• 제목/요약/키워드: ${\alpha}$(X)

검색결과 1,837건 처리시간 0.022초

SOME RECURRENCE RELATIONS FOR THE JACOBI POLYNOMIALS P(α,β)n(x)

  • Choi, Junesang;Shine, Raj S.N.;Rathie, Arjun K.
    • East Asian mathematical journal
    • /
    • 제31권1호
    • /
    • pp.103-107
    • /
    • 2015
  • We use some known contiguous function relations for $_2F_1$ to show how simply the following three recurrence relations for Jacobi polynomials $P_n^{({\alpha},{\beta)}(x)$: (i) $({\alpha}+{\beta}+n)P_n^{({\alpha},{\beta})}(x)=({\beta}+n)P_n^{({\alpha},{\beta}-1)}(x)+({\alpha}+n)P_n^{({\alpha}-1,{\beta})}(x);$ (ii) $2P_n^{({\alpha},{\beta})}(x)=(1+x)P_n^{({\alpha},{\beta}+1)}(x)+(1-x)P_n^{({\alpha}+1,{\beta})}(x);$ (iii) $P_{n-1}^{({\alpha},{\beta})}(x)=P_n^{({\alpha},{\beta}-1)}(x)+P_n^{({\alpha}-1,{\beta})}(x)$ can be established.

AUTOCOMMUTATORS AND AUTO-BELL GROUPS

  • Moghaddam, Mohammad Reza R.;Safa, Hesam;Mousavi, Azam K.
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.923-931
    • /
    • 2014
  • Let x be an element of a group G and be an automorphism of G. Then for a positive integer n, the autocommutator $[x,_n{\alpha}]$ is defined inductively by $[x,{\alpha}]=x^{-1}x^{\alpha}=x^{-1}{\alpha}(x)$ and $[x,_{n+1}{\alpha}]=[[x,_n{\alpha}],{\alpha}]$. We call the group G to be n-auto-Engel if $[x,_n{\alpha}]=[{\alpha},_nx]=1$ for all $x{\in}G$ and every ${\alpha}{\in}Aut(G)$, where $[{\alpha},x]=[x,{\alpha}]^{-1}$. Also, for any integer $n{\neq}0$, 1, a group G is called an n-auto-Bell group when $[x^n,{\alpha}]=[x,{\alpha}^n]$ for every $x{\in}G$ and each ${\alpha}{\in}Aut(G)$. In this paper, we investigate the properties of such groups and show that if G is an n-auto-Bell group, then the factor group $G/L_3(G)$ has finite exponent dividing 2n(n-1), where $L_3(G)$ is the third term of the upper autocentral series of G. Also, we give some examples and results about n-auto-Bell abelian groups.

WEAK α-SKEW ARMENDARIZ RINGS

  • Zhang, Cuiping;Chen, Jianlong
    • 대한수학회지
    • /
    • 제47권3호
    • /
    • pp.455-466
    • /
    • 2010
  • For an endomorphism $\alpha$ of a ring R, we introduce the weak $\alpha$-skew Armendariz rings which are a generalization of the $\alpha$-skew Armendariz rings and the weak Armendariz rings, and investigate their properties. Moreover, we prove that a ring R is weak $\alpha$-skew Armendariz if and only if for any n, the $n\;{\times}\;n$ upper triangular matrix ring $T_n(R)$ is weak $\bar{\alpha}$-skew Armendariz, where $\bar{\alpha}\;:\;T_n(R)\;{\rightarrow}\;T_n(R)$ is an extension of $\alpha$ If R is reversible and $\alpha$ satisfies the condition that ab = 0 implies $a{\alpha}(b)=0$ for any a, b $\in$ R, then the ring R[x]/($x^n$) is weak $\bar{\alpha}$-skew Armendariz, where ($x^n$) is an ideal generated by $x^n$, n is a positive integer and $\bar{\alpha}\;:\;R[x]/(x^n)\;{\rightarrow}\;R[x]/(x^n)$ is an extension of $\alpha$. If $\alpha$ also satisfies the condition that ${\alpha}^t\;=\;1$ for some positive integer t, the ring R[x] (resp, R[x; $\alpha$) is weak $\bar{\alpha}$-skew (resp, weak) Armendariz, where $\bar{\alpha}\;:\;R[x]\;{\rightarrow}\;R[x]$ is an extension of $\alpha$.

A NOTE ON QUASI-OPEN MAPS

  • Kim, Jae-Woon
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제5권1호
    • /
    • pp.1-3
    • /
    • 1998
  • Let f : X longrightarrow Y be quasi-open. We show that: (1) If A $\subset$ X is open, f│A is quasi-open, (2) f : X longrightarrow f(X) is quasi-open. (3) And let $f_{\alpha}/,:X_{\alpha}$, longrightarrow $Y_{\alpha}$ be quasi-open. Then $\Pi f_{\alpha}, : \Pi X_{\alpha}$ longrightarrow $\Pi Y_{\alpha}$/ defined by {$x_{\alpha}$} longrightarrow {$f_{\alpha},({\chi}_{\alpha}$)}, is quasi-open. (4) Lastly, if $f_{i}: X_{i}$ longrightarrow Y are quasi-open, i = 1,2, then F: $X_1 \bigoplus X_2$ longrightarrow Y, defined by $F({\chi})=f_i({\chi})$, ${\chi} \in X_i$, is also quasi-open.

