PRIME RADICALS IN ORE EXTENSIONS

Juncheol Han

Abstract

Let R be a ring with an endomorphism σ and a derivation δ An ideal I of R is (σ, δ)-ideal of R if $\sigma(I) \subseteq I$ and $\delta(I) \subseteq I$. An ideal P of R is a (σ, δ)-prime ideal of R if $P(\neq R)$ is a (σ, δ)-ideal and for (σ, δ)-ideals I and J of $R, I J \subseteq P$ imphes that $I \subseteq P$ or J $\subseteq P$. An ideal Q of R is (σ, δ)-semiprime ideal of R if Q is a (σ, δ) 1deal and for (σ, δ)-1deal I of $R, I^{2} \subseteq Q$ implies that $I \subseteq Q$ The (σ, δ)-prime radical (resp prime radical) is defined by the intersection of all (σ, δ)-prime ideals (resp prime ideals) of R and is denoted by $P_{(\sigma, \delta)}(R)$ (resp $P(R)$) In this paper, the following results are obtaned (1) $P_{(\sigma, \delta)}(R)$ is the smallest (σ, δ)-semiprime ideal of R_{t} (2) For every extended endomorphism $\bar{\sigma}$ of σ, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x, \sigma, \delta])$ is equal to $P_{(\sigma, \delta)}(R)[x, \sigma, \delta]$

1. Introduction and Some Definitions

Throughout this paper, R will denote an associative rmg with identity. A skew derivation on a ring R is a pair (σ, δ) where σ is a ring endomorphism of R and δ is a (left) σ-derivation on R, that is, an additive map from R to itself shch that $\delta(a b)=\sigma(a) \delta(b)+\delta(a) b$ for all $a, b \in R$. A left (right, two-sided) ideal I of R is called a left (right, two-sided) (σ, δ)-2deal if $\sigma(I) \subseteq I$ and $\delta(I) \subseteq I$ An ideal P of R is called (σ, δ)-prame adeal if $P(\neq R)$ is a (σ, δ)-ideal and for (σ, δ)-ideals I, J of $R, I J \subseteq P$ implies that $I \subseteq P$ or $J \subseteq P$ An ideal Q of R is called (σ, δ)-semiprime ideal if Q is a (σ, δ)-ideal of R) and for

[^0]any (σ, δ)-ideal I of $R, I^{2} \subseteq Q$ implies that $I \subseteq Q . R$ is called a (σ, δ)-prime (resp. (σ, δ)-semiprime) ring if (0) is a (σ, δ)-prime (resp. (σ, δ)-semiprime) ideal. For more things about these terminologies, we refer to [3], [4] and [6]. In particular, in [2], Goodearl has provided a criterion for (σ, δ) being a skew derivation on R, which enables us to construct easily many examples of skew derivations. Note that every (σ, δ)-prime ideal of R is (σ, δ)-semiprime ideal, and every prime (resp. semiprime) ring is (σ, δ)-prime (resp. (σ, δ)-semiprime).

Recall that the prime radical (in other words, lower nil radical) of R (denoted by $P(R)$) is the intersection of all prime ideals of R. We can define (σ, δ)-prime radical (in other words, (σ, δ)-lower nil radical) of R (denoted by $P_{(\sigma, \delta)}(R)$) by the intersection of all (σ, δ)-prime ideals of R. In Section 2, we will investigate some properties of $P_{(\sigma, \delta)}(R)$, in particular, we will show that $P_{(\sigma, \delta)}(R)$ is the smallest. (σ, δ)-semiprime ideal of R.

Example 1. Let $R=F[x]$ be a polynomial ring over a field F, let $P=x F[x]$ be an ideal of R generated by x and let $\delta=\frac{d}{d x}$ be the formal differential on R. Then P is a prime ideal of R but $\delta(P) \nsubseteq P$, and so P is not a (σ, δ)-prime ideal of R for any skew derivation $(\sigma$, δ) of R.

ExAmple 2. Let $R=F[x]$ be a polynomial ring over a field F, let $P=x F[x]$ be an ideal of R generated by x (as given in Example 1). Let $\delta_{1}=x \frac{d}{d x}$ be a derivation. Consider an ring endomorphism $\sigma: R$ $\longrightarrow R$ by $\sigma(f(x))=f(-x)$ for all $f(x) \in R$. Then P is a prime ideal of R and $\delta(P) \subseteq P$, and also P is a (σ, δ)-ideal of R.

