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ON QUASI-RIGID IDEALS AND RINGS

Chan Yong Hong, Nam Kyun Kim, and Tai Keun Kwak

Abstract. Let σ be an endomorphism and I a σ-ideal of a ring R. Pear-
son and Stephenson called I a σ-semiprime ideal if whenever A is an ideal
of R and m is an integer such that Aσt(A) ⊆ I for all t ≥ m, then A ⊆ I,
where σ is an automorphism, and Hong et al. called I a σ-rigid ideal if
aσ(a) ∈ I implies a ∈ I for a ∈ R. Notice that R is called a σ-semiprime
ring (resp., a σ-rigid ring) if the zero ideal of R is a σ-semiprime ideal
(resp., a σ-rigid ideal). Every σ-rigid ideal is a σ-semiprime ideal for an
automorphism σ, but the converse does not hold, in general. We, in this
paper, introduce the quasi σ-rigidness of ideals and rings for an automor-
phism σ which is in between the σ-rigidness and the σ-semiprimeness,
and study their related properties. A number of connections between the
quasi σ-rigidness of a ring R and one of the Ore extension R[x; σ, δ] of R
are also investigated. In particular, R is a (principally) quasi-Baer ring if
and only if R[x; σ, δ] is a (principally) quasi-Baer ring, when R is a quasi
σ-rigid ring.

1. Definitions

Let σ be an endomorphism of a ring R, the additive map δ : R → R is called
a σ-derivation if δ(ab) = δ(a)b+σ(a)δ(b) for any a, b ∈ R. For a ring R with an
endomorphism σ of R and a σ-derivation δ, the Ore extension R[x; σ, δ] of R is
the ring obtained by giving the polynomial ring over R with new multiplication:
xr = σ(r)x+ δ(r) for all r ∈ R. If δ = 0, we write R[x; σ] for R[x;σ, 0] and it is
called the skew polynomial ring (or, an Ore extension of endomorphism type);
while R[[x; σ]] is called a skew power series ring.

An endomorphism σ of a ring R is called rigid [17] if aσ(a) = 0 implies
a = 0 for a ∈ R. A ring R is called a σ-rigid ring [9] if there exists a rigid
endomorphism σ of R. The Ore extension R[x;σ, δ] of R is reduced (i.e., it has
no nonzero nilpotent elements) and σ is a monomorphism if and only if R is
a σ-rigid ring if and only if R[x;σ] is reduced by [9, Proposition 5] and [10,
Proposition 3], respectively. Hence, σ-rigid rings are reduced rings, but there
exists an endomorphism σ of a commutative reduced ring which is not a σ-rigid
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ring by [9, Example 9]. An ideal I of R is called a σ-ideal if σ(I) ⊆ I. In [13],
a σ-ideal I of a ring R is called a σ-rigid ideal if aσ(a) ∈ I implies a ∈ I for
a ∈ R, and the connections between σ-rigid ideals of R and the related ideals
of the Ore extension R[x; σ, δ] of R are investigated. Obviously, R is a σ-rigid
ring if and only if the zero ideal of R is a σ-rigid ideal. Following [22], for an
automorphism σ of a ring R, a σ-ideal I of R is called a σ-semiprime ideal if
whenever A is an ideal of R and m is an integer such that Aσt(A) ⊆ I for all
t ≥ m, then A ⊆ I; the ring R is called σ-semiprime if the zero ideal of R
is a σ-semiprime ideal. Notice that R is a σ-semiprime ring if and only if the
skew polynomial ring R[x; σ] is semiprime by [22, Proposition 1.1] (also, [18,
Proposition 4.6]). It is well-known that for an automorphism σ of a ring R,
the ring R is σ-semiprime if and only if whenever a ∈ R and m is an integer
such that aRσt(a) = 0 for all t ≥ m, then a = 0. It is clear that every σ-rigid
ideal (ring) is a σ-semiprime ideal (ring) for an automorphism σ. Hence, for
an endomorphism σ and a σ-ideal I of a ring R, we consider the following
condition

(∗) aRσ(a) ⊆ I implies a ∈ I for a ∈ R.

Then it can be easily checked that every σ-rigid ideal satisfies (∗) and every
σ-ideal satisfying (∗) is σ-semiprime for an automorphism σ, but the converses
do not hold by the next example, respectively.

Example 1.1. (1) Let R = Mat2(Z3) be the 2× 2 matrix ring over a field Z3.
Then I = {0} is a maximal (and prime) ideal of R. Let σ : R → R be an auto-
morphism defined by σ

((
a b
c d

))
=

(
a −b
−c d

)
. Suppose that

(
a b
c d

)
Rσ

((
a b
c d

)) ⊆ I.
Since R is a prime ring,

(
a b
c d

) ∈ I or σ
((

a b
c d

)) ∈ I. Then
(

a b
c d

) ∈ I, and there-
fore I satisfies (∗). However, I is not a σ-rigid ideal by [13, Example 3.3].

(2) Let Z2 be the ring of integers modulo 2 and R = Z2 ⊕ Z2. Then R is a
commutative reduced ring. Define σ : R → R by σ(a, b) = (b, a). Then the zero
ideal I of R does not satisfy (∗): In fact, (1, 0)Rσ(1, 0) ⊆ I, but (1, 0) /∈ I. We
now claim that R[x; σ] is semiprime. Let f(x)R[x;σ]f(x) = 0, where f(x) =∑m

i=0(ai, bi)xi ∈ R[x; σ] with (am, bm) 6= 0. We may assume that am 6= 0.
Then f(x)xtf(x) = 0 for all integer t ≥ 0. Thus (am, bm)σm+t(am, bm) = 0 of
all t ≥ 0. This implies that (am, bm)σm(am, bm)= 0 and (am, bm)σm+1(am, bm)
= 0. If m is even (or odd), then (am, bm)(am, bm) = 0 and (am, bm)(bm, am)
= 0. Hence am = 0 = bm. Thus (am, bm) = 0; which is a contradiction.
Therefore R[x;σ] is semiprime and so R is σ-semiprime by [22, Proposition 1.1],
equivalently, I is a σ-semiprime ideal.

