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AUTOCOMMUTATORS AND AUTO-BELL GROUPS

Mohammad Reza R. Moghaddam, Hesam Safa, and Azam K. Mousavi

Abstract. Let x be an element of a group G and α be an automorphism
of G. Then for a positive integer n, the autocommutator [x,n α] is defined
inductively by [x, α] = x−1xα = x−1α(x) and [x,n+1 α] = [[x,n α], α]. We
call the group G to be n-auto-Engel if [x,n α] = [α,n x] = 1 for all x ∈ G
and every α ∈ Aut(G), where [α, x] = [x, α]−1. Also, for any integer
n 6= 0, 1, a group G is called an n-auto-Bell group when [xn, α] = [x,αn]
for every x ∈ G and each α ∈ Aut(G). In this paper, we investigate the
properties of such groups and show that if G is an n-auto-Bell group,
then the factor group G/L3(G) has finite exponent dividing 2n(n − 1),
where L3(G) is the third term of the upper autocentral series of G. Also,
we give some examples and results about n-auto-Bell abelian groups.

1. Introduction

Let G be a group and let Aut(G) denote the automorphism group of G.
For α ∈ Aut(G) and x ∈ G, the autocommutator of x and α is defined to
be [x, α] = x−1xα = x−1α(x). The absolute centre and the autocommutator

subgroup of G are the subgroups L(G) = {x ∈ G : [x, α] = 1 for all α ∈ Aut(G)}
and K(G) = 〈[x, α] : x ∈ G,α ∈ Aut(G)〉, respectively (see [6]). Clearly, the
absolute centre is a characteristic subgroup contained in the centre of G and the
autocommutator subgroup is a characteristic subgroup containing the derived
subgroup of G. Hegarty [6] uses the notation G∗ for K(G) and proves that if
G/L(G) is finite, then so is K(G). Autocommutator subgroup and absolute
centre are already studied in [3, 11].

Let n be a positive integer. The autocommutator [x,n α] is defined induc-
tively by [x,1 α] = [x, α] and [x,n α] = [[x,n−1 α], α] for n ≥ 2. The group G
is said to be n-auto-Engel if [x,n α] = [α,n x] = 1 for all x ∈ G and every
α ∈ Aut(G), where [α, x] = [x, α]−1. Auto-Engel groups are already studied
by Moghaddam et al. (see [9]).
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For any integer n 6= 0, 1, a group G is called n-auto-Bell if [xn, α] = [x, αn]
for every x ∈ G and α ∈ Aut(G). In particular, a group G satisfying the
previous identity for all inner automorphisms α ∈ Inn(G) is an n-Bell group.
The study of n-Bell groups was the subject of several articles, see for instance
Brandl and Kappe [1], Kappe and Morse [8], Delizia et al. [4] and Tortora [13].

A group G is called n-Kappe if the factor group G/R2(G) has finite exponent
dividing n, where R2(G) = {g ∈ G : [g, x, x] = 1 for all x ∈ G} is the set of
all right 2-Engel elements of G. It is well known that every n-Bell group is
n(n− 1)-Kappe (see Brandl and Kappe [1]).

In [9], it is proved that the set of all right 2-auto-Engel elements of G,
AR2(G) = {g ∈ G : [g, α, α] = 1 for all α ∈ Aut(G)} is a characteristic
subgroup of G. Here, we call a group G an n-auto-Kappe group when the factor
group G/AR2(G) has finite exponent dividing n. In this paper, we study some
connections of such groups with n-auto-Bell groups.

Also, Delizia et al. [4] proved that for an n-Bell group G, the exponent of
G/Z3(G) divides 2n(n− 1).

In [10], Moghaddam et al. studied the concept of lower autocentral series

and its properties. We define the upper autocentral series by a similar manner.
The n-th absolute centre of G is defined in the following way: L1(G) = L(G)
and Ln(G) = {x ∈ G : [x, α1, α2, . . . , αn] = 1 for all αi ∈ Aut(G)}. One
obtains an ascending chain of characteristic subgroups of G as follows:

1 = L0(G) ≤ L1(G) ≤ · · · ≤ Ln(G) ≤ · · · ,

which we may call the upper autocentral series of G.
In Section 3, we show that if G is an n-auto-Bell group, then the factor

group G/L3(G) has finite exponent dividing 2n(n− 1).

2. Auto-Bell and auto-Kappe groups

First, we state a result about 2-auto-Engel groups, which is proved in [9].

