of R is called a δ -ideal if $\delta(I) \subseteq I$.

Lemma 2.4. Let I be a quasi σ -rigid ideal of a ring R.

(1) If $aRb \subseteq I$ for $a, b \in R$, then $aR\sigma^n(b), \sigma^n(a)Rb \subseteq I$ for every positive integer n. Conversely, if $aR\sigma^k(b)$ or $\sigma^k(a)Rb \subseteq I$ for some positive integer k, then $aRb \subseteq I$.

(2) If I is a δ -ideal with $aRb \subseteq I$ for $a, b \in R$, then $aR\delta^n(b), \delta^n(a)Rb \subseteq I$ for every positive integer n.

Proof. We freely use the fact that every quasi σ -rigid ideal is σ -invariant and semiprime by Lemma 2.1. (1) Suppose that $aRb \subseteq I$ for $a, b \in R$. It is enough to show that $aR\sigma(b)$, $\sigma(a)Rb \subseteq I$. For any $r \in R$, $br\sigma(a)R\sigma(br\sigma(a)) =$ $br\sigma(aRb)\sigma(r\sigma(a)) \subseteq I$. Since I is a quasi σ -rigid ideal, $br\sigma(a) \in I$ and so $bR\sigma(a) \subseteq I$. Hence, $\sigma(a)Rb \subseteq I$ since I is a semiprime ideal. Next, we obtain $bRa \subseteq I$ since $aRb \subseteq I$ and I is a semiprime ideal. By the same method, we get $aR\sigma(b) \subseteq I$. Conversely, suppose that $aR\sigma^k(b) \subseteq I$ for some positive integer k. Then, by the above arguments, $\sigma^k(aRb) = \sigma^k(a)R\sigma^k(b) \subseteq I$. Since I is a σ -invariant ideal, $\sigma^{k-1}(aRb) \subseteq \sigma^{-1}(I) = I$. Continuing this process, we have $aRb \subseteq I$. Similarly, $\sigma^k(a)Rb \subseteq I$ for some positive integer k implies $aRb \subseteq I$. (2) Assume that I is a δ -ideal and $aRb \subseteq I$ for $a, b \in R$. It is sufficient to show that $aR\delta(b), \delta(a)Rb \subseteq I$. Let $aRb \subseteq I$. Note that $bRa \subseteq I$ and so $bR\sigma(a) \subseteq I$ by (1). For any $r \in R$, $\delta(arb) = \sigma(ar)\delta(b) + \delta(ar)b \in I$. Thus $(\sigma(ar)\delta(b)R)^2 = \delta(arb)R\sigma(ar)\delta(b)R - \delta(ar)bR\sigma(ar)\delta(b)R \subseteq I$ because $\delta(arb) \in I$ and $bR\sigma(a) \subseteq I$. Since I is semiprime, we have $\sigma(a)R\delta(b) \subseteq I$ and so $aR\delta(b) \subseteq I$ by (1). Similarly, $bRa \subseteq I$ from $aRb \subseteq I$ implies $\delta(a)Rb \subseteq I$, completing proof. \square

Corollary 2.5. Let I be a σ -ideal of a ring R. The ideal I is a quasi σ -rigid ideal if and only if I is a semiprime ideal, and $aR\sigma(b) \subseteq I \Leftrightarrow aRb \subseteq I$ for $a, b \in R$.

Proof. It follows from Lemma 2.1 and Lemma 2.4.

Theorem 2.6. Let I be a quasi σ -rigid ideal of a ring R.

(1) Let $p(x) = \sum_{i=0}^{m} a_i x^i$ and $q(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \sigma, \delta]$. If I is a δ -ideal of R, then $p(x)R[x;\sigma,\delta]q(x) \subseteq I[x;\sigma,\delta]$ if and only if $a_iRb_j \subseteq I$ for all i and j.

(2) Let $p(x) = \sum_{i=0}^{\infty} a_i x^i$ and $q(x) = \sum_{j=0}^{\infty} b_j x^j \in R[[x;\sigma]]$. Then $p(x)R[[x;\sigma]]q(x) \subseteq I[[x;\sigma]]$ if and only if $a_i Rb_j \subseteq I$ for all i and j.

Proof. (1) Suppose that $p(x)R[x;\sigma,\delta]q(x) \subseteq I[x;\sigma,\delta]$. Then $p(x)rq(x) \in$ $I[x;\sigma,\delta]$ for any $r \in R$, and put

$$\left(\sum_{i=0}^{m} a_{i}x^{i}\right)r\left(\sum_{j=0}^{n} b_{j}x^{j}\right) = c_{m+n}x^{m+n} + c_{m+n-1}x^{m+n-1} + \dots + c_{1}x + c_{0} \in I[x;\sigma,\delta].$$

