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ON QUASI-RIGID IDEALS AND RINGS

CHAN YonG Honag, Nam Kyun KiMm, AND Tar KEUN KwWAK

ABSTRACT. Let o be an endomorphism and I a o-ideal of a ring R. Pear-
son and Stephenson called I a o-semiprime ideal if whenever A is an ideal
of R and m is an integer such that Ao?(A) C I for all t > m, then A C I,
where o is an automorphism, and Hong et al. called I a o-rigid ideal if
ao(a) € I implies a € I for a € R. Notice that R is called a o-semiprime
ring (resp., a o-rigid ring) if the zero ideal of R is a o-semiprime ideal
(resp., a o-rigid ideal). Every o-rigid ideal is a o-semiprime ideal for an
automorphism o, but the converse does not hold, in general. We, in this
paper, introduce the quasi o-rigidness of ideals and rings for an automor-
phism ¢ which is in between the o-rigidness and the o-semiprimeness,
and study their related properties. A number of connections between the
quasi o-rigidness of a ring R and one of the Ore extension R[z;0,d] of R
are also investigated. In particular, R is a (principally) quasi-Baer ring if
and only if R[z;0,d] is a (principally) quasi-Baer ring, when R is a quasi
o-rigid ring.

1. Definitions

Let o be an endomorphism of a ring R, the additive map ¢ : R — R is called
a o-deriwation if 6(ab) = §(a)b+o(a)d(b) for any a,b € R. For a ring R with an
endomorphism o of R and a o-derivation d, the Ore extension R[z; o, 6] of R is
the ring obtained by giving the polynomial ring over R with new multiplication:
ar =o(r)z+9(r) for all r € R. If § = 0, we write R[x; o] for R[z;0,0] and it is
called the skew polynomial ring (or, an Ore extension of endomorphism type);
while R[[z;0]] is called a skew power series ring.

An endomorphism o of a ring R is called rigid [17] if ac(a) = 0 implies
a =0 for a € R. A ring R is called a o-rigid ring [9] if there exists a rigid
endomorphism o of R. The Ore extension R|x;c,d] of R is reduced (i.e., it has
no nonzero nilpotent elements) and o is a monomorphism if and only if R is
a o-rigid ring if and only if R[z;o] is reduced by [9, Proposition 5] and [10,
Proposition 3], respectively. Hence, o-rigid rings are reduced rings, but there
exists an endomorphism o of a commutative reduced ring which is not a o-rigid
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ring by [9, Example 9]. An ideal I of R is called a o-ideal if o(I) C I. In [13],
a o-ideal I of a ring R is called a o-rigid ideal if ac(a) € I implies a € I for
a € R, and the connections between o-rigid ideals of R and the related ideals
of the Ore extension R[z;0,d] of R are investigated. Obviously, R is a o-rigid
ring if and only if the zero ideal of R is a o-rigid ideal. Following [22], for an
automorphism o of a ring R, a o-ideal I of R is called a o-semiprime ideal if
whenever A is an ideal of R and m is an integer such that Ao?(A) C I for all
t > m, then A C I; the ring R is called o-semiprime if the zero ideal of R
is a o-semiprime ideal. Notice that R is a o-semiprime ring if and only if the
skew polynomial ring R[x; 0] is semiprime by [22, Proposition 1.1] (also, [18,
Proposition 4.6]). It is well-known that for an automorphism o of a ring R,
the ring R is o-semiprime if and only if whenever a € R and m is an integer
such that aRot(a) = 0 for all ¢ > m, then a = 0. It is clear that every o-rigid
ideal (ring) is a o-semiprime ideal (ring) for an automorphism o. Hence, for
an endomorphism o and a o-ideal I of a ring R, we consider the following
condition

(%) aRo(a) C I implies a € I for a € R.

Then it can be easily checked that every o-rigid ideal satisfies (%) and every
o-ideal satisfying (*) is o-semiprime for an automorphism o, but the converses
do not hold by the next example, respectively.

Example 1.1. (1) Let R = Mat2(Z3) be the 2 x 2 matrix ring over a field Zs.
Then I = {0} is a maximal (and prime) ideal of R. Let 0 : R — R be an auto-
morphism defined by o ((¢ %)) = (% ) - Suppose that (¢ YYRo ((2%)) C I
Since R is a prime ring, (¢ %) € Toro ((2%)) € I. Then (¢ }) € I, and there-
fore I satisfies (x). However, I is not a o-rigid ideal by [13, Example 3.3].

(2) Let Zs be the ring of integers modulo 2 and R = Zs @ Zs. Then R is a
commutative reduced ring. Define o : R — R by o(a,b) = (b,a). Then the zero
ideal I of R does not satisfy (x): In fact, (1,0)Ro(1,0) C I, but (1,0) ¢ I. We
now claim that R[x;o] is semiprime. Let f(z)R[z;o]f(x) = 0, where f(z) =
St olai,bi)at € Rlx;o] with (am,by) # 0. We may assume that a,, # 0.
Then f(z)z!f(x) = 0 for all integer ¢t > 0. Thus (am, bm )0 (am, bm) = 0 of
all t > 0. This implies that (@, b )™ (@m, b)) = 0 and (@, b )™ (A, bin)
= 0. If m is even (or odd), then (am,bm)(@m,bm) = 0 and (am, bm) (b, am)
= 0. Hence a,, = 0 = b,,. Thus (a,,b,) = 0; which is a contradiction.
Therefore R[x; o] is semiprime and so R is o-semiprime by [22, Proposition 1.1],
equivalently, I is a o-semiprime ideal.

