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AUTOCOMMUTATORS AND AUTO-BELL GROUPS

MoHAMMAD REZA R. MOGHADDAM, HESAM SAFA, AND AzAaM K. MOUSAVI

ABSTRACT. Let x be an element of a group G and « be an automorphism
of G. Then for a positive integer n, the autocommutator [z,, o] is defined
inductively by [z, a] = 2712 = 27 a(z) and [z,n+1 @] = [[x,n ], a]. We
call the group G to be n-auto-Engel if [z,, o] = [a,nz] =1 for all z € G
and every o € Aut(G), where [a,z] = [z,a]”!. Also, for any integer
n # 0,1, a group G is called an n-auto-Bell group when [z",a] = [z,a™]
for every z € G and each a € Aut(G). In this paper, we investigate the
properties of such groups and show that if G is an m-auto-Bell group,
then the factor group G/L3(G) has finite exponent dividing 2n(n — 1),
where L3(G) is the third term of the upper autocentral series of G. Also,
we give some examples and results about n-auto-Bell abelian groups.

1. Introduction

Let G be a group and let Aut(G) denote the automorphism group of G.
For o € Aut(G) and =z € G, the autocommutator of x and « is defined to
be [z,a] = 27'2® = 2 ta(x). The absolute centre and the autocommutator
subgroup of G are the subgroups L(G) = {z € G : [x,a] = 1 for all &« € Aut(G)}
and K(G) = ([z,a] : © € G,a € Aut(QG)), respectively (see [6]). Clearly, the
absolute centre is a characteristic subgroup contained in the centre of G and the
autocommutator subgroup is a characteristic subgroup containing the derived
subgroup of G. Hegarty [6] uses the notation G* for K (G) and proves that if
G/L(Q) is finite, then so is K(G). Autocommutator subgroup and absolute
centre are already studied in [3, 11].

Let n be a positive integer. The autocommutator [z,, «] is defined induc-
tively by [z,1 o] = [z,a] and [z,, o] = [[z,n—1 @], for n > 2. The group G
is said to be n-auto-Engel if [x,, ] = [a,p,x] = 1 for all z € G and every
a € Aut(Q), where [o, 2] = [z,a]7!. Auto-Engel groups are already studied
by Moghaddam et al. (see [9]).
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For any integer n # 0,1, a group G is called n-auto-Bell if [z", o] = [z, a™]
for every x € G and o € Aut(G). In particular, a group G satisfying the
previous identity for all inner automorphisms « € Inn(G) is an n-Bell group.
The study of n-Bell groups was the subject of several articles, see for instance
Brandl and Kappe [1], Kappe and Morse [8], Delizia et al. [4] and Tortora [13].

A group G is called n- Kappe if the factor group G/ R2(G) has finite exponent
dividing n, where R2(G) = {9 € G : [g,z,2] = 1 for all x € G} is the set of
all right 2-Engel elements of G. It is well known that every m-Bell group is
n(n — 1)-Kappe (see Brandl and Kappe [1]).

In [9], it is proved that the set of all right 2-auto-Engel elements of G,
AR3(G) = {g € G : [g,a,a] = 1 for all & € Aut(G)} is a characteristic
subgroup of G. Here, we call a group G an n-auto-Kappe group when the factor
group G/AR3(G) has finite exponent dividing n. In this paper, we study some
connections of such groups with n-auto-Bell groups.

Also, Delizia et al. [4] proved that for an n-Bell group G, the exponent of
G/Z3(G) divides 2n(n — 1).

In [10], Moghaddam et al. studied the concept of lower autocentral series
and its properties. We define the upper autocentral series by a similar manner.
The n-th absolute centre of G is defined in the following way: L1(G) = L(G)
and L,(G) = {z € G : [x,a1,a2,...,a,] = 1 for all a; € Aut(G)}. One
obtains an ascending chain of characteristic subgroups of G as follows:

1=Lo(G) S Li(G) < < Ly(G) < -+ -

which we may call the upper autocentral series of G.
In Section 3, we show that if G is an n-auto-Bell group, then the factor
group G/L3(G) has finite exponent dividing 2n(n — 1).