We claim that $a_i R b_j \subseteq I$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. We proceed by induction on i+j. When i+j=m+n, we have $c_{m+n}=a_m\sigma^m(r)\sigma^m(b_n)\in I$ by above, and so $a_m R b_n \subseteq I$ by Lemma 2.4. Now suppose that our claim is true for $i + j > k \ge 0$. Consider

$$c_k = \sum_{i+j=k} a_i \sigma^i(r) \sigma^i(b_j) + \sum_{i+j>k} a_i R \sigma^{i_1} \delta^{j_1} \sigma^{i_2} \delta^{j_2} \cdots \sigma^{i_l} \delta^{j_l}(b_j) \subseteq I$$

for any $r \in R$ and some nonnegative integers $i_1, \ldots, i_l, j_1, \ldots, j_l$. Since

$$\sum_{i+j>k} a_i R \sigma^{i_1} \delta^{j_1} \sigma^{i_2} \delta^{j_2} \cdots \sigma^{i_l} \delta^{j_l}(b_j) \subseteq I,$$

by induction hypothesis and Lemma 2.4, we obtain

(1)
$$c_k = \sum_{i+j=k} a_i \sigma^i(r) \sigma^i(b_j) \in I$$

for any $r \in R$. Multiplying Eq.(1) by Ra_k from the right hand-side, we have

$$\left(\sum_{i+j=k} a_i \sigma^i(r) \sigma^i(b_j)\right) Ra_k = a_k \sigma^k(r) \sigma^k(b_0) Ra_k \subseteq I$$

since $\sigma^u(b_i)Ra_i \subseteq I$ for all i+j > k and any nonnegative integer u, by induction hypothesis and Lemma 2.4(1). Then for any $r \in R$, $(a_k \sigma^k(r) \sigma^k(b_0) R)^2 \subseteq I$ and so $a_k \sigma^k(r) \sigma^k(b_0) \in I$ by Lemma 2.1. Hence $a_k R \sigma^k(b_0) \subseteq I$ and so $a_k R b_0 \subseteq I$ by Lemma 2.4(1). Thus Eq.(1) becomes

(2)
$$\sum_{i+j=k, \ 0 \le i \le k-1} a_i \sigma^i(r) \sigma^i(b_j) \in I.$$

Multiplying Eq.(2) by Ra_{k-1} from the right hand-side,

$$a_{k-1}\sigma^{k-1}(r)\sigma^{k-1}(b_1)Ra_{k-1} \subseteq I$$

and so $a_{k-1}Rb_1 \subseteq I$ by the same method above. Continuing in this manner, we obtain that $a_iRb_j \subseteq I$ for all i, j with i + j = k. Therefore $a_iRb_j \subseteq I$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. The converse follows directly from Lemma 2.4.

(2) Suppose that $p(x)R[[x;\sigma]]q(x) \subseteq I[[x;\sigma]]$. Then $p(x)rq(x) \in I[[x;\sigma]]$ for any $r \in R$. Then

(3)
$$\left(\sum_{i=0}^{\infty} a_i x^i\right) r\left(\sum_{j=0}^{\infty} b_j x^j\right) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k}^{\infty} a_i \sigma^i(r) \sigma^i(b_j) x^{i+j}\right) \in I[[x;\sigma]].$$

We claim that $a_iRb_j \subseteq I$ for all i, j. We proceed by induction on i + j. For i + j = 0, we have $a_0Rb_0 \subseteq I$ by Eq.(3). Now assume that our claim is true for $i + j \leq n - 1$. Note that $a_iR\sigma^u(b_j)$ and $\sigma^v(b_j)Ra_i \subseteq I$ for any nonnegative integers u and v, by induction hypothesis and Lemma 2.4(1), when $i+j \leq n-1$. We show that $a_iRb_j \in I$ for i + j = n. From Eq.(3), we have

(4)
$$\sum_{i+j=n} a_i \sigma^i(r) \sigma^i(b_j) \in I.$$

Multiplying Eq.(4) by Ra_0 from the right hand-side, we obtain $(a_0rb_n)Ra_0 \subseteq I$, and so $a_0rb_n \in I$ and thus $a_0Rb_n \subseteq I$. Thus Eq.(4) becomes

(5)
$$\sum_{i+j=n, \ 1 \le i \le n} a_i \sigma^i(r) \sigma^i(b_j) \in I.$$

Multiplying Eq.(5) by Ra_1 from the right hand-side, we obtain $a_1Rb_{n-1} \subseteq I$ by the similar arguments as above. Continuing this process, we can prove that $a_iRb_j \subseteq I$ for all i, j with i + j = n. Therefore, $a_iRb_j \subseteq I$ for all i and j. The converse also follows directly from Lemma 2.4(1).

Corollary 2.7. Let I be a quasi σ -rigid ideal of a ring R.

- (1) $I[x;\sigma,\delta]$ is a semiprime ideal of $R[x;\sigma,\delta]$, when I is a δ -ideal of R.
- (2) $I[[x;\sigma]]$ is a semiprime ideal of $R[[x;\sigma]]$.

Proof. (1) Let $p(x)R[x;\sigma,\delta]p(x) \subseteq I[x;\sigma,\delta]$, where $p(x) = \sum_{i=0}^{m} a_i x^i \in R[x;\sigma,\delta]$. Then $a_i R a_i \subseteq I$ for all $0 \leq i \leq m$ by Theorem 2.6. Since I is a semiprime ideal of R by Lemma 2.1, we have $a_i \in I$ for all $0 \leq i \leq m$, and thus $p(x) \in I[x;\sigma,\delta]$. Therefore $I[x;\sigma,\delta]$ is a semiprime ideal of $R[x;\sigma,\delta]$. (2) By the same method as (1).

Recall from [21], a one-sided ideal I of a ring R has the *insertion of factors* property (or simply, IFP) if $ab \in I$ implies $aRb \subseteq I$ for $a, b \in R$.

Lemma 2.8. For an ideal I of a ring R, I is a quasi σ -rigid ideal and has the IFP if and only if I is a σ -rigid ideal.