Another generalization of o-rigid ideals is a o-compatible ideal. In [7], an
ideal I of a ring R is called a o-compatible ideal if for each a,b € R, ab € [ &
ac(b) € I. The next example shows that the class of o-compatible ideals and
the class of o-ideals satisfying (*) do not depend on each other.

Example 1.2. (1) In Example 1.1(1), the zero ideal {0} of R satisfies (*), but
not a o-compatible ideal: Indeed, (§3)(%29) =0, but ({§)o((39)) #0.
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(2) Consider a ring R = {(f([f) ?Ei;) | f(z),9(x) € F[x]}, where F[z] is
the polynomial ring over a field F. For a nonzero element a € F, let o :

R — R be an endomorphism defined by o ((f(ow) ;Eg )) = (f(OI) a];q(%)) . Then

the ideal [ = {(8 9(03”)) |g(z) € (p(x))}, where (p(x)) is an ideal generated by
an irreducible polynomial p(z) in F|z], is a o-compatible ideal of R by [7,
Example 2.5]. However, I does not satisfy (x): In fact, for A = (§3) ¢ I we
have ARo(A) ={(J$)} C I.

Based on these facts, we define the following.

Definition 1.3. Let o be an automorphism of a ring R. For a o-ideal I of
R, I is called a quasi o-rigid ideal (or, a strongly o-semiprime ideal) of R if
aRo(a) C I implies a € I for a € R. A ring R is called a quasi o-rigid ring (or,
a strongly o-semiprime ring) if the zero ideal of R is a quasi o-rigid ideal.

In this paper, we study both quasi o-rigid ideals and quasi o-rigid rings
for an automorphism o. Several relationship between the quasi o-rigidness
of a ring R and one of the Ore extension R[z;o0,d] are also investigated. In
particular, we show that R is a (principally) quasi-Baer ring if and only if
the Ore extension R[z;0,d] of R is (principally) quasi-Baer when R is a quasi
o-rigid ring (Theorem 4.3 and Theorem 4.4).

Throughout this paper, R denotes an associative ring with identity. We
assume that every endomorphism o of a given ring is an automorphism, unless
specified otherwise.

2. Structures of quasi o-rigid ideals

Recall that for an ideal I of a ring R, the ideal I is called o-invariant if
o~ Y(I) = I. Note that every o-invariant ideal is a o-ideal.

Lemma 2.1. Every quasi o-rigid ideal of a ring is o-invariant and semiprime.

Proof. Let I be a quasi o-rigid ideal of a ring R. Let a € o~*(I). Then
o(a) € I, and so aRo(a) C I and hence a € I. Thus 0~ (I) C I and therefore
I is o-invariant. Now, assume that aRa C I for « € R. For any r € R,
aro(a)Ro(aro(a)) C I and so aro(a) € I. Thus a € I and therefore I is
semiprime. O

The converse of Lemma 2.1 does not hold by following.

Example 2.2. Consider the ring R = Zs®Zs and the endomorphism o defined
by o(a,b) = (b,a), in Example 1.1(2). Let I be the prime radical N.(R) =
{(0,0)} of R (Note that the only proper o-ideal is {(0,0)}). Then I is clearly
a semiprime ideal and a o-invariant ideal, but not a quasi o-rigid ideal by
Example 1.1(2).

We have the basic equivalences for quasi o-rigid ideals as follows.
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Proposition 2.3. Let I be a o-ideal of a ring R. The following are equivalent
to a quasi o-rigid ideal I of R :

(1) o(a)Ra C I implies a € I for any a € R.

(2) For any ideal A of R, Ac(A) C I implies A C I.

(3) For any a € R, aR5(a) = 0 implies @ = 0, where R = R/I, a =a+ I
and & : R — R is defined by 6(a + 1) = o(a) + I for a € R.

Proof. (1) Suppose that I is a quasi o-rigid ideal. Then T is semiprime by
Lemma 2.1. If o(a)Ra C I for a € R, then aRo(a) C I and thus a € I.
Conversely, assume that o(a)Ra C I implies a € I for any a € R. If bRb C
I, then o(a(b)rb)Ro(b)rb = o*(b)o(r)o(bRb)rb C I for any r € R, and so
o(b)rb € I and thus b € I by the assumption, entailing that I is semiprime.
Hence, aRo(a) C I implies o(a)Ra C I, and so a € I by the assumption,
concluding that T is a quasi o-rigid ideal. (2) Let I be a quasi o-rigid ideal and
a€ A If Ao(A) C I, then aRo(a) C I, and so a € I. Consequently, A C I.
Conversely, assume that for any ideal A of R, Ac(A) C I implies A C I. If
aRo(a) C I, then RaRo(RaR) = RaRo(a)R C I and so RaR C I, and hence
a € I, implying that I is a quasi o-rigid ideal. (3) is obvious. O

For the remainder of this paper, let § be a o-derivation of a ring R. Recall
that an ideal I of R is called a d-ideal if 6(I) C I.

Lemma 2.4. Let I be a quasi o-rigid ideal of a ring R.