2. Auto-Bell and auto-Kappe groups

First, we state a result about 2-auto-Engel groups, which is proved in [9].

Lemma 2.1 ([9]). Let G be a 2-auto-Engel group. Then for every xz,y € G,
a € Aut(G) and n € Z the following properties hold:

(a) [z,2] = 1;

(b) [z,a"] = [z,0]" = [2", af;

(¢) [z, y] = [z,y°];

(d) [, 2,y] = [y, 2]

By the above lemma, every 2-auto-Engel group is an n-auto-Bell group for
any integer n # 0,1. Now, suppose that G is a 2-auto-Bell group. Then
the identity [#2, a] = [z, a2] implies that ([z,a][z,a])* " = ([z,a][z,a]*)*
Hence ([z,a]® )* = [2,0] and so [z,q,a 'p,] = 1, where ¢, is the inner
automorphism defined by z. If we replace the automorphism « by ¢,a ™!, then
we have [[x,a_l][z,gaz]afl,a] = 1. Hence [z,a,a] = 1 and since a right 2-
auto-Engel element is also a left one (see [9]), G is a 2-auto-Engel group. Thus
for any 2-auto-Bell group G, we have [G,a] C Cg(a) for every a € Aut(G)



AUTOCOMMUTATORS AND AUTO-BELL GROUPS 925

and hence [Aut(G),x,x] =1 for every z in G (i.e., x is also a left 2-auto-Engel
element). Therefore

Aut(G) = A(G) = {a € Aut(G) : zz® = 2% for all x € G},

the set of commuting automorphisms of the group G (see [2]). It is easy to see
that every 2-auto-Bell group satisfies the identity a(x)a=!(z) = z%. In Section
4, we discuss a family of infinitely many non-abelian finite 2-groups which are
2-auto-Bell.

In what follows, we determine the structure of the abelian 2-auto-Bell groups.
Let G = (z,y : 2* = y? = 1,2y = yx) = Z4 X Z. Consider the automorphism
a of G given by a(z) = zy and a(y) = yx?. Clearly, [z, a, a] = 2% and hence G
is not a 2-auto-Bell group. Now, assume that G is a 2-auto-Bell abelian group,
then for the automorphism « : x +— 271, we have 2* = [z,a,a] = 1 for every
x € G. Therefore G is a direct sum of cyclic groups of order 2 or 4. On the
other hand, [z, a?] = [z,a]* = 1 and so exp(Aut(G)) divides 4. Using the above
example and the fact that Zs x Zo and Z4 x Z4 have an automorphism of order
3, it follows that G = 1,Zs or Z4. Recall that the structure of non-abelian
2-auto-Bell (2-auto-Engel) 2-groups is studied in [9].

Now, we discuss the relations between auto-Bell and auto-Kappe groups
after some preliminary results.

Lemma 2.2. Let G be an n-auto-Bell group, x € G and o € Aut(G). Then
() [2", a,2xt7"] = 1;
(ii) "= € Z(2A(E)) where £AME) = (2 : o € Aut(Q)).

Proof. (i) Since G is n-auto-Bell,

(2" 0] = a) = [ 0] = [ 0"
Conjugating with z and taking the inverse yields [2", o][2", o, 217" = [z, a™].
Hence [2", o, 217"] = 1.
(ii) Using the Jacobi identity, one obtains [z, «, ¥*]y, z, a®][a, y, %] = 1

for every x and y in G and a € Aut(G), where ¢, is the inner automorphism
of G defined by y. From this identity and (i) it follows that

1= [a7x1—n,zna] _ [:C(n—l)axl—n,zna] _ [:Cn—n ,1,04].
Hence z"(1=™) ¢ Z(2A8(@), O

Proposition 2.3. Every n-auto-Bell group is also (1 —n)-auto-Bell and hence
n(1l — n)-auto-Bell.