Recall that for a skew derivation of R, Ore extensions (skew polynomial rings) $P(R[x ; \sigma, \delta])$ are rings of polynomials in x with coefficients in R in which the multiphcation is given by $x a=\sigma(a) x+\delta(a)$ for all $a \in R$. In particular, if $\sigma=1$, then $P(R[x ; \sigma, \delta])$ is simply denoted by $P(R[x ; \delta])$ (called differential polynomial ring). In [4], Irving has worked on prime ideals of Ore extensions over commutative rings, in [2], Goodearl has analyzed prime ideals of Ore extension over R in case that R is commutative noetherian ring). In [1], Ferrero, Kishimoto and Motose have shown that for a differential polynomial ring
$R[x ; \delta]$, the prime radical of $R[x ; \delta]$ is equal to $P_{\delta}[x ; \delta]$ where P_{δ} is the δ-prime radical of R (which is the intersection of all δ-prime ideals of R). From the previous works on Ore extension, It is natural for us to try to find the prime radical of Ore extension. In Section 3, by considering an extended endomorphism $\bar{\sigma}$ of σ we will show that for every extended endomorphism $\bar{\sigma}$ of σ, R is a (σ, δ)-semiprime ring if and only if $P(R[x ; \sigma, \delta])$ is a $\bar{\sigma}$-semiprime ring, and the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x ; \sigma, \delta])$ is equal to $P_{(\sigma, \delta)}(R)[x ; \sigma, \delta]$, as corollary we can improve the result shown by Ferrero, Kishimoto and Motose; $P(R[x ; \delta])=P_{(\delta)}(R)[x ; \delta]$.

2. σ-Prime Radical of a Ring R

The definitions and the resluts in this section are obtained by the similar arguments on prime radical of ring R in [5]. A nonempty subset S of a ring R is called a (σ, δ)-m-system if, for any $a, b \in S$ such that (a) and (b) are (σ, δ)-ideals of R, there exists $r \in R$ such that arb $\in S$.

Lemma 2.1. Let R be a ring with an automorphusm σ and a dervation δ. Then $\sigma(a), \delta(a) \in(a)$ of and only of (a) is a principal $(\sigma$, $\delta)$-adeal of R.

Proof Suppose that $\sigma(a), \delta(a) \in(a)$ and let $b \in(a)$ be arbitrary Then $b=\sum_{z=1}^{m} r_{\imath} a s_{\imath} \in(a)$ for some $r_{\imath}, s_{\imath} \in R(\imath=1, \ldots, m)$. Since $\sigma(a) \in(a), \sigma\left(r_{2} a s_{i}\right)=\sigma\left(r_{2}\right) \sigma(a) \sigma\left(s_{i}\right) \in(a)$ for each i, and then $\sigma(b) \in$ (a). Since $\delta(a) \in(a), \delta\left(r_{2} a s_{\imath}\right)=\delta\left(r_{2}\right) a s_{2}+r_{2} \delta(a) s_{2}+r_{2} a \delta\left(s_{2}\right) \in(a)$ for each τ, and then $\delta(b) \in(a)$. Hence (a) is a ($\sigma, \delta)$-ideal of R. The converse is clear.

Proposition 2 2. Let R be a ring with an automorphism σ and a dervation δ. If $P \subsetneq R$ as any (σ, δ)-vdeal of R, then the following are equivalent:
(1) P is (σ, δ)-prome;
(2) For any $a, b \in R$ such that (a) and (b) are (σ, δ)-2deals of R, $(a) \cdot(b) \subseteq P$ implues that $a \in P$ or $b \in P$.
(3) For any $a, b \in R$ such that (a) and (b) are (σ, δ)-zdeals of R, $a R b \subseteq P$ implues that $a \in P$ or $b \in P$.
(4) For left (σ, δ)-zdeals I, J of $R, I J \subseteq P$ implies that $I \subseteq P$ or $J \subseteq P$.
(5) For right (σ, δ)-ıdeals I, J of $R, I J \subseteq P$ implues that $I \subseteq P$ or $J \subseteq P$.

Proof. It is enough to show that $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1)$.
(1) \Rightarrow (2): Clear.
(2) \Rightarrow (3): If $a R b \subseteq P$ such that (a) and (b) are (σ, δ)-ideals of R, then $(a) \cdot(b)=R a R R b R \subseteq R P R=P$. By (2), $a \in P$ or $b \in P$.
(3) \Rightarrow (4): Assume that there exist two left (σ, δ)-ideals I, J of R such that $I \cdot J \subseteq P$ but $I \nsubseteq P, J \nsubseteq P$. Choose $a \in I \backslash P$ and $b \in J \backslash P$. Then $a R b \subseteq I J \subseteq P$. By (3), $a \in P$ or $b \in P$, a contradiction.
(4) \Rightarrow (1): Clear.

Corollary 2.3 Let R be a ring with an automorphism σ and a derivation δ. Then P is a (σ, δ)-prime-ıdeal of R if and only of $R \backslash P$ us a (σ, δ) - m-system.