(1) If aRb C I for a,b € R, then aRc™(b),0™(a)Rb C I for every positive
integer n. Conversely, if aRo"(b) or o*(a)Rb C I for some positive integer k,
then aRb C I.

(2) If I is a 0-ideal with aRb C I for a,b € R, then aRd™(b),0™(a)Rb C I
for every positive integer n.

Proof. We freely use the fact that every quasi o-rigid ideal is o-invariant and
semiprime by Lemma 2.1. (1) Suppose that aRb C I for a,b € R. Tt is
enough to show that aRo(b), o(a)Rb C I. For any r € R, bro(a)Ro(bro(a)) =
bro(aRb)o(ro(a)) C I. Since I is a quasi o-rigid ideal, bro(a) € I and so
bRo(a) C I. Hence, o(a)Rb C I since I is a semiprime ideal. Next, we obtain
bRa C I since aRb C I and I is a semiprime ideal. By the same method,
we get aRo(b) C I. Conversely, suppose that aRo*(b) C I for some positive
integer k. Then, by the above arguments, o*(aRb) = o*(a)Ra*(b) C I. Since
I is a o-invariant ideal, c*~1(aRb) C o~(I) = I. Continuing this process,
we have aRb C I. Similarly, o*(a)Rb C I for some positive integer k implies
aRb C I. (2) Assume that I is a d-ideal and aRb C I for a,b € R. It is
sufficient to show that aRJ(b),0(a)Rb C I. Let aRb C I. Note that bRa C [
and so bRo(a) C I by (1). For any r € R, é(arb) = o(ar)d(b) + d(ar)b € I.
Thus (o(ar)é(b)R)? = 6(arb)Ro(ar)d(b)R — 6(ar)bRa(ar) §(b)R C I because
d(arb) € I and bRo(a) C I. Since I is semiprime, we have o(a)Rd(b) C I and
so aR§(b) C I by (1). Similarly, bRa C I from aRb C I implies d(a)Rb C I,
completing proof. O
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Corollary 2.5. Let I be a o-ideal of a ring R. The ideal I is a quasi o-rigid
ideal if and only if I is a semiprime ideal, and aRo(b) C I < aRb C I for
a,b e R.

Proof. Tt follows from Lemma 2.1 and Lemma 2.4. O

Theorem 2.6. Let I be a quasi o-rigid ideal of a Ting R.

(1) Let p(z) = Y1" yaza’ and q(z) = ZJ 0 b’ € R[z;0,6]. If I is a §-ideal
of R, then p(z)R[x;0,0]q(x) C I[x;0,6] if and only if a;Rb; C I for all i and
j.

(2) Let p(z) = Y ooy aiz’ and q(z) = Z;oob 27 € R[[x;0]]. Then

p(x)R[[z; ollq(x) C I[[x;0]] if and only if a;Rb; C I for alli and j.

Proof. (1) Suppose that p(z)R[z;0,8]q(x) C I[z;0,d]. Then p(x)rq(z) €
I[x;0,0] for any r € R, and put

(Z aixi)r(z bjxj) = Coan®™ T ey 12T izt € I[2;0,6).
; =

We claim that a;Rb; C I for all 0 < i < m and 0 < j < n. We proceed by

induction on ¢ 4+ j. When i+ j = m + n, we have ¢pin = amo™(r)o™(b,) € I

by above, and so a,,Rb, C I by Lemma 2.4. Now suppose that our claim is

true for i 4+ j > k > 0. Consider

k= Z a;io'(r)ot(b;) + Z aiRa" 571 ¢"2572 . g0 (b)) C T

i+j=k i+j>k
for any r € R and some nonnegative integers i1, ..., J1,...,J. Since
E a;Ro' 071 ¢*272 - 0"67 (b;) C I,
i+j>k

by induction hypothesis and Lemma 2.4, we obtain
(1) ck = Z aio'(r)ot(b;) € 1
i+j=k
for any r € R. Multiplying Eq.(1) by Ray from the right hand-side, we have

i+j=k

( > aiai(r)ai(bj)> Ray, = apa®(r)o* (bo)Ray C I

since o*(b;)Ra; C I for alli+j > k and any nonnegative integer u, by induction
hypothesis and Lemma 2.4(1). Then for any r € R, (aka (r)o*(bo)R)? C I and
so apo”(r)o*(by) € I by Lemma 2.1. Hence ajRo"(by) C I and so apRby C I
by Lemma 2.4(1). Thus Eq.(1) becomes

(2) > aiot(r)o'(b) € I.

i+i=k, 0<i<k—1
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Multiplying Eq.(2) by Rak—_1 from the right hand-side,
ak,lak_l(r)ak_l(bl)Rak,l g I

and so ax_1Rb; C I by the same method above. Continuing in this manner,
we obtain that a;Rb; C I for all 4,j with ¢ + j = k. Therefore a;Rb; C I for
all 0 <i<m and 0 < j <n. The converse follows directly from Lemma 2.4.