Another generalization of σ-rigid ideals is a σ-compatible ideal. In [7], an
ideal I of a ring R is called a σ-compatible ideal if for each a, b ∈ R, ab ∈ I ⇔
aσ(b) ∈ I. The next example shows that the class of σ-compatible ideals and
the class of σ-ideals satisfying (∗) do not depend on each other.

Example 1.2. (1) In Example 1.1(1), the zero ideal {0} of R satisfies (∗), but
not a σ-compatible ideal: Indeed, ( 1 1

0 0 ) ( 2 0
1 0 ) = 0, but ( 1 1

0 0 )σ (( 2 0
1 0 )) 6= 0.
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(2) Consider a ring R =
{(

f(x) g(x)
0 f(x)

)
| f(x), g(x) ∈ F [x]

}
, where F [x] is

the polynomial ring over a field F . For a nonzero element a ∈ F , let σ :
R → R be an endomorphism defined by σ

((
f(x) g(x)

0 f(x)

))
=

(
f(x) ag(x)

0 f(x)

)
. Then

the ideal I =
{(

0 g(x)
0 0

) | g(x) ∈ 〈p(x)〉}, where 〈p(x)〉 is an ideal generated by
an irreducible polynomial p(x) in F [x], is a σ-compatible ideal of R by [7,
Example 2.5]. However, I does not satisfy (∗): In fact, for A = ( 0 1

0 0 ) /∈ I we
have ARσ(A) = {( 0 0

0 0 )} ⊆ I.

Based on these facts, we define the following.

Definition 1.3. Let σ be an automorphism of a ring R. For a σ-ideal I of
R, I is called a quasi σ-rigid ideal (or, a strongly σ-semiprime ideal) of R if
aRσ(a) ⊆ I implies a ∈ I for a ∈ R. A ring R is called a quasi σ-rigid ring (or,
a strongly σ-semiprime ring) if the zero ideal of R is a quasi σ-rigid ideal.

In this paper, we study both quasi σ-rigid ideals and quasi σ-rigid rings
for an automorphism σ. Several relationship between the quasi σ-rigidness
of a ring R and one of the Ore extension R[x; σ, δ] are also investigated. In
particular, we show that R is a (principally) quasi-Baer ring if and only if
the Ore extension R[x; σ, δ] of R is (principally) quasi-Baer when R is a quasi
σ-rigid ring (Theorem 4.3 and Theorem 4.4).

Throughout this paper, R denotes an associative ring with identity. We
assume that every endomorphism σ of a given ring is an automorphism, unless
specified otherwise.

2. Structures of quasi σ-rigid ideals

Recall that for an ideal I of a ring R, the ideal I is called σ-invariant if
σ−1(I) = I. Note that every σ-invariant ideal is a σ-ideal.

Lemma 2.1. Every quasi σ-rigid ideal of a ring is σ-invariant and semiprime.

Proof. Let I be a quasi σ-rigid ideal of a ring R. Let a ∈ σ−1(I). Then
σ(a) ∈ I, and so aRσ(a) ⊆ I and hence a ∈ I. Thus σ−1(I) ⊆ I and therefore
I is σ-invariant. Now, assume that aRa ⊆ I for a ∈ R. For any r ∈ R,
arσ(a)Rσ(arσ(a)) ⊆ I and so arσ(a) ∈ I. Thus a ∈ I and therefore I is
semiprime. ¤

The converse of Lemma 2.1 does not hold by following.

Example 2.2. Consider the ring R = Z2⊕Z2 and the endomorphism σ defined
by σ(a, b) = (b, a), in Example 1.1(2). Let I be the prime radical N∗(R) =
{(0, 0)} of R (Note that the only proper σ-ideal is {(0, 0)}). Then I is clearly
a semiprime ideal and a σ-invariant ideal, but not a quasi σ-rigid ideal by
Example 1.1(2).

We have the basic equivalences for quasi σ-rigid ideals as follows.
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Proposition 2.3. Let I be a σ-ideal of a ring R. The following are equivalent
to a quasi σ-rigid ideal I of R :

(1) σ(a)Ra ⊆ I implies a ∈ I for any a ∈ R.
(2) For any ideal A of R, Aσ(A) ⊆ I implies A ⊆ I.
(3) For any ā ∈ R̄, āR̄σ̄(ā) = 0̄ implies ā = 0̄, where R̄ = R/I, ā = a + I

and σ̄ : R̄ → R̄ is defined by σ̄(a + I) = σ(a) + I for a ∈ R.

Proof. (1) Suppose that I is a quasi σ-rigid ideal. Then I is semiprime by
Lemma 2.1. If σ(a)Ra ⊆ I for a ∈ R, then aRσ(a) ⊆ I and thus a ∈ I.
Conversely, assume that σ(a)Ra ⊆ I implies a ∈ I for any a ∈ R. If bRb ⊆
I, then σ(σ(b)rb)Rσ(b)rb = σ2(b)σ(r)σ(bRb)rb ⊆ I for any r ∈ R, and so
σ(b)rb ∈ I and thus b ∈ I by the assumption, entailing that I is semiprime.
Hence, aRσ(a) ⊆ I implies σ(a)Ra ⊆ I, and so a ∈ I by the assumption,
concluding that I is a quasi σ-rigid ideal. (2) Let I be a quasi σ-rigid ideal and
a ∈ A. If Aσ(A) ⊆ I, then aRσ(a) ⊆ I, and so a ∈ I. Consequently, A ⊆ I.
Conversely, assume that for any ideal A of R, Aσ(A) ⊆ I implies A ⊆ I. If
aRσ(a) ⊆ I, then RaRσ(RaR) = RaRσ(a)R ⊆ I and so RaR ⊆ I, and hence
a ∈ I, implying that I is a quasi σ-rigid ideal. (3) is obvious. ¤

For the remainder of this paper, let δ be a σ-derivation of a ring R. Recall
that an ideal I of R is called a δ-ideal if δ(I) ⊆ I.