Lemma 2.1 ([9]). Let G be a 2-auto-Engel group. Then for every x, y ∈ G,

α ∈ Aut(G) and n ∈ Z the following properties hold:
(a) [x, xα] = 1;
(b) [x, αn] = [x, α]n = [xn, α];
(c) [xα, y] = [x, yα];
(d) [α, x, y] = [α, y, x]−1.

By the above lemma, every 2-auto-Engel group is an n-auto-Bell group for
any integer n 6= 0, 1. Now, suppose that G is a 2-auto-Bell group. Then

the identity [x2, α] = [x, α2] implies that ([x, α]x[x, α])α
−1

= ([x, α][x, α]α)α
−1

.

Hence ([x, α]α
−1

)x = [x, α] and so [x, α, α−1ϕx] = 1, where ϕx is the inner
automorphism defined by x. If we replace the automorphism α by ϕxα

−1, then

we have [[x, α−1][x, ϕx]
α−1

, α] = 1. Hence [x, α, α] = 1 and since a right 2-
auto-Engel element is also a left one (see [9]), G is a 2-auto-Engel group. Thus
for any 2-auto-Bell group G, we have [G,α] ⊆ CG(α) for every α ∈ Aut(G)
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and hence [Aut(G), x, x] = 1 for every x in G (i.e., x is also a left 2-auto-Engel
element). Therefore

Aut(G) = A(G) = {α ∈ Aut(G) : xxα = xαx for all x ∈ G},

the set of commuting automorphisms of the group G (see [2]). It is easy to see
that every 2-auto-Bell group satisfies the identity α(x)α−1(x) = x2. In Section
4, we discuss a family of infinitely many non-abelian finite 2-groups which are
2-auto-Bell.

In what follows, we determine the structure of the abelian 2-auto-Bell groups.
Let G = 〈x, y : x4 = y2 = 1, xy = yx〉 ∼= Z4 × Z2. Consider the automorphism
α of G given by α(x) = xy and α(y) = yx2. Clearly, [x, α, α] = x2 and hence G
is not a 2-auto-Bell group. Now, assume that G is a 2-auto-Bell abelian group,
then for the automorphism α : x 7→ x−1, we have x4 = [x, α, α] = 1 for every
x ∈ G. Therefore G is a direct sum of cyclic groups of order 2 or 4. On the
other hand, [x, α4] = [x, α]4 = 1 and so exp(Aut(G)) divides 4. Using the above
example and the fact that Z2×Z2 and Z4×Z4 have an automorphism of order
3, it follows that G ∼= 1,Z2 or Z4. Recall that the structure of non-abelian
2-auto-Bell (2-auto-Engel) 2-groups is studied in [9].

Now, we discuss the relations between auto-Bell and auto-Kappe groups
after some preliminary results.

Lemma 2.2. Let G be an n-auto-Bell group, x ∈ G and α ∈ Aut(G). Then

(i) [xn, α, x1−n] = 1;
(ii) xn(1−n) ∈ Z(xAut(G)), where xAut(G) = 〈xα : α ∈ Aut(G)〉.

Proof. (i) Since G is n-auto-Bell,

[xn, α]−x−n

= [x−n, α] = [x−1, αn] = [x, αn]−x−1

.

Conjugating with x and taking the inverse yields [xn, α][xn, α, x1−n] = [x, αn].
Hence [xn, α, x1−n] = 1.

(ii) Using the Jacobi identity, one obtains [x, α, yx][y, x, αϕy ][α, y, xα] = 1
for every x and y in G and α ∈ Aut(G), where ϕy is the inner automorphism
of G defined by y. From this identity and (i) it follows that

1 = [α, x1−n, xnα] = [x(n−1)αx1−n, xnα] = [xn−n2

, xα].

Hence xn(1−n) ∈ Z(xAut(G)). �

Proposition 2.3. Every n-auto-Bell group is also (1−n)-auto-Bell and hence

n(1− n)-auto-Bell.

Proof. Since G is an n-auto-Bell group, [xn, α−1]α = [x, α−n]α. Therefore

x−nαxn = x−αxα1−n

and hence

xn−1x(1−n)αxn = xn−1xα1−n

.

So [x1−n, α]x
n

= [x, α1−n]. Finally, [x1−n, α][x1−n, α, xn] = [x, α1−n] and by
Lemma 2.2(i), G is a (1− n)-auto-Bell group. Clearly, it follows that G is also
n(1− n)-auto-Bell. �
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Observe that an n-Bell group need not be a (−n)-Bell group, in general.
Clearly, by Proposition 2.3 an n-auto-Bell group need not be (−n)-auto-Bell.
In the following theorem, we show that every n-auto-Bell group is also n(n−1)-
auto-Bell.