(2) Suppose that p(z)R[[z; o]lg(x) C I[[z;o]]. Then p(x)rq(x) € I[[z; o] for
any r € R. Then

(3) (Zaﬁ?i)T ijxj :Z Z aio'(r)ot(b))z™ | € I[[z; o]].
=0 5=0 k=0 \i+j=Fk

We claim that a;Rb; C I for all ¢,j. We proceed by induction on ¢ + j. For
i+ j =0, we have agRby C I by Eq.(3). Now assume that our claim is true
for i+ j < n—1. Note that a,Ro™(b;) and o”(b;)Ra; C I for any nonnegative
integers u and v, by induction hypothesis and Lemma 2.4(1), when i+j < n—1.
We show that a;Rb; € I for i + j = n. From Eq.(3), we have

(4) > aiot(r)o’(b;) € 1.

it+j=n
Multiplying Eq.(4) by Rag from the right hand-side, we obtain (agrb,)Rag C I,
and so agrb,, € I and thus agRb,, C I. Thus Eq.(4) becomes

(5) > aioti(r)o’(b) € 1.

i+j=n, 1<i<n
Multiplying Eq.(5) by Ra; from the right hand-side, we obtain a1 Rb,—1 C I
by the similar arguments as above. Continuing this process, we can prove that
a;Rb; C I for all 4, j with ¢ + j = n. Therefore, a;Rb; C I for all < and j. The
converse also follows directly from Lemma 2.4(1). O

Corollary 2.7. Let I be a quasi o-rigid ideal of a ring R.
(1) I[z;0,6] is a semiprime ideal of R[x;0,0], when I is a §-ideal of R.
(2) I[[x;0]] is a semiprime ideal of R[[z;0]].

Proof. (1) Let p(z)R|[z; 0, 0]p(x) C I[x;0,6], where p(z) =" a;,z" € R[z; 0,].
Then a;Ra; C I for all 0 < i < m by Theorem 2.6. Since I is a semiprime ideal
of R by Lemma 2.1, we have a; € I for all 0 < i < m, and thus p(z) € I[z;0,].
Therefore I[z;0,4] is a semiprime ideal of R[x;0,d]. (2) By the same method
as (1). O

Recall from [21], a one-sided ideal I of a ring R has the insertion of factors
property (or simply, IFP) if ab € I implies aRb C I for a,b € R.

Lemma 2.8. For an ideal I of a ring R, I is a quasi o-rigid ideal and has the
IFP if and only if I is a o-rigid ideal.
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Proof. Let I be a quasi o-rigid ideal and have the IFP. If ac(a) € I for a € R,
then aRo(a) C I by the IFP, and hence a € I, concluding that I is a o-rigid
ideal. Conversely, suppose that I is a o-rigid ideal. Then [ is a completely
semiprime ideal (i.e., a®> € I implies a € I for a € R) of R by [13, Proposi-
tion 2.2(1)], and so I has the IFP by [21, Lemma 3.2(a)]. O

Let N(R), N.(R) and N*(R) denote the set of all nilpotent elements, the
prime radical and the upper nilradical (i.e., the sum of all nil ideals) of a ring
R, respectively. A ring R is called 2-primal [3] if N.(R) = N(R), and a ring R
is called NT [20] if N*(R) = N(R). It is well-known that a ring R is 2-primal
if and only if N,(R) is a completely semiprime ideal of R, and a ring R is NI
if and only if N*(R) is a completely semiprime ideal of R. Every 2-primal ring
is NI, but the converse does not hold in general.

We use R|z] to denote the polynomial ring with an indeterminate x over a
ring R.

Theorem 2.9. (1) R is a 2-primal ring and N.(R) is a quasi o-rigid ideal
if and only if N.(R) is a o-rigid ideal of R. In particular, if R is a 2-primal
ring, then f(z)g(z) € N(R)[z| if and only if a;b; € N(R) for alli and j, where
flx) =3 aix’ and g(x) = 37 bja’ € Rla].

(2) R is an NI ring and N*(R) is a quasi o-rigid ideal if and only if N*(R)
is a o-rigid ideal of R.

Proof. (1) Note that R is a 2-primal ring if and only if N, (R) has the IFP by [16,
Theorem 2.1]. Hence, by Lemma 2.8, N,(R) is a quasi o-rigid ideal if and only
if N.(R) is a o-rigid ideal, when R is a 2-primal ring. Now, let R be a 2-primal
ring and f(z) = Y2 a;z’ and g(z) = 3°7_( bz’ € R[z]. Tt is well-known that
the polynomial ring R[z] over R is 2-primal by [3, Proposition 2.6]. Assume
that f(z)g(x) € N(R)[z]. Then f(x)g(x) € N(R)[z] = N(R[z]) = N.(R[z])
if and only if f(x)R[x]g(z) C N(R)[z] = N.(R[z]) by [3, Proposition 2.6] and
[16, Theorem 2.1] if and only if a;Rb; C N(R) for all ¢ and j by Theorem 2.6(1)
if and only if a;b; € N(R) by [16, Theorem 2.1]. (2) It follows from the fact
that N*(R) has the IFP if and only if R is an NI ring by [12, Theorem 8]. O

Let p(R) be either N,(R) or N*(R), and put

I'(R) - mSpec(R), %f p(R) = N.(R)
mSpecg(R), if p(R) =N*(R),

where mSpec(R) and mSpecs(R) denote the set of all minimal prime ideal
and all minimal strongly prime ideals of R, respectively.

Corollary 2.10. Assume that p(R) is a completely semiprime ideal of a ring
R. The following are equivalent:

(1) p(R) is a quasi o-rigid ideal.