Lemma 2.4. Let I be a quasi σ-rigid ideal of a ring R.
(1) If aRb ⊆ I for a, b ∈ R, then aRσn(b), σn(a)Rb ⊆ I for every positive

integer n. Conversely, if aRσk(b) or σk(a)Rb ⊆ I for some positive integer k,
then aRb ⊆ I.

(2) If I is a δ-ideal with aRb ⊆ I for a, b ∈ R, then aRδn(b), δn(a)Rb ⊆ I
for every positive integer n.

Proof. We freely use the fact that every quasi σ-rigid ideal is σ-invariant and
semiprime by Lemma 2.1. (1) Suppose that aRb ⊆ I for a, b ∈ R. It is
enough to show that aRσ(b), σ(a)Rb ⊆ I. For any r ∈ R, brσ(a)Rσ(brσ(a)) =
brσ(aRb)σ(rσ(a)) ⊆ I. Since I is a quasi σ-rigid ideal, brσ(a) ∈ I and so
bRσ(a) ⊆ I. Hence, σ(a)Rb ⊆ I since I is a semiprime ideal. Next, we obtain
bRa ⊆ I since aRb ⊆ I and I is a semiprime ideal. By the same method,
we get aRσ(b) ⊆ I. Conversely, suppose that aRσk(b) ⊆ I for some positive
integer k. Then, by the above arguments, σk(aRb) = σk(a)Rσk(b) ⊆ I. Since
I is a σ-invariant ideal, σk−1(aRb) ⊆ σ−1(I) = I. Continuing this process,
we have aRb ⊆ I. Similarly, σk(a)Rb ⊆ I for some positive integer k implies
aRb ⊆ I. (2) Assume that I is a δ-ideal and aRb ⊆ I for a, b ∈ R. It is
sufficient to show that aRδ(b), δ(a)Rb ⊆ I. Let aRb ⊆ I. Note that bRa ⊆ I
and so bRσ(a) ⊆ I by (1). For any r ∈ R, δ(arb) = σ(ar)δ(b) + δ(ar)b ∈ I.
Thus (σ(ar)δ(b)R)2 = δ(arb)Rσ(ar)δ(b)R − δ(ar)bRσ(ar) δ(b)R ⊆ I because
δ(arb) ∈ I and bRσ(a) ⊆ I. Since I is semiprime, we have σ(a)Rδ(b) ⊆ I and
so aRδ(b) ⊆ I by (1). Similarly, bRa ⊆ I from aRb ⊆ I implies δ(a)Rb ⊆ I,
completing proof. ¤
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Corollary 2.5. Let I be a σ-ideal of a ring R. The ideal I is a quasi σ-rigid
ideal if and only if I is a semiprime ideal, and aRσ(b) ⊆ I ⇔ aRb ⊆ I for
a, b ∈ R.

Proof. It follows from Lemma 2.1 and Lemma 2.4. ¤

Theorem 2.6. Let I be a quasi σ-rigid ideal of a ring R.
(1) Let p(x) =

∑m
i=0 aix

i and q(x) =
∑n

j=0 bjx
j ∈ R[x; σ, δ]. If I is a δ-ideal

of R, then p(x)R[x; σ, δ]q(x) ⊆ I[x;σ, δ] if and only if aiRbj ⊆ I for all i and
j.

(2) Let p(x) =
∑∞

i=0 aix
i and q(x) =

∑∞
j=0 bjx

j ∈ R[[x;σ]]. Then
p(x)R[[x; σ]]q(x) ⊆ I[[x; σ]] if and only if aiRbj ⊆ I for all i and j.

Proof. (1) Suppose that p(x)R[x;σ, δ]q(x) ⊆ I[x; σ, δ]. Then p(x)rq(x) ∈
I[x;σ, δ] for any r ∈ R, and put

(
m∑

i=0

aix
i)r(

n∑

j=0

bjx
j) = cm+nxm+n +cm+n−1x

m+n−1+ · · ·+c1x+c0 ∈ I[x;σ, δ].

We claim that aiRbj ⊆ I for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. We proceed by
induction on i + j. When i + j = m + n, we have cm+n = amσm(r)σm(bn) ∈ I
by above, and so amRbn ⊆ I by Lemma 2.4. Now suppose that our claim is
true for i + j > k ≥ 0. Consider

ck =
∑

i+j=k

aiσ
i(r)σi(bj) +

∑

i+j>k

aiRσi1δj1σi2δj2 · · ·σilδjl(bj) ⊆ I

for any r ∈ R and some nonnegative integers i1, . . . , il, j1, . . . , jl. Since
∑

i+j>k

aiRσi1δj1σi2δj2 · · ·σilδjl(bj) ⊆ I,

by induction hypothesis and Lemma 2.4, we obtain

(1) ck =
∑

i+j=k

aiσ
i(r)σi(bj) ∈ I

for any r ∈ R. Multiplying Eq.(1) by Rak from the right hand-side, we have
(

∑
i+j=k

aiσ
i(r)σi(bj)

)
Rak = akσk(r)σk(b0)Rak ⊆ I

since σu(bj)Rai ⊆ I for all i+j > k and any nonnegative integer u, by induction
hypothesis and Lemma 2.4(1). Then for any r ∈ R, (akσk(r)σk(b0)R)2 ⊆ I and
so akσk(r)σk(b0) ∈ I by Lemma 2.1. Hence akRσk(b0) ⊆ I and so akRb0 ⊆ I
by Lemma 2.4(1). Thus Eq.(1) becomes

(2)
∑

i+j=k, 0≤i≤k−1

aiσ
i(r)σi(bj) ∈ I.
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Multiplying Eq.(2) by Rak−1 from the right hand-side,

ak−1σ
k−1(r)σk−1(b1)Rak−1 ⊆ I

and so ak−1Rb1 ⊆ I by the same method above. Continuing in this manner,
we obtain that aiRbj ⊆ I for all i, j with i + j = k. Therefore aiRbj ⊆ I for
all 0 ≤ i ≤ m and 0 ≤ j ≤ n. The converse follows directly from Lemma 2.4.