Proof. Let I be a quasi σ -rigid ideal and have the IFP. If $a\sigma(a) \in I$ for $a \in R$, then $aR\sigma(a) \subseteq I$ by the IFP, and hence $a \in I$, concluding that I is a σ -rigid ideal. Conversely, suppose that I is a σ -rigid ideal. Then I is a completely semiprime ideal (i.e., $a^2 \in I$ implies $a \in I$ for $a \in R$) of R by [13, Proposition 2.2(1)], and so I has the IFP by [21, Lemma 3.2(a)].

Let N(R), $N_*(R)$ and $N^*(R)$ denote the set of all nilpotent elements, the prime radical and the upper nilradical (i.e., the sum of all nil ideals) of a ring R, respectively. A ring R is called 2-primal [3] if $N_*(R) = N(R)$, and a ring Ris called NI [20] if $N^*(R) = N(R)$. It is well-known that a ring R is 2-primal if and only if $N_*(R)$ is a completely semiprime ideal of R, and a ring R is NI if and only if $N^*(R)$ is a completely semiprime ideal of R. Every 2-primal ring is NI, but the converse does not hold in general.

We use R[x] to denote the polynomial ring with an indeterminate x over a ring R.

Theorem 2.9. (1) R is a 2-primal ring and $N_*(R)$ is a quasi σ -rigid ideal if and only if $N_*(R)$ is a σ -rigid ideal of R. In particular, if R is a 2-primal ring, then $f(x)g(x) \in N(R)[x]$ if and only if $a_ib_j \in N(R)$ for all i and j, where $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$.

(2) R is an NI ring and $N^*(R)$ is a quasi σ -rigid ideal if and only if $N^*(R)$ is a σ -rigid ideal of R.

Proof. (1) Note that *R* is a 2-primal ring if and only if $N_*(R)$ has the IFP by [16, Theorem 2.1]. Hence, by Lemma 2.8, $N_*(R)$ is a quasi σ -rigid ideal if and only if $N_*(R)$ is a σ -rigid ideal, when *R* is a 2-primal ring. Now, let *R* be a 2-primal ring and $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$. It is well-known that the polynomial ring R[x] over *R* is 2-primal by [3, Proposition 2.6]. Assume that $f(x)g(x) \in N(R)[x]$. Then $f(x)g(x) \in N(R)[x] = N(R[x]) = N_*(R[x])$ if and only if $f(x)R[x]g(x) \subseteq N(R)[x] = N_*(R[x])$ by [3, Proposition 2.6] and [16, Theorem 2.1] if and only if $a_iRb_j \subseteq N(R)$ for all *i* and *j* by Theorem 2.6(1) if and only if $a_ib_j \in N(R)$ by [16, Theorem 2.1]. (2) It follows from the fact that $N^*(R)$ has the IFP if and only if *R* is an NI ring by [12, Theorem 8]. □

Let $\rho(R)$ be either $N_*(R)$ or $N^*(R)$, and put

$$\Gamma(R) = \begin{cases} \operatorname{mSpec}(R), & \text{if } \rho(R) = \mathbf{N}_*(R) \\ \operatorname{mSpec}_{\mathbf{S}}(R), & \text{if } \rho(R) = \mathbf{N}^*(R), \end{cases}$$

where mSpec(R) and $mSpec_{S}(R)$ denote the set of all minimal prime ideal and all minimal strongly prime ideals of R, respectively.

Corollary 2.10. Assume that $\rho(R)$ is a completely semiprime ideal of a ring R. The following are equivalent:

- (1) $\rho(R)$ is a quasi σ -rigid ideal.
- (2) $\rho(R)$ is a σ -rigid ideal.
- (3) P is σ -invariant for each $P \in \Gamma(R)$.

(4) σ⁻¹(P) ⊆ P for each P ∈ Γ(R).
(5) P is a σ-ideal for each P ∈ Γ(R).

Proof. It follows from Theorem 2.9 and [13, Proposition 3.4].

3. Extensions of quasi σ -rigid rings

Recall that a ring R is called *quasi* σ -rigid if the zero ideal of R is a quasi σ -rigid ideal. For an automorphism σ , every σ -rigid ring is a quasi σ -rigid ring and every quasi σ -rigid ring is a σ -semiprime ring, but the converses do not hold by Example 1.1, respectively. Every quasi σ -rigid ring is a semiprime ring by Lemma 2.1 (but not reduced by Example 1.1(1)). There exists a semiprime ring R with an endomorphism σ such that the skew polynomial ring $R[x;\sigma]$ is not semiprime [14, Example 4.3]. However, we have the following result by Corollary 2.7.

Corollary 3.1. If R is a quasi σ -rigid ring, then $R[x; \sigma, \delta]$ is a semiprime ring.

It can be easily checked that any prime ring with an automorphism σ is a quasi σ -rigid ring; while for the ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ with an automorphism σ in Example 1.1(2), both R and $R[x;\sigma]$ are semiprime rings, but R is not quasi σ -rigid. Note that the minimal prime ideal $\mathbb{Z}_2 \oplus \{0\}$ of R is not a σ -ideal. However,

Proposition 3.2. If R is a semiprime ring whose minimal prime ideals are σ -ideals, then R is a quasi σ -rigid ring.