Theorem 2.4. Every n-auto-Bell group is also n(n−1)-auto-Kappe and hence

n(n− 1)-auto-Bell.

Proof. Let G be an n-auto-Bell group, x ∈ G, α ∈ Aut(G). Using Lemma
2.2(ii) and Proposition 2.3, we get xn(1−n) ∈ Z(xAut(G)) and hence

1 = [xn(1−n), xα] = [x, xn(1−n)α] = [x, [xn(1−n), α]].

Therefore

(1) [αn(1−n), x, x] = 1,

and hence, αn(n−1) ∈ A(G). So, in every n-auto-Bell group, we have the
following identity,

(2) [xn(n−1)α, x] = 1 = [xα, xn(n−1)].

Now, put m = n(n− 1). For the n-auto-Bell group G, it is easy to see that

(3) x(n−1)αxα1−n

= xn.

Replacing x by xn yields

(4) xnα1−n

= x−mαxn2

.

In the equation (4), if we replace α by α−1 and conjugate with α, we get

xnαn

= x−mxn2α. Now, conjugating the equation (3) with αn and using the
latter equality yields

(5) x(n−1)αn+1

= xnαn

x−α = x−mx(n2
−1)α.

By the equation (2), clearly [xm, α, x] = 1 and so [xm, α−1, x]α = 1. It follows
that

(6) [xm, α, xα] = 1.

Therefore by Proposition 2.3, equations (4), (5) and (6)

[xm, α, α] = [x−m, α][xmα, α]

= [xn, α1−n][x(n−1)α, αn]

= x−nxnα1−n

x(1−n)αx(n−1)αn+1

= x−nx−mαxn2

x(1−n)αxnαn

x−α

= xmx−mαx(1−n)αx−mx(n2
−1)α

= x(−n(n−1)+(1−n)+n2
−1)α

= 1.
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Thus G is n(n−1)-auto-Kappe. It also follows that [x−1, α−m]α = [x−1, α−m].

Therefore [x, αm]α
−1

= [x, αm] and hence by Proposition 2.3 and (1) we get:

[xm, α] = [(x−m)−1, α] = [x, α−m]−x−m

= [x, α−m]−1 = [x, αm]α
−m

= [x, αm].

So G is an n(n− 1)-auto-Bell group. �

Remark 2.5. Some connections are held between Kappe and Bell groups, which
may not be true for auto-Kappe and auto-Bell groups. For example in [4,
Theorem 2.1], it is pointed out that every n-Kappe group is an n2-Bell group.
If G is the elementary abelian 2-group of order 4, then G is a 2-auto-Kappe,
but as G has an automorphism of order 3, it cannot be a 4-auto-Bell group.

We end this section by pointing a result, which gives some relations about
auto-Bell groups.

Proposition 2.6. Let G be a group and n 6= 0, 1 be an integer.

(i) If G is an (n − 1)-auto-Kappe and n-auto-Bell group, then G is also

(n− 1)-auto-Bell.
(ii) If G is an n-auto-Kappe and n-auto-Bell group, then G is also an (n+1)-

auto-Bell group.

Proof. (i) Let x ∈ G and α ∈ Aut(G). Since G is an n-auto-Bell group (and
hence (1− n)-auto-Bell) and also an (n− 1)-auto-Kappe, we get

[x1−n, α] = [x, α1−n] = [x, αn−1]−α1−n

= [x, αn−1]−1.

On the other hand, since xn−1 is a right 2-auto-Engel element, it is also a left
one and so [α, xn−1, xn−1] = 1. Therefore [x1−n, α] = [xn−1, α]−1. This implies
that [xn−1, α] = [x, αn−1] and hence G is an (n− 1)-auto-Bell group.

(ii) Since G is an n-auto-Kappe, one may show that [xn, ϕxα
−1, α] = 1,

where ϕx is the inner automorphism defined by the element x. Replacing α

by α−1ϕx yields [xn, α, α−1ϕx] = 1. Thus [xn, α]α
−1

x = x[xn, α] and hence
[xn, α]xα = xα[xn, α]α. Therefore x−1[xn, α]xx−1xα = x−1xα[xn, α]α and
from the fact that G is an n-auto-Bell group, it follows that [xn, α]x[x, α] =
[x, α][x, αn]α. This shows that [xn+1, α] = [x, αn+1]. Thus G is an (n + 1)-
auto-Bell. �

3. Upper autocentral series in auto-Bell groups

Given a group G, the n-th autocommutator subgroup of G is

Kn(G) = 〈[x, α1, α2, . . . , αn] : x ∈ G,α1, . . . , αn ∈ Aut(G)〉.