(2) Suppose that p(x)R[[x; σ]]q(x) ⊆ I[[x;σ]]. Then p(x)rq(x) ∈ I[[x; σ]] for
any r ∈ R. Then

(3)

( ∞∑

i=0

aix
i

)
r




∞∑

j=0

bjx
j


 =

∞∑

k=0


 ∑

i+j=k

aiσ
i(r)σi(bj)xi+j


 ∈ I[[x; σ]].

We claim that aiRbj ⊆ I for all i, j. We proceed by induction on i + j. For
i + j = 0, we have a0Rb0 ⊆ I by Eq.(3). Now assume that our claim is true
for i + j ≤ n− 1. Note that aiRσu(bj) and σv(bj)Rai ⊆ I for any nonnegative
integers u and v, by induction hypothesis and Lemma 2.4(1), when i+j ≤ n−1.
We show that aiRbj ∈ I for i + j = n. From Eq.(3), we have

(4)
∑

i+j=n

aiσ
i(r)σi(bj) ∈ I.

Multiplying Eq.(4) by Ra0 from the right hand-side, we obtain (a0rbn)Ra0 ⊆ I,
and so a0rbn ∈ I and thus a0Rbn ⊆ I. Thus Eq.(4) becomes

(5)
∑

i+j=n, 1≤i≤n

aiσ
i(r)σi(bj) ∈ I.

Multiplying Eq.(5) by Ra1 from the right hand-side, we obtain a1Rbn−1 ⊆ I
by the similar arguments as above. Continuing this process, we can prove that
aiRbj ⊆ I for all i, j with i + j = n. Therefore, aiRbj ⊆ I for all i and j. The
converse also follows directly from Lemma 2.4(1). ¤

Corollary 2.7. Let I be a quasi σ-rigid ideal of a ring R.
(1) I[x;σ, δ] is a semiprime ideal of R[x;σ, δ], when I is a δ-ideal of R.
(2) I[[x; σ]] is a semiprime ideal of R[[x;σ]].

Proof. (1) Let p(x)R[x; σ, δ]p(x) ⊆ I[x;σ, δ], where p(x)=
∑m

i=0 aix
i∈R[x;σ, δ].

Then aiRai ⊆ I for all 0 ≤ i ≤ m by Theorem 2.6. Since I is a semiprime ideal
of R by Lemma 2.1, we have ai ∈ I for all 0 ≤ i ≤ m, and thus p(x) ∈ I[x;σ, δ].
Therefore I[x; σ, δ] is a semiprime ideal of R[x; σ, δ]. (2) By the same method
as (1). ¤

Recall from [21], a one-sided ideal I of a ring R has the insertion of factors
property (or simply, IFP) if ab ∈ I implies aRb ⊆ I for a, b ∈ R.

Lemma 2.8. For an ideal I of a ring R, I is a quasi σ-rigid ideal and has the
IFP if and only if I is a σ-rigid ideal.
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Proof. Let I be a quasi σ-rigid ideal and have the IFP. If aσ(a) ∈ I for a ∈ R,
then aRσ(a) ⊆ I by the IFP, and hence a ∈ I, concluding that I is a σ-rigid
ideal. Conversely, suppose that I is a σ-rigid ideal. Then I is a completely
semiprime ideal (i.e., a2 ∈ I implies a ∈ I for a ∈ R) of R by [13, Proposi-
tion 2.2(1)], and so I has the IFP by [21, Lemma 3.2(a)]. ¤

Let N(R), N∗(R) and N∗(R) denote the set of all nilpotent elements, the
prime radical and the upper nilradical (i.e., the sum of all nil ideals) of a ring
R, respectively. A ring R is called 2-primal [3] if N∗(R) = N(R), and a ring R
is called NI [20] if N∗(R) = N(R). It is well-known that a ring R is 2-primal
if and only if N∗(R) is a completely semiprime ideal of R, and a ring R is NI
if and only if N∗(R) is a completely semiprime ideal of R. Every 2-primal ring
is NI, but the converse does not hold in general.

We use R[x] to denote the polynomial ring with an indeterminate x over a
ring R.

Theorem 2.9. (1) R is a 2-primal ring and N∗(R) is a quasi σ-rigid ideal
if and only if N∗(R) is a σ-rigid ideal of R. In particular, if R is a 2-primal
ring, then f(x)g(x) ∈ N(R)[x] if and only if aibj ∈ N(R) for all i and j, where
f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j ∈ R[x].

(2) R is an NI ring and N∗(R) is a quasi σ-rigid ideal if and only if N∗(R)
is a σ-rigid ideal of R.

Proof. (1) Note that R is a 2-primal ring if and only if N∗(R) has the IFP by [16,
Theorem 2.1]. Hence, by Lemma 2.8, N∗(R) is a quasi σ-rigid ideal if and only
if N∗(R) is a σ-rigid ideal, when R is a 2-primal ring. Now, let R be a 2-primal
ring and f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j ∈ R[x]. It is well-known that

the polynomial ring R[x] over R is 2-primal by [3, Proposition 2.6]. Assume
that f(x)g(x) ∈ N(R)[x]. Then f(x)g(x) ∈ N(R)[x] = N(R[x]) = N∗(R[x])
if and only if f(x)R[x]g(x) ⊆ N(R)[x] = N∗(R[x]) by [3, Proposition 2.6] and
[16, Theorem 2.1] if and only if aiRbj ⊆ N(R) for all i and j by Theorem 2.6(1)
if and only if aibj ∈ N(R) by [16, Theorem 2.1]. (2) It follows from the fact
that N∗(R) has the IFP if and only if R is an NI ring by [12, Theorem 8]. ¤

Let ρ(R) be either N∗(R) or N∗(R), and put

Γ(R) =

{
mSpec(R), if ρ(R) = N∗(R)
mSpecS(R), if ρ(R) = N∗(R),

where mSpec(R) and mSpecS(R) denote the set of all minimal prime ideal
and all minimal strongly prime ideals of R, respectively.