Proof. Suppose $aR\sigma(a) = 0$ for $a \in R$. Then $aR\sigma(a) \subseteq P$ for any minimal prime ideal P of R. So $a \in P$ or $\sigma(a) \in P$. Since P is a σ -ideal, we get $\sigma(a) \in P$ and so $\sigma(a) \in N_*(R) = 0$ because R is semiprime. Thus a = 0, concluding that R is a quasi σ -rigid ring.

Recall that R is called a σ -compatible ring [1] (or [8]) if for each $a, b \in R$, $ab = 0 \Leftrightarrow a\sigma(b) = 0$, equivalently, the zero ideal of R is a σ -compatible ideal. Every σ -rigid ring is a σ -compatible ring, but the converse does not hold, in general. Note that the class of quasi σ -rigid rings and the class of σ -compatible rings do not depend on each other by Example 1.2(1) and the following example.

Example 3.3. We consider a ring $R = \{\begin{pmatrix} a & t \\ 0 & a \end{pmatrix} \mid a \in \mathbb{Z}, t \in \mathbb{Q}\}$, where \mathbb{Z} and \mathbb{Q} are the set of all integers and all rational numbers, respectively. Let $\sigma : R \to R$ be an endomorphism defined by $\sigma(\begin{pmatrix} a & t \\ 0 & a \end{pmatrix}) = \begin{pmatrix} a & t/2 \\ 0 & a \end{pmatrix}$. Note that for $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq 0$, we have $\begin{pmatrix} 0 & 1 \\ 0 & a \end{pmatrix} \sigma(\begin{pmatrix} 0 & 1 \\ 0 & a \end{pmatrix}) = 0$ for any $a \in \mathbb{Z}$ and $t \in \mathbb{Q}$. This yields that R is not a quasi σ -rigid ring. Now, we show that R is a σ -compatible ring. Suppose that AB = 0 for $A = \begin{pmatrix} a & t \\ 0 & a \end{pmatrix}$, $B = \begin{pmatrix} b & s \\ 0 & b \end{pmatrix} \in R$. Then ab = 0 and as + tb = 0, and so a = 0 or b = 0. If a = 0, then t = 0 and hence A = 0. Similarly, if b = 0, then s = 0 and so B = 0, entailing that $AB = 0 \Leftrightarrow A\sigma(B) = 0$. Therefore R is a σ -compatible ring.

392

A ring R is called *semicommutative* if ab = 0 implies aRb = 0 for $a, b \in R$, which every reduced ring is semicommutative. Notice that a ring is semicommutative if and only if the zero ideal has the IFP, and so semicommutative rings are also called IFP-rings. Recently, the concept of the semicommutativity of a ring is extended to an endomorphism of a ring. An endomorphism σ of a ring R is called *semicommutative* [2, Definition 2.1] if whenever ab = 0for $a, b \in R$, $aR\sigma(b) = 0$; a ring R is called σ -semicommutative if there exists a semicommutative endomorphism σ of R. The semicommutativity and the σ -semicommutativity of a ring are independent each other by [2, Example 2.3 and Example 2.7]. In a semicommutative ring, the quasi σ -rigidness and the σ rigidness of a ring coincide by Lemma 2.8. Moreover, for a σ -semicommutative ring we have the following:

Proposition 3.4. Let R be a σ -semicommutative ring. The following are equivalent:

- (1) R is a σ -rigid ring.
- (2) R is a quasi σ -rigid ring.
- (3) R is a σ -semiprime ring.

Proof. It is enough to show that $(3) \Rightarrow (1)$. Assume that R is a σ -semiprime ring. Let $a\sigma(a) = 0$ for $a \in R$. Then $aR\sigma^t(a) = 0$ for any positive integer t by [2, Remark 2.2]. Thus a = 0 and therefore R is a σ -rigid ring.

Note that the ring R, in Example 3.3, is a σ -semicommutative ring by the same method as in [2, Example 2.5(1)]. Hence, any condition in Proposition 3.4 cannot be replaced by "R is a σ -compatible ring".

Corollary 3.5. If R is a semiprime and semicommutative ring, then R is a reduced ring.

For an automorphism σ of a ring R, the map $\bar{\sigma} : R[x] \to R[x]$ defined by $\bar{\sigma}(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} \sigma(a_i) x^i$ is an automorphism of the polynomial ring R[x] and clearly this map extends σ . The ring of *Laurent* polynomials in x, coefficients in a ring R, consists of all formal sums $\sum_{i=k}^{n} m_i x^i$ with obvious addition and multiplication, where $m_i \in R$ and k, n are (possibly negative) integers; denote it by $R[x; x^{-1}]$. The map $\bar{\sigma} : R[x, x^{-1}] \to R[x, x^{-1}]$ defined by $\bar{\sigma}(\sum_{i=k}^{n} a_i x^i) = \sum_{i=k}^{n} \sigma(a_i) x^i$ extends σ and is also an automorphism of $R[x, x^{-1}]$.

Proposition 3.6. For a ring R, the following are equivalent:

- (1) R is a quasi σ -rigid ring.
- (2) R[x] is a quasi $\bar{\sigma}$ -rigid ring.
- (3) $R[x, x^{-1}]$ is a quasi $\bar{\sigma}$ -rigid ring.