  • PDF

REGULARITY OF TRANSFORMATION SEMIGROUPS DEFINED BY A PARTITION

  • Purisang, Pattama;Rakbud, Jittisak
    • 대한수학회논문집
    • /
    • 제31권2호
    • /
    • pp.217-227
    • /
    • 2016
  • Let X be a nonempty set, and let $\mathfrak{F}=\{Y_i:i{\in}I\}$ be a family of nonempty subsets of X with the properties that $X={\bigcup}_{i{\in}I}Y_i$, and $Y_i{\cap}Y_j={\emptyset}$ for all $i,j{\in}I$ with $i{\neq}j$. Let ${\emptyset}{\neq}J{\subseteq}I$, and let $T^{(J)}_{\mathfrak{F}}(X)=\{{\alpha}{\in}T(X):{\forall}i{\in}I{\exists}_j{\in}J,Y_i{\alpha}{\subseteq}Y_j\}$. Then $T^{(J)}_{\mathfrak{F}}(X)$ is a subsemigroup of the semigroup $T(X,Y^{(J)})$ of functions on X having ranges contained in $Y^{(J)}$, where $Y^{(J)}:={\bigcup}_{i{\in}J}Y_i$. For each ${\alpha}{\in}T^{(J)}_{\mathfrak{F}}(X)$, let ${\chi}^{({\alpha})}:I{\rightarrow}J$ be defined by $i{\chi}^{({\alpha})}=j{\Leftrightarrow}Y_i{\alpha}{\subseteq}Y_j$. Next, we define two congruence relations ${\chi}$ and $\widetilde{\chi}$ on $T^{(J)}_{\mathfrak{F}}(X)$ as follows: $({\alpha},{\beta}){\in}{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}={\chi}^{({\beta})}$ and $({\alpha},{\beta}){\in}\widetilde{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}{\mid}_J={\chi}^{({\alpha})}{\mid}_J$. We begin this paper by studying the regularity of the quotient semigroups $T^{(J)}_{\mathfrak{F}}(X)/{\chi}$ and $T^{(J)}_{\mathfrak{F}}(X)/{\widetilde{\chi}}$, and the semigroup $T^{(J)}_{\mathfrak{F}}(X)$. For each ${\alpha}{\in}T_{\mathfrak{F}}(X):=T^{(I)}_{\mathfrak{F}}(X)$, we see that the equivalence class [${\alpha}$] of ${\alpha}$ under ${\chi}$ is a subsemigroup of $T_{\mathfrak{F}}(X)$ if and only if ${\chi}^{({\alpha})}$ is an idempotent element in the full transformation semigroup T(I). Let $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ be the sets of functions in $T_{\mathfrak{F}}(X)$ such that ${\chi}^{({\alpha})}$ is injective, surjective and bijective respectively. We end this paper by investigating the regularity of the subsemigroups [${\alpha}$], $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ of $T_{\mathfrak{F}}(X)$.

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

SOME CHARACTERIZATIONS OF SINGULAR COMPACTIFICATIONS

  • Park, Keun
    • 대한수학회논문집
    • /
    • 제10권4호
    • /
    • pp.943-947
    • /
    • 1995
  • Assume that X is locally compact and Hausdorff. Then, we show that $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if for any 2-point compatification $\gamma X$ of X with $\gamma X - X = {-\infty, +\infty}$, there exists a clopen subset A of \gamma X$ such that $-\infty \in A$ and $+\infty \notin A$. As a corollary, we obtain that if X is connected and locally connected, then $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if X is 1-complemented.

  • PDF

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.279-285
    • /
    • 2008
  • This paper presents some characterizations of the Weibull distribution by the independence of record values. We prove that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. We show that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And we establish that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}+X_{U(n)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF

INVERTIBLE INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONG WAN
    • 호남수학학술지
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2005
  • Given operators X and Y acting on a separable Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let ${\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$. and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists an invertible operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There exist bounded sequences {${\alpha}_n$} and {${\beta}_n$} in ${\mathbb{C}}$ such that $${\alpha}_{2k-1}{\neq}0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=-\frac{{\alpha}_{2k}}{{\alpha}_{2k-1}{\alpha}_{2k+1}}$$ and $$y_{i1}={\alpha}_1x_{i1}+{\alpha}_2x_{i2}$$ $$y_{i\;2k}={\alpha}_{4k-1}x_{i\;2k}$$ $$y_{i\;2k+1}={\alpha}_{4k}x_{i\;2k}+{\alpha}_{4k+1}x_{i\;2k+1}+{\alpha}_{4k+2}x_{i\;2k+2}$$ for $$k{\in}N$$.

  • PDF

INVERTIBLE INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGℒ

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.115-120
    • /
    • 2011
  • Given vectors x and y in a separable complex Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that Ax = y. We show the following : Let Alg$\cal{L}$ be a tridiagonal algebra on a separable complex Hilbert space H and let x = ($x_i$) and y = ($y_i$) be vectors in H. Then the following are equivalent: (1) There exists an invertible operator A = ($a_{kj}$) in Alg$\cal{L}$ such that Ax = y. (2) There exist bounded sequences $\{{\alpha}_n\}$ and $\{{{\beta}}_n\}$ in $\mathbb{C}$ such that for all $k\in\mathbb{N}$, ${\alpha}_{2k-1}\neq0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=\frac{\alpha_{2k}}{{\alpha}_{2k-1}\alpha_{2k+1}}$ and $$y_1={\alpha}_1x_1+{\alpha}_2x_2$$ $$y_{2k}={\alpha}_{4k-1}x_{2k}$$ $$y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}x_{2k+2}$$.