Corollary 2.10. Assume that ρ(R) is a completely semiprime ideal of a ring
R. The following are equivalent:

(1) ρ(R) is a quasi σ-rigid ideal.
(2) ρ(R) is a σ-rigid ideal.
(3) P is σ-invariant for each P ∈ Γ(R).
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(4) σ−1(P ) ⊆ P for each P ∈ Γ(R).
(5) P is a σ-ideal for each P ∈ Γ(R).

Proof. It follows from Theorem 2.9 and [13, Proposition 3.4]. ¤

3. Extensions of quasi σ-rigid rings

Recall that a ring R is called quasi σ-rigid if the zero ideal of R is a quasi
σ-rigid ideal. For an automorphism σ, every σ-rigid ring is a quasi σ-rigid ring
and every quasi σ-rigid ring is a σ-semiprime ring, but the converses do not
hold by Example 1.1, respectively. Every quasi σ-rigid ring is a semiprime ring
by Lemma 2.1 (but not reduced by Example 1.1(1)). There exists a semiprime
ring R with an endomorphism σ such that the skew polynomial ring R[x; σ]
is not semiprime [14, Example 4.3]. However, we have the following result by
Corollary 2.7.

Corollary 3.1. If R is a quasi σ-rigid ring, then R[x;σ, δ] is a semiprime ring.

It can be easily checked that any prime ring with an automorphism σ is a
quasi σ-rigid ring; while for the ring R = Z2 ⊕ Z2 with an automorphism σ in
Example 1.1(2), both R and R[x;σ] are semiprime rings, but R is not quasi
σ-rigid. Note that the minimal prime ideal Z2 ⊕ {0} of R is not a σ-ideal.
However,

Proposition 3.2. If R is a semiprime ring whose minimal prime ideals are
σ-ideals, then R is a quasi σ-rigid ring.

Proof. Suppose aRσ(a) = 0 for a ∈ R. Then aRσ(a) ⊆ P for any minimal
prime ideal P of R. So a ∈ P or σ(a) ∈ P . Since P is a σ-ideal, we get
σ(a) ∈ P and so σ(a) ∈ N∗(R) = 0 because R is semiprime. Thus a = 0,
concluding that R is a quasi σ-rigid ring. ¤

Recall that R is called a σ-compatible ring [1] (or [8]) if for each a, b ∈ R,
ab = 0 ⇔ aσ(b) = 0, equivalently, the zero ideal of R is a σ-compatible ideal.
Every σ-rigid ring is a σ-compatible ring, but the converse does not hold, in
general. Note that the class of quasi σ-rigid rings and the class of σ-compatible
rings do not depend on each other by Example 1.2(1) and the following example.

Example 3.3. We consider a ring R = {( a t
0 a ) | a ∈ Z, t ∈ Q} , where Z and Q

are the set of all integers and all rational numbers, respectively. Let σ : R → R
be an endomorphism defined by σ (( a t

0 a )) =
(

a t/2
0 a

)
. Note that for ( 0 1

0 0 ) 6= 0,
we have ( 0 1

0 0 ) ( a t
0 a )σ (( 0 1

0 0 )) = 0 for any a ∈ Z and t ∈ Q. This yields that R is
not a quasi σ-rigid ring. Now, we show that R is a σ-compatible ring. Suppose
that AB = 0 for A = ( a t

0 a ) , B =
(

b s
0 b

) ∈ R. Then ab = 0 and as + tb = 0, and
so a = 0 or b = 0. If a = 0, then t = 0 and hence A = 0. Similarly, if b = 0,
then s = 0 and so B = 0, entailing that AB = 0 ⇔ Aσ(B) = 0. Therefore R is
a σ-compatible ring.
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A ring R is called semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R,
which every reduced ring is semicommutative. Notice that a ring is semicom-
mutative if and only if the zero ideal has the IFP, and so semicommutative
rings are also called IFP-rings. Recently, the concept of the semicommutativ-
ity of a ring is extended to an endomorphism of a ring. An endomorphism σ
of a ring R is called semicommutative [2, Definition 2.1] if whenever ab = 0
for a, b ∈ R, aRσ(b) = 0; a ring R is called σ-semicommutative if there exists
a semicommutative endomorphism σ of R. The semicommutativity and the
σ-semicommutativity of a ring are independent each other by [2, Example 2.3
and Example 2.7]. In a semicommutative ring, the quasi σ-rigidness and the σ-
rigidness of a ring coincide by Lemma 2.8. Moreover, for a σ-semicommutative
ring we have the following:

Proposition 3.4. Let R be a σ-semicommutative ring. The following are
equivalent:

(1) R is a σ-rigid ring.
(2) R is a quasi σ-rigid ring.
(3) R is a σ-semiprime ring.

Proof. It is enough to show that (3)⇒(1). Assume that R is a σ-semiprime
ring. Let aσ(a) = 0 for a ∈ R. Then aRσt(a) = 0 for any positive integer t by
[2, Remark 2.2]. Thus a = 0 and therefore R is a σ-rigid ring. ¤

Note that the ring R, in Example 3.3, is a σ-semicommutative ring by the
same method as in [2, Example 2.5(1)]. Hence, any condition in Proposition 3.4
cannot be replaced by “R is a σ-compatible ring”.

Corollary 3.5. If R is a semiprime and semicommutative ring, then R is a
reduced ring.

For an automorphism σ of a ring R, the map σ̄ : R[x] → R[x] defined
by σ̄(

∑m
i=0 aix

i) =
∑m

i=0 σ(ai)xi is an automorphism of the polynomial ring
R[x] and clearly this map extends σ. The ring of Laurent polynomials in x,
coefficients in a ring R, consists of all formal sums

∑n
i=k mix

i with obvious
addition and multiplication, where mi ∈ R and k, n are (possibly negative)
integers; denote it by R[x;x−1]. The map σ̄ : R[x, x−1] → R[x, x−1] defined
by σ̄(

∑n
i=k aix

i) =
∑n

i=k σ(ai)xi extends σ and is also an automorphism of
R[x, x−1].