Proof. It follows from the definition of (σ, δ)-m-system and Proposition 2.2 .

Proposition 2.4. Let R be a ring with an automorphism σ and a dervation δ and let $S \subseteq R$ be a ($\sigma, \delta)$-m-system which is disjoint from a (σ, δ)-ideal I of R. Then there exsts a (σ, δ)-adeal P which is maximal in the set of all (σ, δ)-2deals of R disjoint from S and containing I. Furthermore any such adeal P is a (σ, δ)-prime adeal of R.

Proof. Consider the set $\Gamma_{(\sigma, \delta)}$ of all ($\left.\sigma, \delta\right)$-ideals of R disjoint from S and containing I. Then $\Gamma_{(\sigma, \delta)}$ is nonempty since $I \in \Gamma_{(\sigma, \delta)}$. Since $\Gamma_{\langle\sigma, \delta)} \neq \emptyset$, every (σ, δ)-ideal in $\Gamma_{(\sigma, \delta)}$ is properly contained in R. Let $\Gamma_{(\sigma, \delta)}$ be partially ordered by inclusion. By Zorn's Lemma there is a (σ, δ)-deal P of R which is maximal in $\Gamma_{(\sigma, \delta)}$. Let U, V be (σ, δ)-ideals of R such that $U V \subseteq P$. If $U \nsubseteq P$ and $V \nsubseteq P$. then each of the (σ, δ)-ideals $P+U$ and $P+V$ properly contains P and hence must meet S. Consequently, for some $p_{1}, p_{2} \in P, u \in U, v \in V, p_{1}+u=s_{1}$ $\in S$ and $p_{2}+v=s_{2} \in S$. Since S is a ($\left.\sigma, \delta\right)$-m-system, there exists
an element $r \in R$ such that $s_{1} r s_{2} \in S$. Thus $s_{1} r s_{2}=p_{1} r p_{2}+p_{1} r v+$ $u r p_{2}+u r v \in P+U V \subseteq P$, a contradiction since $s_{1} r s_{2} \in S \cap P=\emptyset$. Therefore $U \subseteq P$ or $V \subseteq P$, and so P is a (σ, δ) - prime ideal of R.

For a (σ, δ)-ideal I in a ring R with an automorphism σ and a derivation δ, let $P_{(\sigma, \delta)}(R: I)=\{r \in R$: every σ-m-system containing r meets I \}. Then we have the following theorem:

Theorem 2.5. Let R be a ring with an automorphism σ and a derivation δ. Then for any (σ, δ)-ıdeal I in a ring $R, P_{(\sigma, \delta)}(R: I)$ equals to the intersection of all the (σ, δ)-prime udeals containing I. In particular, $P_{(\sigma, \delta)}(R: I)$ is a (σ, δ)-ideal of R.

Proof. Let $a \in P_{(\sigma, \delta)}(R: I)$ and P be any (σ, δ)-prime ideal of R containing I. Then $R \backslash P$ is a (σ, δ)-m-system by Corollary 2.3 This (σ, δ)-m-system cannot contain a, for otherwise $(R \backslash P) \cap I \neq \emptyset$, a contradiction Therefore, we have $a \in P$. Conversely, assume that a $\notin P_{(\sigma, \delta)}(R: I)$. Then by definition, there exists a (σ, δ)-m-system S containing a which is disjoint from I. By Proposition 2.4, there exists a (σ, δ)-prime-ideal P which is maximal in the set of all (σ, δ)-ideals of R disjoint from S and containing I. Hence we have $a \notin P$, as desired.

A nonempty subset S of a ring R is called a (σ, δ)-n-system if, for any $a \in S$ such that (a) is ($\sigma, \delta)$-ideal of R there exists $r \in R$ such that $a r a \in S$.

Proposition 2.6. Let R be a ring with an automorphusm σ and a derivation δ. For any (σ, δ)-ideal Q of R, the follownng are equivalent:
(1) Q is (σ, δ)-semiprime;
(2) For any $a \in R$ such that (a) is (σ, δ)-adeal of $R,(a)^{2} \subseteq Q$ implues that $a \in Q$;
(3) For any $a \in R$ such that (a) $s s(\sigma, \delta)$-ideal of $R, a R a \subseteq Q$ implues that $a \in Q$;
(4) For left (σ, δ)-2deals I of $R, I^{2} \subseteq Q$ implues that $I \subseteq Q$;
(5) For right (σ, δ)-ideals I of $R, I^{2} \subseteq Q$ implues that $I \subseteq Q$.

Proof It is similar to the proof as given in the Proposition 2.2.

COROLLARY 2.7. Let R be a ring with an automorphism σ and a dervation δ. Then P is a (σ, δ)-semiprime-ideal of R if and only if $R \backslash P$ is a (σ, δ)-n-system.

