DOI QR코드

DOI QR Code

REGULARITY OF TRANSFORMATION SEMIGROUPS DEFINED BY A PARTITION

  • Purisang, Pattama (Department of Mathematics Faculty of Science Silpakorn University) ;
  • Rakbud, Jittisak (Department of Mathematics Faculty of Science Silpakorn University)
  • Received : 2015.03.31
  • Published : 2016.04.30

Abstract

Let X be a nonempty set, and let $\mathfrak{F}=\{Y_i:i{\in}I\}$ be a family of nonempty subsets of X with the properties that $X={\bigcup}_{i{\in}I}Y_i$, and $Y_i{\cap}Y_j={\emptyset}$ for all $i,j{\in}I$ with $i{\neq}j$. Let ${\emptyset}{\neq}J{\subseteq}I$, and let $T^{(J)}_{\mathfrak{F}}(X)=\{{\alpha}{\in}T(X):{\forall}i{\in}I{\exists}_j{\in}J,Y_i{\alpha}{\subseteq}Y_j\}$. Then $T^{(J)}_{\mathfrak{F}}(X)$ is a subsemigroup of the semigroup $T(X,Y^{(J)})$ of functions on X having ranges contained in $Y^{(J)}$, where $Y^{(J)}:={\bigcup}_{i{\in}J}Y_i$. For each ${\alpha}{\in}T^{(J)}_{\mathfrak{F}}(X)$, let ${\chi}^{({\alpha})}:I{\rightarrow}J$ be defined by $i{\chi}^{({\alpha})}=j{\Leftrightarrow}Y_i{\alpha}{\subseteq}Y_j$. Next, we define two congruence relations ${\chi}$ and $\widetilde{\chi}$ on $T^{(J)}_{\mathfrak{F}}(X)$ as follows: $({\alpha},{\beta}){\in}{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}={\chi}^{({\beta})}$ and $({\alpha},{\beta}){\in}\widetilde{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}{\mid}_J={\chi}^{({\alpha})}{\mid}_J$. We begin this paper by studying the regularity of the quotient semigroups $T^{(J)}_{\mathfrak{F}}(X)/{\chi}$ and $T^{(J)}_{\mathfrak{F}}(X)/{\widetilde{\chi}}$, and the semigroup $T^{(J)}_{\mathfrak{F}}(X)$. For each ${\alpha}{\in}T_{\mathfrak{F}}(X):=T^{(I)}_{\mathfrak{F}}(X)$, we see that the equivalence class [${\alpha}$] of ${\alpha}$ under ${\chi}$ is a subsemigroup of $T_{\mathfrak{F}}(X)$ if and only if ${\chi}^{({\alpha})}$ is an idempotent element in the full transformation semigroup T(I). Let $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ be the sets of functions in $T_{\mathfrak{F}}(X)$ such that ${\chi}^{({\alpha})}$ is injective, surjective and bijective respectively. We end this paper by investigating the regularity of the subsemigroups [${\alpha}$], $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ of $T_{\mathfrak{F}}(X)$.

Keywords

References

  1. R. Chinram, Green's relations and regularity of generalized semigroups of linear transformations, Lobachevskii J. Math. 30 (2009), no. 4, 253-256. https://doi.org/10.1134/S1995080209040015
  2. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, RI, USA, 1961.
  3. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, RI, USA, 1967.
  4. L.-Z. Deng, J.-W. Zeng, and B. Xu, Green's relations and regularity for semigroups of transformations that preserve double direction equivalence, Semigroup Forum 80 (2010), no. 3, 416-425. https://doi.org/10.1007/s00233-009-9204-7
  5. P. Honyam and J. Sanwong, Semigroups of transformations with invariant set, J. Korean Math. Soc. 48 (2011), no. 2, 289-300. https://doi.org/10.4134/JKMS.2011.48.2.289
  6. P. Honyam and J. Sanwong, Semigroups of linear transformations with invariant subspaces, Int. J. Algebra 6 (2012), no. 8, 375-386.
  7. Y. Kemprasit and T. Changphas, Regular order-preserving transformation semigroups, Bull. Austral. Math. Soc. 62 (2000), no. 3, 511-524. https://doi.org/10.1017/S000497270001902X
  8. S. Lei and P. Huisheng, Green's relations on semigroups of transformations preserving two equivalence relations, J. Math. Res. Exposition 29 (2009), no. 3, 415-422.
  9. W. Mora and Y. Kemprasit, Regular elements of some order-preserving transformation semigroups, Int. J. Algebra 4 (2010), no. 13, 631-641.
  10. S. Nenthein, P. Youngkhong, and Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl. 16 (2005), no. 3, 307-314.
  11. H. Pei, Equivalences, ${\alpha}$-semigroups and ${\alpha}$-congruences, Semigroup Forum 49 (1994), no. 1, 49-58. https://doi.org/10.1007/BF02573470
  12. H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Commun. Algebra 33 (2005), no. 1, 109-118. https://doi.org/10.1081/AGB-200040921
  13. H. Pei, A note on semigroups of linear transformations with invariant subspaces, Int. J. Algebra 6 (2012), no. 27, 1319-1324.
  14. H. Pei and D. Zou, Green's equivalences on semigroups of transformations preserving order and an equivalence relation, Semigroup Forum 71 (2005), no. 2, 241-251. https://doi.org/10.1007/s00233-005-0514-0
  15. J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum 83 (2011), no. 1, 134-146. https://doi.org/10.1007/s00233-011-9320-z
  16. J. Sanwong and W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 2008 (2008), Article ID 794013, 11 pages.
  17. R. P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Austral. Math. Soc. 77 (2008), no. 3, 441-453.
  18. P. Zhao and M. Yang, Regularity and Green's relations on semigrouops of transformatiions preseving order and compression, Bull. Korean Math. Soc. 49 (2012), no. 5, 1015-1025. https://doi.org/10.4134/BKMS.2012.49.5.1015