It can be easily seen that for every n ∈ N, the n-th autocommutator subgroup
is a characteristic subgroup of G containing γn+1(G). Now, we obtain the
following series of subgroups

G = K0(G) ≥ K(G) = K1(G) ≥ K2(G) ≥ · · · ≥ Kn(G) ≥ · · · ,
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which is called the lower autocentral series of G. In [10], it is proved that for
any finite abelian group G and every natural number n, there exists a finite
abelian group H such that G ∼= Kn(H).

Now, the n-th absolute centre of G is defined inductively by L1(G) = L(G)
and Ln(G) = {x ∈ G : [x, α1, α2, . . . , αn] = 1 for all αi ∈ Aut(G)}. Clearly,
the n-th absolute centre of G is contained in the n-th centre of G, Zn(G). One
obtains an ascending chain of characteristic subgroups of G as follows:

1 = L0(G) ≤ L1(G) ≤ · · · ≤ Ln(G) ≤ · · · ,

which we may call the upper autocentral series of G. In the following theorem,
we prove that if G is an n-auto-Bell group, then [G2n(n−1), α, β, γ] = 1 for every
α, β, γ ∈ Aut(G).

Theorem 3.1. Let G be an n-auto-Bell group. Then the factor group G/L3(G)
has finite exponent dividing 2n(n− 1).

Proof. First, we show that for any right 2-auto-Engel element x of G, the sub-
group xAut(G) = 〈xα : α ∈ Aut(G)〉 is abelian. Let α and β be automorphisms
of G. Then

[xα, xβ ] = [xαβ−1

, x]β = [x[x, αβ−1], x]β = [[x, αβ−1], x]β .

On the other hand, every right 2-auto-Engel element is also a left 2-auto-Engel
element. Hence [αβ−1, x, x] = 1 and this implies that [xα, xβ ] = 1 and hence
xAut(G) is abelian.

Now, by Theorem 2.4, g := xn(n−1) is a right 2-auto-Engel element. So, for
each α ∈ Aut(G), we have [g, α−1] = [g, α]−1. On the other hand, since gAut(G)

is abelian, we get [g, αβ] = [g, α][g, β][g, α, β] (observe that [g, α] ∈ gAut(G)) for
every α, β ∈ Aut(G). Hence [g, αβ]−1 = [g, β−1α−1] and the above equality
shows that

[g, α, β] = [g, β, α]−1.

Now, suppose that α, β and γ are arbitrary automorphisms of G. One may
check that the equality [g, α, βγ] = [g, βγ, α]−1 implies that [g, α, β, γ]2 = 1
and since g is a 2-auto-Engel element, we obtain [g2, α, β, γ] = 1. Therefore
[x2n(n−1), α, β, γ] = 1 and this completes the proof. �

4. Abelian n-auto-Bell groups

Clearly, every abelian group is an n-Bell group, but this statement is not
true for n-auto-Bell groups. In what follows, we give some examples of auto-
Bell groups and also discuss some results about n-auto-Bell abelian groups.
Observe that by Proposition 2.3, in this section we may suppose that n ≥ 2.

Example 4.1. (i) Let G be a non-periodic abelian group, and consider the
inverting automorphism α ∈ Aut(G) and a torsion-free element x ∈ G. Then
one can easily see that [xn, α] = x−2n and [x, αn] = x(−1)n−1. If G is an n-
auto-Bell group, then we must have −2n = (−1)n − 1, and this implies that
n ∈ {0, 1}. So, G cannot be an n-auto-Bell group for every integer n 6= 0, 1.
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(ii) In [7], Jamali constructed the following family of groups. For m ≥ 3, let
Gm be a 2-group with the following presentation

Gm = 〈a1, . . . , am, b : a21 = a42 = · · · = a4m = 1, a2m−1 = b2, [a1, b] = 1,

[am, b] = a1, [ai−1, b] = a2i , [aj , ak] = 1, 3 ≤ i ≤ m, 1 ≤ j < k ≤ m〉.

The group Gm is of order 22m with exponent 4 whose automorphism group is

isomorphic to Z
m2

2 and also Z(Gm) ∼= Z
m
2 . Clearly, for every m ≥ 3, Gm is a

non-abelian 2-auto-Bell (and hence an n-auto-Bell, for every n ≥ 3) group. By
using GAP [5], one can check that G3

∼= (Z4 ⋊ Z4)⋊ Z4.
(iii) Let G = Z8 × Z4 × Z2

∼= 〈x〉 × 〈y〉 × 〈z〉. Consider the automorphism
α defined by α(x) = xy, α(y) = x2yz and α(z) = x4y2z. One can easily check
that 1 = [x4, α] 6= [x, α4] and so G is not a 4-auto-Bell group.