Proof. It follows from the definition of (σ, δ)-n-system and Proposition 2.6.

Lemma 2.8. Let R be a ring with an automorphism σ and a dervoation δ. If N is a (σ, δ)-n-system in R and $a \in N$, then there exusts a (σ, δ)-m-system $M \subseteq N$ such that $a \in M$.

Proof. Consider a subset $M=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ of R defined inductivley as follows: $a_{1}=a, a_{i+1}=a_{2} r_{\imath} a_{\imath} \in N$ for some $r_{2} \in R$ where $i=1,2, \ldots$. We will show that M is a (σ, δ)-m-system. Let a_{2}, $a_{3} \in M$ be arbitrary. If $\imath<\jmath+1$, then $a_{3+1} \in a_{3} R a_{3} \subseteq a_{2} R a_{3}$, which means $a_{3+1} \in M$. If $j<\imath+1$, then similarly $a_{2+1} \in M$. Hence there is a (σ, δ)-m-system $M \subseteq N$ such that $a \in M$.

Theorem 2.9. Let R be a ring with an automorphism σ and a dervation δ. For any (σ, δ)-ideal Q of R, the following are equivalent:
(1) Q is a (σ, δ)-semıprıme adeal;
(2) Q is an intersection of (σ, δ)-prome 2deals;
(3) $Q=P_{(\sigma, \delta)}(R: Q)$.

Proof. (3) \Rightarrow (2). It follows from Theorem 2.5 since any (σ, δ)prime ideal is (σ, δ)-semiprime.
$(2) \Rightarrow(1)$. It follows from the observation that every (σ, δ)-prime ideal is (σ, δ)-semiprime and the intersection of any (σ, δ)-semiprime ideals is (σ, δ)-semiprime
(1) \Rightarrow (3). Suppose that Q is a (σ, δ)-semiprime ideal. By definition of (σ, δ)-n-system, $Q \subseteq P_{(\sigma, \delta)}(R: Q)$. We want to show that $P_{(\sigma, \delta)}(R$: $Q) \subseteq Q$. Let $a \notin Q$ and let $N=R \backslash Q$. Then N is a (σ, δ)-n-system containing a by Corollary 2.7. By Lemma 2.8, there exists a (σ, δ)m -system $M \subseteq N$ such that $a \in M$. Since M is disjoint from $Q, a \notin$ $P_{(\sigma, \delta)}(R: Q)$.

Corollary 2.10. Let R be a ring with an automorphism σ and a derivation δ. Then $P_{(\sigma, \delta)}(R: I)$ is the smallest (σ, δ)-semıprime ideal of R whuch contains I.

Proof. If follows from the Theorem 2.9.

For a ring R with an automophism σ and a derivation $\delta, P_{(\sigma, \delta)}(R$: (0)) (simply denoted by $P_{(\sigma, \delta)}(R)$). is called the ($\left.\sigma, \delta\right)$-prime-radical of R. We can note that $P_{(\sigma, \delta)}(R)$ is the intersection of all (σ, δ)-prime ideals of R by Theorem 2.9 and it is the smallest (σ, δ)-semiprime ideal of R by Corollary 210 .

Proposimion 2.11. Let R be a ring with an automorphism σ and a dervation δ. Then the followng are equivalent:
(1) R is a (σ, δ)-semıprome rong;
(2) $P_{(\sigma, \delta)}(R)=(0)$;
(3) R has no nonzero nulpotent (σ, δ)-ideal;
(4) R has no nonzero nulpotent left (σ, δ)-ideal.

Proof. (1) $\Leftrightarrow(2),(4) \Rightarrow(3)$ and $(3) \Rightarrow(1)$ are clear. It remains to show the implication (1) $\Rightarrow(4)$. Suppose that R is a (σ, δ)-semiprime ring and let I be a nilpotent left (σ, δ)-ideal. Then $I^{n}=(0)$ and I^{n-1} $\neq(0)$ for some positive integer n. If $n \geqslant 2$, then $\left(I^{n-1}\right)^{2}=I^{2 n-2} \subseteq I^{2 n}$ $=(0)$ implies $I^{n-1}=(0)$ since R is (σ, δ)-semiprime, a contradiction Thus $n=1$ and so $I=(0)$.