Proposition 3.6. For a ring R, the following are equivalent:
(1) R is a quasi σ-rigid ring.
(2) R[x] is a quasi σ̄-rigid ring.
(3) R[x, x−1] is a quasi σ̄-rigid ring.

Proof. (1)⇔(2) Let R be a quasi σ-rigid ring. Suppose that R[x] is not a quasi
σ̄-rigid ring. Then there exists a nonzero polynomial f(x) = a0+a1x+· · ·+anxn

such that f(x)R[x]σ̄(f(x)) = 0. We may assume that an 6= 0. By simple



394 CHAN YONG HONG, NAM KYUN KIM, AND TAI KEUN KWAK

computation, we have anRσ(an) = 0. Since R is a quasi σ-rigid ring, we obtain
an = 0; which is a contradiction. Conversely, assume (2) and let aRσ(a) = 0
for a ∈ R. Note that aR[x]σ̄(a) = 0. Since R[x] is a quasi σ̄-rigid ring, we have
a = 0. Hence, R is a quasi σ-rigid ring. (1)⇔(3) can be proved by the similar
arguments above. ¤

Note that I is a quasi σ-rigid ideal of a ring R if and only if the factor ring
R/I is a quasi σ̄-rigid ring by Proposition 2.3, where σ̄ : R/I → R/I is defined
by σ̄(a+I) = σ(a)+I for a ∈ R. The following example shows that there exists
a ring R with an automorphism σ such that for any nonzero proper ideal I of
R, I is a σ-rigid ideal and so R/I is a quasi σ̄-rigid ring, but R is not a quasi
σ-rigid ring. Moreover, the next example illuminates that the subring of a quasi
σ-rigid ring need not be a quasi σ-rigid ring, combining with Example 1.1(1).

Example 3.7. Let R = ( F F
0 F ) where F is a field, and σ be an endomorphism

of R defined by σ (( a b
0 c )) =

(
a −b
0 c

)
. For a = ( 0 1

0 0 ) ∈ R, aRσ(a) = 0, but
a 6= 0, and so R is not a quasi σ-rigid ring. For the only nonzero proper ideals
I = ( F F

0 0 ), J = ( 0 F
0 F ) and K = ( 0 F

0 0 ) of R, it can be easily checked that I, J
and K are σ-rigid ideals, thus R/I, R/J and R/K are quasi σ̄-rigid rings by
Proposition 2.3.

For an automorphism σ of a ring R, the map σ̄ : Matn(R) → Matn(R)
defined by σ̄((aij)) = (σ(aij)) is an automorphism of the n×n full matrix ring
Matn(R).

Theorem 3.8. For a ring R, the following are equivalent:
(1) R is a quasi σ-rigid ring.
(2) Matn(R) is a quasi σ̄-rigid ring for any n ≥ 2.
(3) Matn(R) is a quasi σ̄-rigid ring for some n ≥ 2.

Proof. (1)⇒(2) Let R be a quasi σ-rigid ring and n ≥ 2. Suppose that
AMatn(R)σ̄(A) = 0 for A = (aij) ∈ Matn(R). Let Eij denote the matrix
unit in Matn(R) with (i, j)-entry 1 and zero elsewhere. Then A(rEij)σ̄(A) = 0
implies aijrσ(aij) = 0 for each i, j ∈ {1, 2, . . . , n} and any r ∈ R. Hence,
aijRσ(aij) = 0, entailing aij = 0 since R is a quasi σ-rigid ring. Therefore
A = 0, concluding that Matn(R) is a quasi σ̄-rigid ring. (2)⇒(3) is obvious.
(3)⇒(1) Assume that Matn(R) is a quasi σ̄-rigid ring for n ≥ 2. Let aRσ(a) = 0
for a ∈ R and A = a

∑n
i=1 Eii in Matn(R). Then AMatn(R)σ̄(A) = 0. Since

Matn(R) is a quasi σ̄-rigid ring, we get A = 0, and hence a = 0, proving that
R is a quasi σ-rigid ring. ¤

From Theorem 3.8, one may conjecture that the n × n upper triangular
matrix ring Un(R) over a quasi σ-rigid ring R is quasi σ̄-rigid for n ≥ 2, but
the possibility is erased by the following.

Example 3.9. Let R be a ring with any endomorphism σ. Let A = E1n ∈
Un(R), where Eij is the matrix unit in Un(R). Then AUn(R)σ̄(A) = 0 (re-
gardless of σ). Thus the n × n upper triangular matrix ring Un(R) over R is
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not a quasi σ̄-rigid ring for any n ≥ 2. Moreover, for a ring R and n ≥ 2, let

Sn(R) =








a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n

...
...

...
. . .

...
0 0 0 · · · a



|a, aij ∈ R





and

Vn(R) =








a1 a2 a3 a4 · · · an

0 a1 a2 a3 · · · an−1

0 0 a1 a2 · · · an−2

...
...

...
... · · · ...

0 0 0 0 · · · a2

0 0 0 0 · · · a1



| a1, a2, . . . , an ∈ R





.

By the same method, we conclude that Sn(R) and Vn(R) are not a quasi σ̄-rigid
ring for any n ≥ 2. Since Vn(R) ∼= R[x]/〈xn〉 by [19] where 〈xn〉 is an ideal of
R[x] generated by xn, R[x]/〈xn〉 is not a quasi σ̄-rigid ring for n ≥ 2 either,
where σ̄(f(x) + 〈xn〉) = σ(f(x)) + 〈xn〉 for f(x) ∈ R[x].

For an automorphism σ and an idempotent e of a ring R such that σ(e) = e,
the map σ̄ : eRe → eRe defined by σ̄(ere) = eσ(r)e is an automorphism of
eRe.