Proof. (1) \Leftrightarrow (2) Let R be a quasi σ -rigid ring. Suppose that R[x] is not a quasi $\bar{\sigma}$ -rigid ring. Then there exists a nonzero polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ such that $f(x)R[x]\bar{\sigma}(f(x)) = 0$. We may assume that $a_n \neq 0$. By simple

computation, we have $a_n R \sigma(a_n) = 0$. Since R is a quasi σ -rigid ring, we obtain $a_n = 0$; which is a contradiction. Conversely, assume (2) and let $aR\sigma(a) = 0$ for $a \in R$. Note that $aR[x]\overline{\sigma}(a) = 0$. Since R[x] is a quasi $\overline{\sigma}$ -rigid ring, we have a = 0. Hence, R is a quasi σ -rigid ring. (1) \Leftrightarrow (3) can be proved by the similar arguments above.

Note that I is a quasi σ -rigid ideal of a ring R if and only if the factor ring R/I is a quasi $\bar{\sigma}$ -rigid ring by Proposition 2.3, where $\bar{\sigma} : R/I \to R/I$ is defined by $\bar{\sigma}(a+I) = \sigma(a)+I$ for $a \in R$. The following example shows that there exists a ring R with an automorphism σ such that for any nonzero proper ideal I of R, I is a σ -rigid ideal and so R/I is a quasi $\bar{\sigma}$ -rigid ring, but R is not a quasi σ -rigid ring. Moreover, the next example illuminates that the subring of a quasi σ -rigid ring need not be a quasi σ -rigid ring, combining with Example 1.1(1).

Example 3.7. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where F is a field, and σ be an endomorphism of R defined by $\sigma \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} a & -b \\ 0 & c \end{pmatrix}$. For $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R$, $aR\sigma(a) = 0$, but $a \neq 0$, and so R is not a quasi σ -rigid ring. For the only nonzero proper ideals $I = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$, $J = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $K = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ of R, it can be easily checked that I, Jand K are σ -rigid ideals, thus R/I, R/J and R/K are quasi $\bar{\sigma}$ -rigid rings by Proposition 2.3.

For an automorphism σ of a ring R, the map $\bar{\sigma}$: $\operatorname{Mat}_n(R) \to \operatorname{Mat}_n(R)$ defined by $\bar{\sigma}((a_{ij})) = (\sigma(a_{ij}))$ is an automorphism of the $n \times n$ full matrix ring $\operatorname{Mat}_n(R)$.

Theorem 3.8. For a ring R, the following are equivalent:

- (1) R is a quasi σ -rigid ring.
- (2) $\operatorname{Mat}_n(R)$ is a quasi $\overline{\sigma}$ -rigid ring for any $n \geq 2$.
- (3) $\operatorname{Mat}_n(R)$ is a quasi $\bar{\sigma}$ -rigid ring for some $n \geq 2$.

Proof. $(1) \Rightarrow (2)$ Let R be a quasi σ -rigid ring and $n \geq 2$. Suppose that $A\operatorname{Mat}_n(R)\overline{\sigma}(A) = 0$ for $A = (a_{ij}) \in \operatorname{Mat}_n(R)$. Let E_{ij} denote the matrix unit in $\operatorname{Mat}_n(R)$ with (i, j)-entry 1 and zero elsewhere. Then $A(rE_{ij})\overline{\sigma}(A) = 0$ implies $a_{ij}r\sigma(a_{ij}) = 0$ for each $i, j \in \{1, 2, \ldots, n\}$ and any $r \in R$. Hence, $a_{ij}R\sigma(a_{ij}) = 0$, entailing $a_{ij} = 0$ since R is a quasi σ -rigid ring. Therefore A = 0, concluding that $\operatorname{Mat}_n(R)$ is a quasi $\overline{\sigma}$ -rigid ring. $(2) \Rightarrow (3)$ is obvious. $(3) \Rightarrow (1)$ Assume that $\operatorname{Mat}_n(R)$ is a quasi $\overline{\sigma}$ -rigid ring for $n \geq 2$. Let $aR\sigma(a) = 0$ for $a \in R$ and $A = a \sum_{i=1}^{n} E_{ii}$ in $\operatorname{Mat}_n(R)$. Then $\operatorname{AMat}_n(R)\overline{\sigma}(A) = 0$. Since $\operatorname{Mat}_n(R)$ is a quasi $\overline{\sigma}$ -rigid ring, we get A = 0, and hence a = 0, proving that R is a quasi σ -rigid ring. \Box

From Theorem 3.8, one may conjecture that the $n \times n$ upper triangular matrix ring $U_n(R)$ over a quasi σ -rigid ring R is quasi $\bar{\sigma}$ -rigid for $n \geq 2$, but the possibility is erased by the following.

Example 3.9. Let R be a ring with any endomorphism σ . Let $A = E_{1n} \in U_n(R)$, where E_{ij} is the matrix unit in $U_n(R)$. Then $AU_n(R)\overline{\sigma}(A) = 0$ (regardless of σ). Thus the $n \times n$ upper triangular matrix ring $U_n(R)$ over R is

not a quasi $\bar{\sigma}$ -rigid ring for any $n \geq 2$. Moreover, for a ring R and $n \geq 2$, let

$$S_n(R) = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} | a, a_{ij} \in R \right\} \text{ and}$$
$$V_n(R) = \left\{ \begin{pmatrix} a_1 & a_2 & a_3 & a_4 & \cdots & a_n \\ 0 & a_1 & a_2 & a_3 & \cdots & a_{n-1} \\ 0 & 0 & a_1 & a_2 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_1 \end{pmatrix} | a_1, a_2, \dots, a_n \in R \right\}$$

By the same method, we conclude that $S_n(R)$ and $V_n(R)$ are not a quasi $\bar{\sigma}$ -rigid ring for any $n \geq 2$. Since $V_n(R) \cong R[x]/\langle x^n \rangle$ by [19] where $\langle x^n \rangle$ is an ideal of R[x] generated by x^n , $R[x]/\langle x^n \rangle$ is not a quasi $\bar{\sigma}$ -rigid ring for $n \geq 2$ either, where $\bar{\sigma}(f(x) + \langle x^n \rangle) = \sigma(f(x)) + \langle x^n \rangle$ for $f(x) \in R[x]$.