3. Prime radicals of Ore Extensions

For a ring R with a (left) skew derivation (σ, δ), there exist an automomorphism and a derivation which extend σ and δ respectively. For example, consider $\bar{\sigma}$ and $\bar{\delta}$ on $A=R[x ; \sigma, \delta]$ defined by $\bar{\sigma}(f(x))$ $=\sigma\left(a_{0}\right)+\sigma\left(a_{1}\right) x+\cdots+\sigma\left(a_{n}\right) x^{n}$ and $\bar{\delta}(f(x))=x f(x)-f(x) x=$ $\delta\left(a_{0}\right)+\delta\left(a_{1}\right) x+\cdots+\delta\left(a_{n}\right) x^{n}$ for all $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ $\in A$. Then $\bar{\sigma}$ is automorphism on A and $\bar{\delta}$ is a derivation on A, and also $\bar{\sigma}(r)=\sigma(r), \bar{\delta}(r)=\delta(r)$ for all $r \in R$, which means that $\bar{\sigma}$ (resp $\bar{\delta}$) is an extensions of σ (resp. δ) We call such an automorphism $\bar{\sigma}$
(resp. derivation $\bar{\delta}$) on A an extended automorphism of σ (resp. an extended dervation of δ). It is natural to determine whether ($\bar{\sigma}, \bar{\delta}$) is a skew derivation on A or not.

Lemma 3.1. Let R be a ring with a (left) skew derivation (σ, δ). If $\sigma \delta=\delta \sigma$, then $(\bar{\sigma}, \bar{\delta})$ is a skew dervation on $A=R[x ; \sigma, \delta]$ i.e., $\bar{\sigma}, \bar{\delta}$ satrsfies the following; (1) $\bar{\sigma}(f g)=\bar{\sigma}(f) \bar{\sigma}(g)$, (2) $\bar{\delta}(f g)=\bar{\sigma}(f) \bar{\delta}(g)+$ $\bar{\delta}(f) g$ for all $f, g \in A$.

Proof. (1) Let $f=\sum_{\jmath=0}^{m} a_{3} x^{3}, g=\sum_{k=0}^{n} b_{k} x^{k} \in A$ be arbitrary. Then $f g=\sum_{j=0}^{m} \sum_{k=0}^{n} a_{\jmath} x^{\jmath} b_{k} x^{k}$. Since $\bar{\sigma}(f g)=\sum_{\jmath=0}^{m} \sum_{k=0}^{n} \bar{\sigma}\left(a_{\jmath} x^{\jmath} b_{k} x^{k}\right)$, it is enough to show that $\bar{\sigma}\left(a_{3} x^{j} b_{k} x^{k}\right)=\sigma\left(a_{j}\right) x^{3} \sigma\left(b_{k}\right) x^{k}$. $\bar{\sigma}\left(a_{\jmath} x^{\jmath} b_{k} x^{k}\right)=\bar{\sigma}\left(a_{j} \sum_{\imath=0}^{j}\binom{\jmath}{2} \sigma^{2} \delta^{\jmath-\imath} b_{k} x^{2}\right) x^{k}=\sigma\left(a_{j}\right) \sum_{\imath=0}^{j}\binom{j}{{ }_{2}} \sigma\left(\sigma^{2} \delta^{3-2} b_{k}\right) x^{2+k}$ $=\sigma\left(a_{\jmath}\right) \sum_{i=0}^{\jmath}\binom{3}{2} \sigma \sigma^{1} \delta^{j-2} \sigma\left(b_{k}\right) x^{2+k}=\sigma\left(a_{3}\right) x^{3} \sigma\left(b_{k}\right) x^{k}$.
(2) It is also enough to show that $\bar{\delta}\left(a_{j} x^{\jmath} b_{k} x^{k}\right)=\sigma\left(a_{j}\right) x^{\jmath} \delta\left(b_{k}\right) x^{k}+$ $\delta\left(a_{\jmath}\right) x^{\jmath} b_{k} x^{k}$ as in the proof of (1).
$\bar{\delta}\left(a_{\jmath} x^{\jmath} b_{k} x^{k}\right)=\bar{\delta}\left(a_{3} \sum_{\imath=0}^{\jmath}\binom{3}{2} \sigma^{2} \delta^{\jmath-\imath} b_{k} x^{2+k}\right)=\sum_{z=0}^{\jmath}\binom{3}{2} \delta\left(a_{2} \sigma^{2} \delta^{\jmath-i} b_{k}\right) x^{2+k}$ $=\sum_{\imath=0}^{j}\binom{3}{\imath}\left[\sigma\left(a_{j}\right) \delta\left(\sigma^{2} \delta^{j-\imath}\left(b_{k}\right)+\delta\left(a_{j}\right) \sigma^{2} \delta^{j-2}\left(b_{k}\right)\right] x^{\imath+k}\right.$
$=\sigma\left(a_{j}\right) \sum_{r=0}^{j}\binom{\jmath}{z} \sigma^{2} \delta^{j-\imath}\left(\delta\left(a_{j}\right)\right) x^{2+k}+\delta\left(a_{j}\right) \sum_{\imath=0}^{\jmath} \sigma^{\imath} \delta^{j-2}\left(b_{k}\right) x^{2+k}$
$=\sigma\left(a_{j}\right) x^{\jmath} \delta\left(b_{k}\right) x^{k}+\delta\left(a_{\jmath}\right) x^{\jmath} b_{k} x^{k}$.
We call ($\bar{\sigma}, \bar{\delta}$) an extended skew derivation on an Ore extension $R[x ; \sigma, \delta]$.