Proposition 3.10. For a ring R, assume that σ(e) = e for e2 = e ∈ R. If R
is a quasi σ-rigid ring, then eRe is a quasi σ̄-rigid ring.

Proof. For eae ∈ eRe, suppose that eae(eRe)σ̄(eae) = 0. Then

0 = eae(eRe)σ̄(eae) = eae(eRe)eσ(a)e = (eae)Rσ(eae).

Since R is a quasi σ-rigid ring, eae = 0 and so eRe is a quasi σ̄-rigid ring. ¤

The condition “σ(e) = e for e2 = e ∈ R” in Proposition 3.10 cannot be
dropped by the following example.

Example 3.11. Consider the quasi σ-rigid ring R = Mat2(Z3) where σ is
defined by σ

((
a b
c d

))
=

(
a −b
−c d

)
as in Example 1.1(1). For an idempotent

e = ( 0 1
0 1 ) ∈ R, σ(e) 6= e. Let a = ( 0 0

1 1 ) ∈ R. Then eae = ( 0 2
0 2 ) 6= 0. But for any

r = ( s t
u v ) ∈ R, eae(ere)σ̄(eae) = eaereσ(a)e = 0, and so eae(eRe)σ̄(eae) = 0,

implying that eRe is not a quasi σ̄-rigid ring.

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0
for r ∈ R. Similarly, left regular elements can be defined. An element is regular
if it is both left and right regular (and hence not a zero divisor). A ring R is
called right (resp., left) Ore if given a, b ∈ R with b regular there exist a1, b1 ∈ R
with b1 regular such that ab1 = ba1 (resp., b1a = a1b). It is a well-known fact
that R is a right (resp., left) Ore ring if and only if the classical right (resp.,
left) quotient ring of R exists.
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Let σ be an automorphism of a ring R. Suppose that there exists the classical
right quotient ring Q(R) of R. Then for any ab−1 ∈ Q(R) where a, b ∈ R with
b regular, the induced map σ̄ : Q(R) → Q(R) defined by σ̄(ab−1) = σ(a)σ(b)−1

is also an automorphism. Note that the classical right quotient ring Q(R) of a
σ-rigid ring R is σ̄-rigid. Similarly, we have the following.

Proposition 3.12. Suppose that there exists the classical right quotient ring
Q(R) of a ring R. If R is a quasi σ-rigid ring, then Q(R) is a quasi σ̄-rigid
ring.

Proof. Suppose that ab−1Q(R)σ̄(ab−1) = 0. Then 0 = ab−1Q(R)σ̄(ab−1) =
aQ(R)σ(a)σ(b)−1, since b−1Q(R) = Q(R). This implies aQ(R)σ(a) = 0, and
so aRσ(a) = 0. Since R is a quasi σ-rigid ring, we get a = 0 and thus Q(R) is
a quasi σ̄-rigid ring. ¤

4. Applications

Recall that a ring R is called Baer [15] if the right (left) annihilator of every
nonempty subset of R is generated by an idempotent; and a ring R is called
quasi-Baer [6] if the right annihilator of each right ideal of R is generated (as a
right ideal) by an idempotent. It is well-known that the (quasi-)Baerness of a
ring is left-right symmetric. A ring R is called a right (resp., left) p.p.-ring if the
right (resp., left) annihilator of an element of R is generated by an idempotent.
R is called a p.p.-ring if it is both a right and left p.p.-ring. From [4], a ring R
is called right (resp., left) principally quasi-Baer (or simply, right (resp., left)
p.q.-Baer) if the right (resp., left) annihilator of a principal right (resp., left)
ideal of R is generated by an idempotent. R is called a p.q.-Baer ring if it is
both right and left p.q.-Baer. The class of p.q.-Baer rings includes all biregular
rings, all (quasi-)Baer rings and all abelian (i.e., its idempotents are central)
p.p.-rings. The extensions of Baer, quasi-Baer, p.q.-Baer and p.p.-rings have
been studied by many authors [2, 4, 6, 7, 8]. In [9], it was proved that for a
σ-rigid ring R, a ring R is (quasi-)Baer if and only if R[x;σ, δ] is a (quasi-)Baer
ring if and only if R[[x; σ]] is a (quasi-)Baer ring; and R is a p.q.-Baer (resp.,
p.p.-) ring if and only if R[x; σ, δ] is a p.q.-Baer (resp., p.p.-) ring. Moreover,
there exists a commutative von Neumann regular ring R (and so a p.q.-Baer
ring and a p.p.-ring), but R[[x;σ]] is neither a p.q.-Baer ring nor a p.p.-ring
by [9, p. 225]. As parallel results to these, we have the following for a quasi
σ-rigid ring.

Lemma 4.1. Let R be a quasi σ-rigid ring.
(1) For any p(x) and q(x) in R[x; σ, δ] (resp., R[[x; σ]]), p(x)R[x;σ, δ]q(x) =

0 (resp., p(x)R[[x;σ]]q(x) = 0) if and only if aRb = 0 for all coefficients a, b
of p(x) and q(x), respectively.

(2) For e2 = e ∈ R[x; σ, δ] (resp., R[[x; σ]]), if eR[x; σ, δ] (resp., eR[[x; σ]])
is an ideal of R[x;σ, δ] (resp., eR[[x; σ]]), then e = e0 where e0 is the constant
term of e.
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Proof. (1) It follows from Theorem 2.6. (2) Now 1− e = (1− e0)−
∑n

i=1 eix
i.

Since eR[x; σ, δ] is an ideal, we have (1 − e)R[x; σ, δ]e ⊆ (1 − e)eR[x; σ, δ]=0,
and so (1 − e)R[x;σ, δ]e = 0. By (1), (1 − e0)Re0 = 0 and eiRei = 0 for
any 1 ≤ i ≤ n. Since R is semiprime by Lemma 2.1, we have ei = 0 for any
1 ≤ i ≤ n. Therefore e = e0. ¤

The following example shows that the condition “eR[x; σ, δ] is an ideal of
R[x;σ, δ]” in Lemma 4.1(2) cannot be dropped.