For an automorphism σ and an idempotent e of a ring R such that $\sigma(e) = e$, the map $\bar{\sigma} : eRe \to eRe$ defined by $\bar{\sigma}(ere) = e\sigma(r)e$ is an automorphism of eRe.

Proposition 3.10. For a ring R, assume that $\sigma(e) = e$ for $e^2 = e \in R$. If R is a quasi σ -rigid ring, then eRe is a quasi $\overline{\sigma}$ -rigid ring.

Proof. For $eae \in eRe$, suppose that $eae(eRe)\overline{\sigma}(eae) = 0$. Then

 $0 = eae(eRe)\bar{\sigma}(eae) = eae(eRe)e\sigma(a)e = (eae)R\sigma(eae).$

Since R is a quasi σ -rigid ring, eae = 0 and so eRe is a quasi $\bar{\sigma}$ -rigid ring.

The condition " $\sigma(e) = e$ for $e^2 = e \in R$ " in Proposition 3.10 cannot be dropped by the following example.

Example 3.11. Consider the quasi σ -rigid ring $R = \operatorname{Mat}_2(\mathbb{Z}_3)$ where σ is defined by $\sigma\left(\begin{pmatrix}a & b \\ c & d\end{pmatrix}\right) = \begin{pmatrix}a & -b \\ -c & d\end{pmatrix}$ as in Example 1.1(1). For an idempotent $e = \begin{pmatrix}0 & 1 \\ 0 & 1\end{pmatrix} \in R, \sigma(e) \neq e$. Let $a = \begin{pmatrix}0 & 0 \\ 1 & 1\end{pmatrix} \in R$. Then $eae = \begin{pmatrix}0 & 2 \\ 0 & 2\end{pmatrix} \neq 0$. But for any $r = \begin{pmatrix}a & t \\ u & v\end{pmatrix} \in R$, $eae(ere)\overline{\sigma}(eae) = eaere\sigma(a)e = 0$, and so $eae(eRe)\overline{\sigma}(eae) = 0$, implying that eRe is not a quasi $\overline{\sigma}$ -rigid ring.

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0for $r \in R$. Similarly, left regular elements can be defined. An element is regular if it is both left and right regular (and hence not a zero divisor). A ring R is called right (resp., left) Ore if given $a, b \in R$ with b regular there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$ (resp., $b_1a = a_1b$). It is a well-known fact that R is a right (resp., left) Ore ring if and only if the classical right (resp., left) quotient ring of R exists. Let σ be an automorphism of a ring R. Suppose that there exists the classical right quotient ring Q(R) of R. Then for any $ab^{-1} \in Q(R)$ where $a, b \in R$ with b regular, the induced map $\bar{\sigma} : Q(R) \to Q(R)$ defined by $\bar{\sigma}(ab^{-1}) = \sigma(a)\sigma(b)^{-1}$ is also an automorphism. Note that the classical right quotient ring Q(R) of a σ -rigid ring R is $\bar{\sigma}$ -rigid. Similarly, we have the following.

Proposition 3.12. Suppose that there exists the classical right quotient ring Q(R) of a ring R. If R is a quasi σ -rigid ring, then Q(R) is a quasi $\bar{\sigma}$ -rigid ring.

Proof. Suppose that $ab^{-1}Q(R)\bar{\sigma}(ab^{-1}) = 0$. Then $0 = ab^{-1}Q(R)\bar{\sigma}(ab^{-1}) = aQ(R)\sigma(a)\sigma(b)^{-1}$, since $b^{-1}Q(R) = Q(R)$. This implies $aQ(R)\sigma(a) = 0$, and so $aR\sigma(a) = 0$. Since R is a quasi σ -rigid ring, we get a = 0 and thus Q(R) is a quasi $\bar{\sigma}$ -rigid ring.

4. Applications

Recall that a ring R is called *Baer* [15] if the right (left) annihilator of every nonempty subset of R is generated by an idempotent; and a ring R is called quasi-Baer [6] if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. It is well-known that the (quasi-)Baerness of a ring is left-right symmetric. A ring R is called a right (resp., left) p.p.-ring if the right (resp., left) annihilator of an element of R is generated by an idempotent. R is called a p.p.-ring if it is both a right and left p.p.-ring. From [4], a ring R is called right (resp., left) principally quasi-Baer (or simply, right (resp., left) *p.q.-Baer*) if the right (resp., left) annihilator of a principal right (resp., left) ideal of R is generated by an idempotent. R is called a p.q.-Baer ring if it is both right and left p.q.-Baer. The class of p.q.-Baer rings includes all biregular rings, all (quasi-)Baer rings and all abelian (i.e., its idempotents are central) p.p.-rings. The extensions of Baer, quasi-Baer, p.q.-Baer and p.p.-rings have been studied by many authors [2, 4, 6, 7, 8]. In [9], it was proved that for a σ -rigid ring R, a ring R is (quasi-)Baer if and only if $R[x; \sigma, \delta]$ is a (quasi-)Baer ring if and only if $R[[x; \sigma]]$ is a (quasi-)Baer ring; and R is a p.q.-Baer (resp., p.p.-) ring if and only if $R[x; \sigma, \delta]$ is a p.q.-Baer (resp., p.p.-) ring. Moreover, there exists a commutative von Neumann regular ring R (and so a p.q.-Baer ring and a p.p.-ring), but $R[[x;\sigma]]$ is neither a p.q.-Baer ring nor a p.p.-ring by [9, p. 225]. As parallel results to these, we have the following for a quasi σ -rigid ring.