If J is an ideal of $R[x ; \sigma, \delta]$, we denote by J_{0} the set of all leading coefficients of all $f \in J$.

Lemma 3.2. Let R be a ring with a (left) skew derivation (σ, δ) such that $\sigma \delta=\delta \sigma$. Let $A=R / x ; \sigma, \delta]$. Then
(1) If J is a $\bar{\sigma}$-vdeal of A, then J is a $\bar{\delta}$-vdeal of A.
(2) If J is a $\bar{\sigma}$-ideal of A, then J_{0} is a (σ, δ)-ıdeal of R.
(3) If J is a $\bar{\sigma}$-ideal of A, then $J \cap R$ is a ($\sigma, \delta)$-ıdeal of R.
(4) If I is a (σ, δ)-ıdeal of R, then $I A$ is a $\bar{\sigma}-2 d e a l$ of A.
(5) If P is a $\bar{\sigma}$-prime ıdeal of A, then $P \cap R$ is a (σ, δ)-prime ideal of R.
(6) If Q is a ($\sigma, \delta)$-prime ideal of R, then $Q A$ is a $\bar{\sigma}$-prome ideal of A.

Proof. (1) Let J be a $\bar{\sigma}$-ideal of A. Then for any $f \in J, x f-\vec{\sigma}(f x)$ $=\bar{\delta}(f) \in J$, and so J is a $\bar{\delta}$-ideal of A.
(2) Let J be a $\bar{\sigma}$-ideal of A. For any $f \in J$, let $f=a_{n} x^{n}+\{$ terms of lower degrees $\}$ where $a_{n} \in J_{0}$. Consider $x f$ and $x f-\bar{\sigma}(f x) \in J$. Then $x f=a\left(a_{n} x^{n}+\{\right.$ terms of lower degrees $\left.\}\right)=\sigma\left(a_{n}\right) x^{n+1}+\{$ terms of lower degrees $\}$, and $x f-\bar{\sigma}(f x)=\bar{\delta}(f)$, and so $\sigma\left(a_{n}\right), \delta\left(a_{n}\right) \in J_{0}$. Hence J_{0} is a (σ, δ)-ideal of R.
(3) Let J be a $\bar{\sigma}$-ideal of A. Clearly $J \cap R$ is an ideal of R. Let $a \in$ $J \cap R$ be axbitrary. Then $\bar{\sigma}(a)=\sigma(a), x a-\bar{\sigma}(a x)=\delta(a) \in J \cap R$, and so $\bar{J} \cap R$ is (σ, δ)-ideal of R.
(4) Clear.
(5) Suppose that P is a $\bar{\sigma}$-prime ideal of A. Let I, J be (σ, δ)-ideals of R such that $I J \subseteq P \cap R$. Since $I A, J A$ are $\bar{\sigma}$-ideals of A by (4), $(I A)(J A) \subseteq(I J) A \subseteq(P \cap R) A \subseteq P A \subseteq P$. Since P is a $\bar{\sigma}$-prime ideal of $A, I A \subseteq P$ or $J A \subseteq P$, say $I A \subseteq P$. Hence $I \subseteq(I A) \cap R \subseteq$ $P \cap R$, and so $P \cap R$ is a (σ, δ)-prime ideal of R.
(6) Suppose that Q is a (σ, δ)-prime ideal of R. Let S, T be $\bar{\sigma}$-ideals of A such that $S T \subseteq Q A, Q A \subseteq S$ and $Q A \subseteq T$. Then S_{0} and T_{0} are (σ, δ)-ideals of R and $S_{0} T_{0} \subseteq(Q A)_{0}=Q$. Since Q is a (σ, δ)-prime ideal of $R, S_{0} \subseteq Q$ or $T_{0} \subseteq Q$, say $S_{0} \subseteq Q$. Let $\sum_{n=0}^{n} a_{\imath} x^{\imath} \in S$. Then $a_{n} \in J_{0} \subseteq Q$ so that $a_{n} x^{n} \in Q A \subseteq S_{0}$. Thus $\sum_{i=0}^{n-1} a_{\imath} x^{2} \in S$, and then $a_{n-1} \in S_{0} \subseteq Q$ Contmuing in this way, we have $a_{\imath} \in Q$ for all ε, and so $S \subseteq Q A$.