(2) p(R) is a o-rigid ideal.

(3) P is o-invariant for each P € T'(R).
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(4) o=Y(P) C P for each P € T(R).
(5) P is a o-ideal for each P € T(R).

Proof. Tt follows from Theorem 2.9 and [13, Proposition 3.4]. O

3. Extensions of quasi o-rigid rings

Recall that a ring R is called quasi o-rigid if the zero ideal of R is a quasi
o-rigid ideal. For an automorphism o, every o-rigid ring is a quasi o-rigid ring
and every quasi o-rigid ring is a o-semiprime ring, but the converses do not
hold by Example 1.1, respectively. Every quasi o-rigid ring is a semiprime ring
by Lemma 2.1 (but not reduced by Example 1.1(1)). There exists a semiprime
ring R with an endomorphism o such that the skew polynomial ring R[z; o]
is not semiprime [14, Example 4.3]. However, we have the following result by
Corollary 2.7.

Corollary 3.1. If R is a quasi o-rigid ring, then R[x;0,0] is a semiprime ring.

It can be easily checked that any prime ring with an automorphism o is a
quasi o-rigid ring; while for the ring R = Zs @ Zs with an automorphism ¢ in
Example 1.1(2), both R and Rlxz;o] are semiprime rings, but R is not quasi
o-rigid. Note that the minimal prime ideal Zs ® {0} of R is not a o-ideal.
However,

Proposition 3.2. If R is a semiprime ring whose minimal prime ideals are
o-ideals, then R is a quasi o-rigid ring.

Proof. Suppose aRo(a) = 0 for a € R. Then aRo(a) C P for any minimal
prime ideal P of R. So a € P or o(a) € P. Since P is a o-ideal, we get
o(a) € P and so o(a) € N.(R) = 0 because R is semiprime. Thus a = 0,
concluding that R is a quasi o-rigid ring. O

Recall that R is called a o-compatible ring [1] (or [8]) if for each a,b € R,
ab =0 & ao(b) = 0, equivalently, the zero ideal of R is a o-compatible ideal.
Every o-rigid ring is a o-compatible ring, but the converse does not hold, in
general. Note that the class of quasi o-rigid rings and the class of o-compatible
rings do not depend on each other by Example 1.2(1) and the following example.

Example 3.3. We consider aring R={(4!) |a € Z, t € Q}, where Z and Q
are the set of all integers and all rational numbers, respectively. Let 0 : R — R
be an endomorphism defined by o ((§ 1)) = (& t{f). Note that for (J§) # 0,
we have (§3)(81)o((34)) =0for any a € Z and ¢t € Q. This yields that R is
not a quasi o-rigid ring. Now, we show that R is a o-compatible ring. Suppose
that AB=0for A= (8!), B=(};) € R. Then ab=0 and as+tb =0, and
soa=0orb=0. If a =0, then £ =0 and hence A = 0. Similarly, if b = 0,
then s = 0 and so B = 0, entailing that AB = 0 < Ao (B) = 0. Therefore R is

a o-compatible ring.
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A ring R is called semicommutative if ab = 0 implies aRb = 0 for a,b € R,
which every reduced ring is semicommutative. Notice that a ring is semicom-
mutative if and only if the zero ideal has the IFP, and so semicommutative
rings are also called IFP-rings. Recently, the concept of the semicommutativ-
ity of a ring is extended to an endomorphism of a ring. An endomorphism o
of a ring R is called semicommutative [2, Definition 2.1] if whenever ab = 0
for a,b € R, aRo(b) = 0; a ring R is called o-semicommutative if there exists
a semicommutative endomorphism o of R. The semicommutativity and the
o-semicommutativity of a ring are independent each other by [2, Example 2.3
and Example 2.7]. In a semicommutative ring, the quasi o-rigidness and the o-
rigidness of a ring coincide by Lemma 2.8. Moreover, for a o-semicommutative
ring we have the following:

Proposition 3.4. Let R be a o-semicommutative ring. The following are
equivalent:

(1) R is a o-rigid ring.

(2) R is a quasi o-rigid ring.

(3) R is a o-semiprime ring.

Proof. It is enough to show that (3)=(1). Assume that R is a o-semiprime
ring. Let ao(a) =0 for a € R. Then aRot(a) = 0 for any positive integer ¢ by
[2, Remark 2.2]. Thus a = 0 and therefore R is a o-rigid ring. O

Note that the ring R, in Example 3.3, is a o-semicommutative ring by the
same method as in [2, Example 2.5(1)]. Hence, any condition in Proposition 3.4
cannot be replaced by “R is a o-compatible ring”.

Corollary 3.5. If R is a semiprime and semicommutative ring, then R is a
reduced ring.

For an automorphism o of a ring R, the map & : R[z] — R]x] defined
by (31", aizt) = it o(a;)z’ is an automorphism of the polynomial ring
R[z] and clearly this map extends o. The ring of Laurent polynomials in z,
coefficients in a ring R, consists of all formal sums Y., m;z* with obvious
addition and multiplication, where m; € R and k,n are (possibly negative)
integers; denote it by R[z;z~!]. The map & : R[z,z~ '] — R[z,z!] defined
by (3, aix’) = Y°, o(a;)z’ extends o and is also an automorphism of
R[z,z71].