Example 4.2. Consider the quasi σ-rigid ring R = Mat2(F ) and the en-
domorphism σ as in Example 1.1(1). Let e = ( 0 1

0 1 ) + ( 0 1
0 0 ) x ∈ R[x; σ].

Then e2 = e ∈ R[x; σ] and e ∈ eR[x;σ]. For r = ( 1 0
0 0 ) ∈ R[x; σ], re =

( 0 1
0 0 ) + ( 0 1

0 0 )x /∈ eR[x; σ], since the constant term of any element of eR[x; σ]
is of the form

(
a b
a b

)
where a, b ∈ F . This implies that eR[x; σ] is not an ideal.

Note that e = ( 0 1
0 1 ) + ( 0 1

0 0 )x /∈ R.

For a nonempty subset S of a ring R, the right annihilator of S in R will be
by rR(S) = {c ∈ R | dc = 0 for any d ∈ S}.
Proposition 4.3. Let R be a quasi σ-rigid ring. The following are equivalent:

(1) R is a quasi-Baer ring.
(2) R[x;σ, δ] is a quasi-Baer ring.
(3) R[[x; σ]] is a quasi-Baer ring.

Proof. Without the assumption that R is quasi σ-rigid, (1)⇒(2) and (1)⇒(3)
were proved in [11, Theorem 1] and [5, Theorem 1.2] respectively. (2)⇒(1)
Assume that R[x;σ, δ] is a quasi-Baer ring. Let J be an ideal of R. Then
rR[x;σ,δ](JR[x; σ, δ]) = eR[x; σ, δ] for some idempotent e ∈ R, by Lemma 4.1(2).
Thus rR(J) = rR[x;σ,δ](JR[x; σ, δ]) ∩ R = eR[x; σ, δ] ∩ R = eR by Lemma
4.1(1). Therefore R is a quasi-Baer ring. (3)⇒(1) is also proved by the similar
arguments above. ¤

Observe that if R is a quasi σ-rigid ring, then R is a right p.q.-Baer ring if
and only if R is a left p.q.-Baer ring since R is semiprime by [4, Corollary 1.11].

Theorem 4.4. Let R be a quasi σ-rigid ring.
(1) R is a right p.q.-Baer ring if and only if R[x; σ, δ] is a right p.q.-Baer

ring.
(2) If R[[x; σ]] is a right p.q.-Baer ring, then R is a right p.q.-Baer ring.

Proof. (1) Assume that R is a right p.q.-Baer ring. For any principal right
ideal I = p(x)R[x; σ, δ] of R[x; σ, δ] where p(x) = a0 + a1x + · · · + amxm, we
take I∗ = a0R + · · · + amR as the finitely generated right ideal generated by
a0, . . . , am. Since R is right p.q.-Baer, rR(I∗) = eR for some e2 = e ∈ R. Note
that e is central since R is semiprime. Then I∗Re = 0, and so p(x)R[x; σ, δ]e =
0 by Lemma 4.1(1). Hence, Ie = 0 and so e ∈ rR[x;σ,δ](I). Thus eR[x; σ, δ] ⊆
rR[x;σ,δ](I). Now we let q(x) = b0 + b1x + · · · + bnxn ∈ rR[x;σ,δ](I). Then
p(x)R[x;σ, δ]q(x) = 0 and thus b0, b1, . . . , bn ∈ rR(I∗) = eR by Lemma 4.1(1).
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Hence there exist c0, c1, . . . , cn such that q(x) = ec0 + ec1x + · · · + ecnxn =
e(c0 + c1x + · · · + cnxn) ∈ eR[x; σ, δ]. Consequently, rR[x;σ,δ](I) = eR[x;σ, δ].
Therefore R[x; σ, δ] is right p.q.-Baer. The proofs of the converses of both (1)
and (2) follow the proof (2)⇒(1) of Proposition 4.3. ¤

Remark 4.5. (1) The condition “quasi-Baer rings” in Proposition 4.3 can nei-
ther be replaced by “Baer rings” nor “right p.p.-rings”: For example, let
R = Mat2(Z). Then R is a Baer ring, but R[x] is not right p.p. by [9, Ex-
ample 10(2)]. Also R is a quasi σ-rigid ring, but R[x; σ] is neither Baer nor
right p.p., in case σ is the identity endomorphism of R.

(2) There exists a quasi σ-rigid and p.q.-Baer ring which is not quasi-Baer,
letting σ be the identity endomorphism of R by [4, Lemma 1.4 and Example
1.5(i)].

(3) The converse of Theorem 4.4(2) does not hold by [9, p. 225].
(4) The condition “R is a quasi σ-rigid ring” in Proposition 4.3 and Theo-

rem 4.4 is not superfluous by [9, Example 9].

From [9, Example 9], we see that there exists a semiprime ring R with
σ(e) = e for any central idempotent e ∈ R such that R[x; σ, δ] is p.q.-Baer, but
R is not quasi σ-rigid. However, we have the following which is compared with
Proposition 3.2.

Proposition 4.6. Let R be a semiprime ring with σ(e) = e for any central
idempotent e ∈ R. If R is a right p.q.-Baer ring, then R is quasi σ-rigid.

Proof. Suppose that R is right p.q.-Baer and aRσ(a) = 0 for a ∈ R. Then
σ(a) ∈ rR(aR) = eR = σ(eR) where e = e2 ∈ R is central since R is semiprime.
It follows that a ∈ eR, entailing aRa = 0 and hence a = 0 since R is semiprime.
Therefore R is quasi σ-rigid. ¤

The condition “σ(e) = e for any central idempotent e ∈ R” in Proposition 4.6
cannot be dropped. For the ring R = Z2 ⊕ Z2 with an automorphism σ in
Example 1.1(2), R is semiprime and right p.q.-Baer but not quasi σ-rigid and
σ(1, 0) 6= (1, 0).
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