Proposition 3.3. Let R be a mng with a (left) skew dervation (σ, ס) such that $\sigma \delta=\delta \sigma$. Let $A=R[x ; \sigma, \delta]$ Then the following are equivalent:
(1) R ıs (σ, δ)-semıprıme;
(2) A is $\bar{\sigma}$-semiprime for every extended endomorphism $\bar{\sigma}$ on A of σ.

Proof. (1) \Rightarrow (2). Suppose that R is (σ, δ)-semiprime. Let J be a $\bar{\sigma}$-ideal of A such that $J^{2}=0$. Consider J_{0}, the set of all leading coefficients of every $f(x) \in J$. Then J_{0} is a (σ, δ)-ideal of R by Lemma 3.2 Since $J^{2}=0, J_{0}^{2}=0$, and so $J_{0}=0$ by the assumption. Continuing
in this way, every coefficient of $f(x)$ is equal to 0 for all $f(x) \in J$. Thus $J=0$, and so A is $\bar{\sigma}$-semiprime.
(2) \Rightarrow (1). Suppose that A is $\bar{\sigma}$-semiprime. Let I be a nonzero (σ, δ)-ideal of R. Then $I A$ is a nonzero $\bar{\sigma}$-ideal of A by Lemma 3.2. Since A is $\bar{\sigma}$-semiprime, $(I A)^{2}=I^{2} A \neq 0$, and then $I^{2} \neq 0$. Hence R is $(\sigma$, δ)-semiprime.

For any (σ, δ)-ideal I of a ring R with a skew derivation (σ, δ), we can have a reduced endomorphism σ^{\prime} and a reduced derivation δ^{\prime} on R / I defined by $\sigma^{\prime}(a+I)=\sigma(a)+I$ and $\delta^{\prime}(a+I)=\delta(a)+$ I for all $a+I \in R / I$. It is also natural to determine whether (σ^{\prime}, δ^{\prime}) is a skew derivation on R / I or not Observe that if $\sigma \delta=\delta \sigma$, then $\left(\sigma^{\prime}, \delta^{\prime}\right)$ is a skew derivation on R / I i.e., $\left(\sigma^{\prime}, \delta^{\prime}\right)$ satisfies the following; (1) $\sigma^{\prime}(\bar{a} \bar{b})=\sigma^{\prime}(\bar{a}) \sigma^{\prime}(\bar{b}),(2) \delta^{\prime}(\bar{a} \bar{b})=\bar{\sigma}(f) \bar{\delta}(g)+\bar{\delta}(f) g$ for all $\bar{a}=a+I, \bar{b}=b+I \in R / I$ We call $\left(\sigma^{\prime}, \delta^{\prime}\right)$ a reduced skew derivation on R / I. Hence we can consider an Ore extension $(R / I)\left[x ; \sigma^{\prime}, \delta^{\prime}\right]$ with multiplication subject to the relation $x \bar{a}=\sigma^{\prime}(\bar{a}) x+\delta^{\prime}(\bar{a})$ for all $\bar{a}=$ $a+I \in R / I$. Observe that for any ideal K of R such that $R \supseteq K \supseteq I$. Then K is a (σ, δ)-ideal of R if and only if K / I is a σ^{\prime}-ideal of R / I.

Lemma 3.4 Let R be a ring with a (left) skew derivation (σ, δ) such that $\sigma \delta=\delta \sigma$. Let K, I be adeals of R such that $R \supseteq K \supseteq I$ Then K ıs a (σ, δ)-ıdeal of R if and only ıf K / I ıs a ($\left.\sigma^{\prime}, \delta^{\prime}\right)$-ıdeal of R / I.

Proof. It follows from the definition of a reduced skew derivation $\left(\sigma^{\prime}, \delta^{\prime}\right)$.

LEMMA 3 5. Let R be a ring with a (left) skew dervation (σ, δ) such that $\sigma \delta=\delta \sigma$. Let I be an ideal of R. Then I is a (σ, δ)-semiprime ideal of R if and only $\imath f / I$ is a $\left(\sigma^{\prime}, \delta^{\prime}\right)$-semiprime ring.

Proof. (\Rightarrow) Suppose that I is a (σ, δ)-semiprime ideal of R. If K / I is any $\left(\sigma^{\prime}, \delta^{\prime}\right)$-ideal of R / I such that $(K / I)^{2}=(\overline{0})$, the zero ideal of R / Y. Then $K^{2}=I$. By Lemma $3.4, K$ is (σ, δ)-ideal of R. Since I is a (σ, δ)-semiprime ideal, $K=I$ and so $K / I=(\overline{0})$, which means that
R / I is a $\left(\sigma^{\prime}, \delta^{\prime}\right)$-semiprime ring. Hence R / I is a $\left(\sigma^{\prime}, \delta^{\prime}\right)$-semiprime ring.
(\Leftarrow) Suppose that R / I is a $\left(\sigma^{\prime}, \delta^{\prime}\right)$-semiprime ring. If Q is any (σ, δ)-ideal of R such that $Q^{2} \subseteq I$, then $(\overrightarrow{0})=Q^{2} / I=(Q / I)^{2}$. Since R / I is a $\left(\sigma^{\prime}, \delta^{\prime}\right)$-semiprime ring, $Q / I=(\overline{0})$, so $Q=I \subseteq I$ Hence I is a $(\sigma$, δ)-semiprime ideal of R and so I is a (σ, δ)-semiprime ideal of R.