Proposition 3.6. For a ring R, the following are equivalent:
(1) R is a quasi o-rigid ring.
(2) R[x] is a quasi G-rigid ring.
(3) R[z,x71] is a quasi 5-rigid ring.
Proof. (1)<(2) Let R be a quasi o-rigid ring. Suppose that R[z] is not a quasi

g-rigid ring. Then there exists a nonzero polynomial f(z) = ap+aiz+- - -+a,z"
such that f(z)R[z]o(f(z)) = 0. We may assume that a, # 0. By simple



394 CHAN YONG HONG, NAM KYUN KIM, AND TAI KEUN KWAK

computation, we have a, Ro(a,) = 0. Since R is a quasi o-rigid ring, we obtain
a, = 0; which is a contradiction. Conversely, assume (2) and let aRo(a) =0
for a € R. Note that aR[z]6(a) = 0. Since R[z] is a quasi &-rigid ring, we have
a = 0. Hence, R is a quasi o-rigid ring. (1)<(3) can be proved by the similar
arguments above. (I

Note that I is a quasi o-rigid ideal of a ring R if and only if the factor ring
R/I is a quasi ¢-rigid ring by Proposition 2.3, where 6 : R/I — R/I is defined
by 6(a+1I) = o(a)+1I for a € R. The following example shows that there exists
a ring R with an automorphism o such that for any nonzero proper ideal I of
R, I is a o-rigid ideal and so R/I is a quasi g-rigid ring, but R is not a quasi
o-rigid ring. Moreover, the next example illuminates that the subring of a quasi
o-rigid ring need not be a quasi o-rigid ring, combining with Example 1.1(1).

Example 3.7. Let R = (£ L) where F is a field, and o be an endomorphism
of R defined by o ((g2)) = (270). For a = (3}) € R, aRo(a) = 0, but
a # 0, and so R is not a quasi o-rigid ring. For the only nonzero proper ideals
I=(EF), J= (%) and K = (§F) of R, it can be easily checked that I,.J
and K are o-rigid ideals, thus R/I, R/J and R/K are quasi &-rigid rings by
Proposition 2.3.

For an automorphism o of a ring R, the map & : Mat,(R) — Mat,(R)
defined by 7((ai;)) = (0(ai;)) is an automorphism of the n x n full matrix ring
Mat,, (R).

Theorem 3.8. For a ring R, the following are equivalent:
(1) R is a quasi o-rigid ring.
(2) Mat,(R) is a quasi G-rigid ring for any n > 2.
(3) Mat,,(R) is a quasi G-rigid ring for some n > 2.

Proof. (1)=(2) Let R be a quasi o-rigid ring and n > 2. Suppose that
AMat,(R)c(A) = 0 for A = (a;;) € Mat,(R). Let E;; denote the matrix
unit in Mat,, (R) with (4, j)-entry 1 and zero elsewhere. Then A(rE;;)a(A) =0
implies a;jro(a;;) = 0 for each 4,57 € {1,2,...,n} and any r € R. Hence,
a;jRo(a;;) = 0, entailing a;; = 0 since R is a quasi o-rigid ring. Therefore
A = 0, concluding that Mat, (R) is a quasi &-rigid ring. (2)=-(3) is obvious.
(3)=(1) Assume that Mat,,(R) is a quasi 7-rigid ring for n > 2. Let aRo(a) =0
fora € Rand A =a) ., E;; in Mat,(R). Then AMat, (R)5(A) = 0. Since
Mat,, (R) is a quasi &-rigid ring, we get A = 0, and hence a = 0, proving that
R is a quasi o-rigid ring. O

From Theorem 3.8, one may conjecture that the n x n upper triangular
matrix ring U, (R) over a quasi o-rigid ring R is quasi o-rigid for n > 2, but
the possibility is erased by the following.

Example 3.9. Let R be a ring with any endomorphism o. Let A = Ey,, €
Un(R), where E;; is the matrix unit in U, (R). Then AU,(R)c(A) = 0 (re-
gardless of o). Thus the n x n upper triangular matrix ring U, (R) over R is
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not a quasi g-rigid ring for any n > 2. Moreover, for a ring R and n > 2, let

a a1z 13 - QAin
0 a a3 - a
Sn(R) = 0 0 a - asm || a;j € R} and

0 0 0 -+ a

ay as asz G4 - 27

0 a1 ax az -+ ap—1

0 0 ay a2 cee Ap—2

Vn(R): . . . . . a17a27"')an€R
o o o o -- as
o o o o0 -- a1

By the same method, we conclude that S, (R) and V,,(R) are not a quasi g-rigid
ring for any n > 2. Since V,,(R) = R[z]/{(z™) by [19] where (z™) is an ideal of
Rx] generated by a™, R[z]/{z™) is not a quasi g-rigid ring for n > 2 either,
where o(f(x) + (z")) = o(f(z)) + (z") for f(z) € R[z].

For an automorphism ¢ and an idempotent e of a ring R such that o(e) = e,
the map & : eRe — eRe defined by &(ere) = eo(r)e is an automorphism of
eRe.

Proposition 3.10. For a ring R, assume that o(e) = e fore? =e € R. If R
is a quasi o-rigid ring, then eRe is a quasi &-rigid Ting.