Lemma 4.1. Let R be a quasi σ -rigid ring.

(1) For any p(x) and q(x) in $R[x; \sigma, \delta]$ (resp., $R[[x; \sigma]]$), $p(x)R[x; \sigma, \delta]q(x) = 0$ (resp., $p(x)R[[x; \sigma]]q(x) = 0$) if and only if aRb = 0 for all coefficients a, b of p(x) and q(x), respectively.

(2) For $e^2 = e \in R[x; \sigma, \delta]$ (resp., $R[[x; \sigma]]$), if $eR[x; \sigma, \delta]$ (resp., $eR[[x; \sigma]]$) is an ideal of $R[x; \sigma, \delta]$ (resp., $eR[[x; \sigma]]$), then $e = e_0$ where e_0 is the constant term of e. *Proof.* (1) It follows from Theorem 2.6. (2) Now $1 - e = (1 - e_0) - \sum_{i=1}^n e_i x^i$. Since $eR[x; \sigma, \delta]$ is an ideal, we have $(1 - e)R[x; \sigma, \delta]e \subseteq (1 - e)eR[x; \sigma, \delta]=0$, and so $(1 - e)R[x; \sigma, \delta]e = 0$. By (1), $(1 - e_0)Re_0 = 0$ and $e_iRe_i = 0$ for any $1 \le i \le n$. Since R is semiprime by Lemma 2.1, we have $e_i = 0$ for any $1 \le i \le n$. Therefore $e = e_0$.

The following example shows that the condition " $eR[x;\sigma,\delta]$ is an ideal of $R[x;\sigma,\delta]$ " in Lemma 4.1(2) cannot be dropped.

Example 4.2. Consider the quasi σ -rigid ring $R = \operatorname{Mat}_2(F)$ and the endomorphism σ as in Example 1.1(1). Let $e = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} x \in R[x; \sigma]$. Then $e^2 = e \in R[x; \sigma]$ and $e \in eR[x; \sigma]$. For $r = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in R[x; \sigma]$, $re = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x \notin eR[x; \sigma]$, since the constant term of any element of $eR[x; \sigma]$ is of the form $\begin{pmatrix} a & b \\ a & b \end{pmatrix}$ where $a, b \in F$. This implies that $eR[x; \sigma]$ is not an ideal. Note that $e = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x \notin R$.

For a nonempty subset S of a ring R, the right annihilator of S in R will be by $r_R(S) = \{c \in R \mid dc = 0 \text{ for any } d \in S\}.$

Proposition 4.3. Let R be a quasi σ -rigid ring. The following are equivalent:

- (1) R is a quasi-Baer ring.
- (2) $R[x;\sigma,\delta]$ is a quasi-Baer ring.
- (3) $R[[x;\sigma]]$ is a quasi-Baer ring.

Proof. Without the assumption that R is quasi σ -rigid, $(1)\Rightarrow(2)$ and $(1)\Rightarrow(3)$ were proved in [11, Theorem 1] and [5, Theorem 1.2] respectively. $(2)\Rightarrow(1)$ Assume that $R[x;\sigma,\delta]$ is a quasi-Baer ring. Let J be an ideal of R. Then $r_{R[x;\sigma,\delta]}(JR[x;\sigma,\delta]) = eR[x;\sigma,\delta]$ for some idempotent $e \in R$, by Lemma 4.1(2). Thus $r_R(J) = r_{R[x;\sigma,\delta]}(JR[x;\sigma,\delta]) \cap R = eR[x;\sigma,\delta] \cap R = eR$ by Lemma 4.1(1). Therefore R is a quasi-Baer ring. (3) \Rightarrow (1) is also proved by the similar arguments above.

Observe that if R is a quasi σ -rigid ring, then R is a right p.q.-Baer ring if and only if R is a left p.q.-Baer ring since R is semiprime by [4, Corollary 1.11].

Theorem 4.4. Let R be a quasi σ -rigid ring.

(1) R is a right p.q.-Baer ring if and only if $R[x;\sigma,\delta]$ is a right p.q.-Baer ring.

(2) If $R[[x;\sigma]]$ is a right p.q.-Baer ring, then R is a right p.q.-Baer ring.