LEMMA 3.6. Let R be a ring with a (left) skew derivation (σ, δ) such that $\sigma \delta=\delta \sigma$. Let I be a (σ, δ)-ıdeal of R. Then for such a reduced skew derivation $\left(\sigma^{\prime}, \delta^{\prime}\right)$ on $R / I, R[x ; \sigma, \delta] / I[x ; \sigma, \delta] \simeq(R / I)\left[x ; \sigma^{\prime}\right.$, $\left.\delta^{\prime}\right]$.

Proof. Define $\theta: R[x ; \sigma, \delta] \rightarrow(R / I)\left[x ; \sigma^{\prime}, \delta^{\prime}\right]$ by $\theta(f(x))=$ $\sum_{i=0}^{n}\left(\overline{a_{i}}\right) x^{2}$ for all $f(x)=\sum_{2=m}^{n} a_{2} x^{2} \in R[x ; \sigma, \delta]$. It is straightforward to show that θ is an epimorphism and the kernel of θ is equal to $I[x$; $\sigma, \delta]$. Hence we have the result by the First Homomorphism Theorem

THEOREM 3 7. Let R be a ring with a (lefl) skew dervation (σ, δ) such that $\sigma \delta=\delta \sigma$. Then $P_{\bar{\sigma}}(R[x ; \sigma, \delta])=P_{(\sigma, \delta)}(R)[x, \sigma, \delta]$.

Proof. Let $I=P_{(\sigma, \delta)}(R)$. Then I is the smallest (σ, δ)-semiprime ideal of R by Corollary 2.10 and then R / I is $\left(\sigma^{\prime}, \delta^{\prime}\right)$-semiprime by Lemma 3.5 Thus $(R / I)\left[x ; \sigma^{\prime}, \delta^{\prime}\right]$ is $\left(\overline{\sigma^{\prime}}\right)$-semprime by Proposition 3.3. Since $\left(\overline{\sigma^{\prime}}\right)=(\bar{\sigma})^{\prime}, I[x ; \sigma, \delta]$ is a $\bar{\sigma}$-semiprime ideal of $R[x ; \sigma$, $\delta]$. Hence we have $I\left[[x ; \sigma, \delta] \supseteq P_{\bar{\sigma}}(R[x, \sigma, \delta])\right.$. To show the converse inclusion $I[x ; \sigma, \delta] \subseteq P_{\bar{\sigma}}(R[x ; \sigma, \delta])$, let P be any $\bar{\sigma}$-prime ideal of $R[x$; $\sigma, \delta]$ Then $P \cap R$ is a (σ, δ)-prime ideal of R by Lemma 3.2. Since P $\cap R$ is a (σ, δ)-prime ideal of $R, I \subseteq P \cap R \subseteq P$, which implies that $I[x ; \sigma, \delta] \subseteq P$, and so $I[x ; \sigma, \delta] \subseteq P_{\bar{\sigma}}(R[x ; \sigma, \delta])$

References

[1] M Ferrero, K. Kishmoto and K Motose, On radıcals of skew polynomial rings of derivation type, J. London Math Soc 28(2) (1983), 8-16
[2] K.R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebra, Galsgow Math. J. 150 (1992), 324-377
[3] D A. Jordan, Noetherian Ore Extensions and Jacobson Rings, J London Math Soc. 10(2) (1975), 281-291.
[4] R S Irving, Prime adeals of Ore extensions over commutative rings, Math Z 213 (1993), 353-371.
[5] T Y Lam, A First Course in Noncommutative Rings, Springer-VerlagJohn, New York, INC, 1991
[6] A. Leroy and J Matczuk, Primatzve skew polynomzal and skew Laurent polynomial rings, Comm in Algebra 24(7) (1996), 2271-2284.

Department of Computational Mathematics
Kosin University
Busan, 606-701, Korea
E-mall: jchan@sdg.kosin.ac kr

[^0]: Received December 5, 2002
 2000 Mathematics Subject Classification 16 N 99
 Key words and phrases Ore extension, (σ, δ)-1deal, (σ, δ)-semprime ring, (σ, δ)-prime ring, (σ, δ)-prime radical