Proof. For eae € eRe, suppose that eae(eRe)d(eae) = 0. Then
0 = eae(eRe)d(eae) = eae(eRe)ec(a)e = (eae)Ro(eae).
Since R is a quasi o-rigid ring, eae = 0 and so eRe is a quasi 7-rigid ring. [

The condition “o(e) = e for €2 = ¢ € R” in Proposition 3.10 cannot be
dropped by the following example.

Example 3.11. Consider the quasi o-rigid ring R = Mats(Z3) where o is
defined by o ((24)) = (% _db) as in Example 1.1(1). For an idempotent
e=(91)€R,o(e)#e. Leta=(99) € R. Theneae = (§3) # 0. But for any
r=(31) € R, eae(ere)a(eae) = eaerec(a)e = 0, and so eae(eRe)d(eae) = 0,
implying that eRe is not a quasi o-rigid ring.

Recall that an element u of a ring R is right reqular if ur = 0 implies 7 = 0
for r € R. Similarly, left regular elements can be defined. An element is regular
if it is both left and right regular (and hence not a zero divisor). A ring R is
called right (resp., left) Oreif given a,b € R with b regular there exist a;, b1 € R
with by regular such that ab; = bay (resp., bya = a1b). It is a well-known fact
that R is a right (resp., left) Ore ring if and only if the classical right (resp.,
left) quotient ring of R exists.
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Let o be an automorphism of a ring R. Suppose that there exists the classical
right quotient ring Q(R) of R. Then for any ab~! € Q(R) where a,b € R with
b regular, the induced map & : Q(R) — Q(R) defined by 5(ab~!) = o(a)o(b)~!
is also an automorphism. Note that the classical right quotient ring Q(R) of a
o-rigid ring R is d-rigid. Similarly, we have the following.

Proposition 3.12. Suppose that there exists the classical right quotient ring
Q(R) of a ring R. If R is a quasi o-rigid ring, then Q(R) is a quasi g-rigid
ring.

Proof. Suppose that ab~*Q(R)7(ab™!) = 0. Then 0 = ab~'Q(R)5(ab™!) =
aQ(R)o(a)o(b)~!, since b~ 1Q(R) = Q(R). This implies aQ(R)o(a) = 0, and
so aRo(a) = 0. Since R is a quasi o-rigid ring, we get ¢ = 0 and thus Q(R) is
a quasi o-rigid ring. O

4. Applications

Recall that a ring R is called Baer [15] if the right (left) annihilator of every
nonempty subset of R is generated by an idempotent; and a ring R is called
quasi-Baer [6] if the right annihilator of each right ideal of R is generated (as a
right ideal) by an idempotent. It is well-known that the (quasi-)Baerness of a
ring is left-right symmetric. A ring R is called a right (resp., left) p.p.-ring if the
right (resp., left) annihilator of an element of R is generated by an idempotent.
R is called a p.p.-ring if it is both a right and left p.p.-ring. From [4], a ring R
is called right (resp., left) principally quasi-Baer (or simply, right (resp., left)
p.q.-Baer) if the right (resp., left) annihilator of a principal right (resp., left)
ideal of R is generated by an idempotent. R is called a p.q.-Baer ring if it is
both right and left p.q.-Baer. The class of p.q.-Baer rings includes all biregular
rings, all (quasi-)Baer rings and all abelian (i.e., its idempotents are central)
p-p--rings. The extensions of Baer, quasi-Baer, p.q.-Baer and p.p.-rings have
been studied by many authors [2, 4, 6, 7, 8]. In [9], it was proved that for a
o-rigid ring R, a ring R is (quasi-)Baer if and only if R[x; 0, d] is a (quasi-)Baer
ring if and only if R[[z;0]] is a (quasi-)Baer ring; and R is a p.q.-Baer (resp.,
p.p--) ring if and only if R[z;0,d] is a p.q.-Baer (resp., p.p.-) ring. Moreover,
there exists a commutative von Neumann regular ring R (and so a p.q.-Baer
ring and a p.p.-ring), but R[[z;o]] is neither a p.q.-Baer ring nor a p.p.-ring
by [9, p. 225]. As parallel results to these, we have the following for a quasi
o-rigid ring.

Lemma 4.1. Let R be a quasi o-rigid ring.

(1) For any p(x) and q(x) in R[x;o,0] (resp., R[[z;0]]), p(x)R[x; 0, d)q(z) =
0 (resp., p(x)R|[[x;0]]q(x) = 0) if and only if aRb = 0 for all coefficients a, b
of p(x) and q(x), respectively.

(2) For e? = e € R[x;0,0] (resp., R|[x;0]]), if eR[z;0,0] (resp., eR[[x;0]])
is an ideal of Rlx;0,0] (resp., eR[[x;0]]), then e = eg where eg is the constant
term of e.
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Proof. (1) It follows from Theorem 2.6. (2) Now 1 —e = (1 —eg) — Y., e;x".
Since eR[z;0,d] is an ideal, we have (1 — e)R[x;0,dle C (1 — e)eR[x; 0, §]=0,
and so (1 — e)R[z;0,dle = 0. By (1), (1 —eg)Rep = 0 and e;Re; = 0 for
any 1 <4 < n. Since R is semiprime by Lemma 2.1, we have e; = 0 for any
1 < i < n. Therefore e = eg. O

The following example shows that the condition “eR[z;o,d] is an ideal of
R[z;0,0]” in Lemma 4.1(2) cannot be dropped.