Recall that there are only two non-trivial abelian 2-auto-Bell groups, namely
Z2 and Z4.

Observe that if G ∼= H ×K is an n-auto-Bell group, then so are H and K.
Now, let G be an abelian n-auto-Bell group (n ≥ 3) and α be the inverting au-
tomorphism. Clearly, the identity [xn, α] = [x, αn] implies that exp(G) divides
2n or 2(n− 1) when n is an even or an odd integer, respectively. By Proposi-
tion 2.3, G is also a (1 − n)2-auto-Bell group. Hence, the exponent of Aut(G)
divides n(n− 2) or (n− 1)2 when n is an even or an odd integer, respectively.

By the above statement, it is easy to see that the 3-auto-Bell abelian groups
are actually 2-auto-Bell. Assume that n = 4. Therefore G is a direct sum
of cyclic groups of order 2, 4 or 8. Hence, Example 4.1(iii) and the fact that
Z2 × Z2, Z4 × Z4 and Z8 × Z8 have an automorphism of order 3, show that G
is isomorphic to one of the groups Z2, Z4, Z8, Z2 × Z4, Z2 × Z8 or Z4 × Z8.

Finally, let G be a 5-auto-Bell abelian group. It is easy to see that exp(G)
and exp(Aut(G)) divide 8 and 16, respectively. One may check that the abelian
5-auto-Bell groups are actually 4-auto-Bell.

Remark 4.2. Let p be an odd prime, n ≥ 6 and G be an abelian n-auto-Bell
p-group (if any). By the above statement, it is easy to see that exp(Aut(G))
divides n or (n− 1) when n is an even or an odd integer, respectively.

The following theorem may be considered as a criterion for recognition of
abelian p-groups which are not n-auto-Bell.

Theorem 4.3. Let G be a finite abelian n-auto-Bell group with |G| =
∏m

i=1 pi
ri .

Then for every 1 ≤ j ≤ m, the numbers pj(pj − 1) and
∏m

i=1 pi divide n or

(n− 1) when n is an even or an odd integer, respectively.

Proof. Suppose that an arbitrary prime p divides the order of G. Clearly, the
Sylow p-subgroup P of G is also an n-auto-Bell group. If p = 2 or 3 the result is
true. Suppose that n is an even integer and p ≥ 5. By considering the inverting
automorphism, we get p|n. Let α : x 7→ xλ be an automorphism of P , where
1 < λ < p and (λ, p − 1) = 1. Then the identity [xn, α] = [x, αn] implies that
p|(λn − nλ+ n− 1). Therefore λn ≡ 1 (mod p).
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On the other hand, Euler’s theorem implies that λp−1 ≡ 1 (mod p) and
since (λ, p − 1) = 1, we get (p − 1)|n. Therefore p(p− 1)|n. Similarly, it may
be shown that p(p − 1)|(n − 1), if n is an odd integer. Therefore the proof is
complete. �

The above theorem immediately yields the following corollary.

Corollary 4.4. There is no abelian n-auto-Bell p-group for n < p(p− 1).

Proposition 4.5. If G is an abelian p(p − 1)n-auto-Bell p-group (p odd and

1 ≤ n ≤ p− 1), then G ∼= Zp.

Proof. Clearly, Zp is a p(p − 1)m-auto-Bell group for every m ∈ N. It is
enough to show that Zp × Zp and Zpk (k ≥ 2) are not p(p − 1)n-auto-Bell.

Since Aut(Zp × Zp) ∼= GL(2, p) and exp(GL(2, p)) = p(p2 − 1), we obtain

1 = [xp(p−1)n, α] 6= [x, αp(p−1)n] for some x ∈ Zp × Zp and α ∈ GL(2, p).

Also, since pk does not divide p(p−1)n, we get [xp(p−1)n, α] 6= [x, αp(p−1)n] =
1 and hence the cyclic group of order pk (k ≥ 2) cannot be a p(p−1)n-auto-Bell
p-group. �

Remark 4.6. In the previous proposition, it is not difficult to show that if
n = p, then G ∼= Zp or Zp2 . If n = p+ 1, then G ∼= Zp or Zp × Zp and finally
if n = p+ 2, then G ∼= Zp. Observe that if n > p+ 2, then the structure of G
may depend on the odd prime p.
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