Proof. (1) Assume that R is a right p.q.-Baer ring. For any principal right ideal $I = p(x)R[x;\sigma,\delta]$ of $R[x;\sigma,\delta]$ where $p(x) = a_0 + a_1x + \cdots + a_mx^m$, we take $I^* = a_0R + \cdots + a_mR$ as the finitely generated right ideal generated by a_0, \ldots, a_m . Since R is right p.q.-Baer, $r_R(I^*) = eR$ for some $e^2 = e \in R$. Note that e is central since R is semiprime. Then $I^*Re = 0$, and so $p(x)R[x;\sigma,\delta]e =$ 0 by Lemma 4.1(1). Hence, Ie = 0 and so $e \in r_{R[x;\sigma,\delta]}(I)$. Thus $eR[x;\sigma,\delta] \subseteq$ $r_{R[x;\sigma,\delta]}(I)$. Now we let $q(x) = b_0 + b_1x + \cdots + b_nx^n \in r_{R[x;\sigma,\delta]}(I)$. Then $p(x)R[x;\sigma,\delta]q(x) = 0$ and thus $b_0, b_1, \ldots, b_n \in r_R(I^*) = eR$ by Lemma 4.1(1). Hence there exist c_0, c_1, \ldots, c_n such that $q(x) = ec_0 + ec_1x + \cdots + ec_nx^n = e(c_0 + c_1x + \cdots + c_nx^n) \in eR[x; \sigma, \delta]$. Consequently, $r_{R[x;\sigma,\delta]}(I) = eR[x; \sigma, \delta]$. Therefore $R[x; \sigma, \delta]$ is right p.q.-Baer. The proofs of the converses of both (1) and (2) follow the proof (2) \Rightarrow (1) of Proposition 4.3.

Remark 4.5. (1) The condition "quasi-Baer rings" in Proposition 4.3 can neither be replaced by "Baer rings" nor "right p.p.-rings": For example, let $R = \text{Mat}_2(\mathbb{Z})$. Then R is a Baer ring, but R[x] is not right p.p. by [9, Example 10(2)]. Also R is a quasi σ -rigid ring, but $R[x;\sigma]$ is neither Baer nor right p.p., in case σ is the identity endomorphism of R.

(2) There exists a quasi σ -rigid and p.q.-Baer ring which is not quasi-Baer, letting σ be the identity endomorphism of R by [4, Lemma 1.4 and Example 1.5(i)].

(3) The converse of Theorem 4.4(2) does not hold by [9, p. 225].

(4) The condition "R is a quasi σ -rigid ring" in Proposition 4.3 and Theorem 4.4 is not superfluous by [9, Example 9].

From [9, Example 9], we see that there exists a semiprime ring R with $\sigma(e) = e$ for any central idempotent $e \in R$ such that $R[x; \sigma, \delta]$ is p.q.-Baer, but R is not quasi σ -rigid. However, we have the following which is compared with Proposition 3.2.

Proposition 4.6. Let R be a semiprime ring with $\sigma(e) = e$ for any central idempotent $e \in R$. If R is a right p.q.-Baer ring, then R is quasi σ -rigid.

Proof. Suppose that R is right p.q.-Baer and $aR\sigma(a) = 0$ for $a \in R$. Then $\sigma(a) \in r_R(aR) = eR = \sigma(eR)$ where $e = e^2 \in R$ is central since R is semiprime. It follows that $a \in eR$, entailing aRa = 0 and hence a = 0 since R is semiprime. Therefore R is quasi σ -rigid.

The condition " $\sigma(e) = e$ for any central idempotent $e \in R$ " in Proposition 4.6 cannot be dropped. For the ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ with an automorphism σ in Example 1.1(2), R is semiprime and right p.q.-Baer but not quasi σ -rigid and $\sigma(1,0) \neq (1,0)$.

References

- S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30 (2002), no. 5, 2511–2528.
- [2] M. Başer, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297.
- [3] G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102–129, World Sci. Publ., River Edge, NJ, 1993.
- [4] G. F. Birkenmeier, J. Y. Kim, and J. K. Park, *Principally quasi-Baer rings*, Comm. Algebra 29 (2001), no. 2, 639–660.
- [5] _____, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25–42.

- [6] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417– 423.
- [7] E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12 (2006), 349–356.
- [8] E. Hashemi and A. Moussavi, *Polynomial extensions of quasi-Baer rings*, Acta Math. Hungar. 107 (2005), no. 3, 207–224.
- [9] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226.
- [10] _____, On skew Armendariz rings, Comm. Algebra **31** (2003), no. 1, 103–122.
- [11] C. Y. Hong, N. K. Kim, and Y. Lee, Ore extensions of quasi-Baer rings, Comm. Algebra 37 (2009), 2030–2039.
- [12] C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867–4878.
- [13] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq. 12 (2005), no. 3, 399–412.
- [14] A. A. M. Kamal, Some remarks on Ore extension rings, Comm. Algebra 22 (1994), no. 10, 3637–3667.
- [15] I. Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
- [16] N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings, Math. Japon. 50 (1999), no. 3, 415–420.
- [17] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
- [18] T. Y. Lam, A. Leroy, and J. Matczuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459–2506.
- [19] T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287–2299.
- [20] G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113–2123.
- [21] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709–1724.
- [22] K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783–794.

CHAN YONG HONG DEPARTMENT OF MATHEMATICS AND RESEARCH INSTITUTE FOR BASIC SCIENCES KYUNG HEE UNIVERSITY SEOUL 131-701, KOREA *E-mail address*: hcy@khu.ac.kr

NAM KYUN KIM DIVISION OF GENERAL EDUCATION HANBAT NATIONAL UNIVERSITY DAEJEON 305-719, KOREA *E-mail address:* nkkim@hanbat.ac.kr

TAI KEUN KWAK DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY POCHEON 487-711, KOREA *E-mail address*: tkkwak@daejin.ac.kr