Example 4.2. Consider the quasi o-rigid ring R = Maty(F) and the en-
domorphism o as in Example 1.1(1). Let e = (J1) + (33)z € R[z;0].
Then e¢* = e € R[z;o] and e € eR[z;0]. For r = (}9) € Rlz;0], re =
(38)+ (9¢)x ¢ eR[z; 0], since the constant term of any element of eR[z; o]
is of the form (%) where a,b € F. This implies that eR[z; 0] is not an ideal.
Note that e = (J 1)+ (3 $)x ¢ R.

For a nonempty subset S of a ring R, the right annihilator of S in R will be
by rr(S) ={c € R|dc=0 for any d € S}.

Proposition 4.3. Let R be a quasi o-rigid ring. The following are equivalent:
(1) R is a quasi-Baer ring.
(2) R[z;0,0] is a quasi-Baer ring.
(3) R|[[z;0]] is a quasi-Baer ring.

Proof. Without the assumption that R is quasi o-rigid, (1)=-(2) and (1)=(3)
were proved in [11, Theorem 1] and [5, Theorem 1.2] respectively. (2)=-(1)
Assume that R[z;0,0] is a quasi-Baer ring. Let J be an ideal of R. Then
TRlz:o,0](JR[; 0,0]) = eR[x; 0, 6] for some idempotent e € R, by Lemma 4.1(2).
Thus 7r(J) = TRiz0,6(JR[T;0,0]) N R = eR[z;0,0] N R = eR by Lemma
4.1(1). Therefore R is a quasi-Baer ring. (3)=(1) is also proved by the similar
arguments above. O

Observe that if R is a quasi o-rigid ring, then R is a right p.q.-Baer ring if
and only if R is a left p.q.-Baer ring since R is semiprime by [4, Corollary 1.11].

Theorem 4.4. Let R be a quasi o-rigid ring.

(1) R is a right p.q.-Baer ring if and only if R[x;0,0] is a right p.q.-Baer
Ting.

(2) If R[[x;0]] is a right p.q.-Baer ring, then R is a right p.q.-Baer ring.

Proof. (1) Assume that R is a right p.q.-Baer ring. For any principal right
ideal I = p(x)R]x;0,0] of R[x;0,0] where p(z) = ap + a1z + - -+ + ama™, we
take I = apR + - -+ + a., R as the finitely generated right ideal generated by
ag, .- ., am. Since R is right p.q.-Baer, rr(I*) = eR for some €? = e € R. Note
that e is central since R is semiprime. Then I*Re = 0, and so p(z)R[z; 0, d]e =
0 by Lemma 4.1(1). Hence, Ie = 0 and 5o € € T'gy;0,6)(1). Thus eR[x;0,6] C
TRlzso,s](1). Now we let q(z) = bo + b1z + -+ + b2™ € TRz (). Then
p(x)R[z;0,06]q(x) = 0 and thus by, b1, ...,b, € Tr(I*) = eR by Lemma 4.1(1).
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Hence there exist ¢, ¢y, ..., ¢, such that ¢(z) = eco + ec1z + -+ - + ecpa™ =
e(co + 1z + -+ cpa™) € eR[x;0,6]. Consequently, 7g(z0,5(I) = eR[z;0,0].
Therefore R[x;0,d] is right p.q.-Baer. The proofs of the converses of both (1)
and (2) follow the proof (2)=(1) of Proposition 4.3. O

Remark 4.5. (1) The condition “quasi-Baer rings” in Proposition 4.3 can nei-
ther be replaced by “Baer rings” nor “right p.p.-rings”: For example, let
R = Matz(Z). Then R is a Baer ring, but R[z] is not right p.p. by [9, Ex-
ample 10(2)]. Also R is a quasi o-rigid ring, but R[z; o] is neither Baer nor
right p.p., in case o is the identity endomorphism of R.

(2) There exists a quasi o-rigid and p.q.-Baer ring which is not quasi-Baer,
letting o be the identity endomorphism of R by [4, Lemma 1.4 and Example
1.5(1)].

(3) The converse of Theorem 4.4(2) does not hold by [9, p. 225].

(4) The condition “R is a quasi o-rigid ring” in Proposition 4.3 and Theo-
rem 4.4 is not superfluous by [9, Example 9.

From [9, Example 9], we see that there exists a semiprime ring R with
o(e) = e for any central idempotent e € R such that R[z;0,d] is p.q.-Baer, but
R is not quasi o-rigid. However, we have the following which is compared with
Proposition 3.2.

Proposition 4.6. Let R be a semiprime ring with o(e) = e for any central
idempotent e € R. If R is a Tight p.q.-Baer ring, then R is quasi o-Tigid.

Proof. Suppose that R is right p.q.-Baer and aRo(a) = 0 for a € R. Then
o(a) € rr(aR) = eR = o(eR) where e = €% € R is central since R is semiprime.
It follows that a € eR, entailing aRa = 0 and hence a = 0 since R is semiprime.
Therefore R is quasi o-rigid. O

The condition “o(e) = e for any central idempotent e € R” in Proposition 4.6
cannot be dropped. For the ring R = Zy ® Zs with an automorphism o in
Example 1.1(2), R is semiprime and right p.q.-Baer but not quasi o-rigid and

o(1,0) # (1,0).
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