Proof. Since G is an n-auto-Bell group, [z",a71]* = [z,a™"]% Therefore
27" = 772" and hence

xn—lx(l—n)axn — xn—lxozl*"
So [#'7", a]*" = [z,a'™"]. Finally, [z, a][z'™", a,2"] = [z,a'™"] and by

Lemma 2.2(i), G is a (1 — n)-auto-Bell group. Clearly, it follows that G is also
n(1 — n)-auto-Bell. O
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Observe that an n-Bell group need not be a (—n)-Bell group, in general.
Clearly, by Proposition 2.3 an n-auto-Bell group need not be (—n)-auto-Bell.
In the following theorem, we show that every n-auto-Bell group is also n(n—1)-
auto-Bell.

Theorem 2.4. Every n-auto-Bell group is also n(n—1)-auto-Kappe and hence
n(n — 1)-auto-Bell.

Proof. Let G be an n-auto-Bell group, z € G, a € Aut(G). Using Lemma
2.2(ii) and Proposition 2.3, we get 21~ € Z(xA"*(%)) and hence

1= [xn(l—n),xa] _ [x’xn(l—n)a] _ [(E, [xn(l—n)’a]].
Therefore
(1) ("= g a] =1,

and hence, a1 ¢ A(G). So, in every n-auto-Bell group, we have the
following identity,

(2) [xn(nfl)a’x] - 1= [xa’xn(nfl)].

Now, put m = n(n — 1). For the n-auto-Bell group G, it is easy to see that
(3) g(n=Daga’™ _ 4n,
Replacing x by a™ yields

1—n 2

4) " =g

In the equation (4), if we replace a by a~! and conjugate with o, we get

na’

2
—m .n“«a
X

= =™z * Now, conjugating the equation (3) with o™ and using the
latter equality yields

(5) .,L,(n—l)o/l+l — xnanx—a — x—mx(nQ—l)a-

By the equation (2), clearly [#™,«, 2] = 1 and so [z™,a~ !, 2]* = 1. It follows
that

(6) [™, o, 2% = 1.

Therefore by Proposition 2.3, equations (4), (5) and (6)

mo

[, a,a] = [T, a][z™, o]

_ [Z,n7 alfn] :C(nfl)a7 an]

— 1-n — —
— T gpne SC(l n)az(n Do

n+1

2 no_
— T ma,n 1,(1 n)axna el

p— — 2_
— ™My mal_(l n)a:L, mx(n Da

_ :C(fn(nfl)Jr(lfn)Jrnzfl)a

=1.
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Thus G is n(n — 1)-auto-Kappe. It also follows that [z7!,a™™]% = [z71, a™™].
Therefore [z, 0/”]071 = [z, @™] and hence by Proposition 2.3 and (1) we get:

[270] = (@) " o] = [ma7m] "
= [z,a™]7! = [z,a™]
= [z,a™].
So G is an n(n — 1)-auto-Bell group. O

Remark 2.5. Some connections are held between Kappe and Bell groups, which
may not be true for auto-Kappe and auto-Bell groups. For example in [4,
Theorem 2.1], it is pointed out that every n-Kappe group is an n?-Bell group.
If G is the elementary abelian 2-group of order 4, then G is a 2-auto-Kappe,
but as G has an automorphism of order 3, it cannot be a 4-auto-Bell group.

We end this section by pointing a result, which gives some relations about
auto-Bell groups.

Proposition 2.6. Let G be a group and n # 0,1 be an integer.

(i) If G is an (n — 1)-auto-Kappe and n-auto-Bell group, then G is also
(n — 1)-auto-Bell.

(ii) If G is an n-auto-Kappe and n-auto-Bell group, then G is also an (n+1)-
auto-Bell group.

Proof. (i) Let z € G and o € Aut(G). Since G is an n-auto-Bell group (and
hence (1 — n)-auto-Bell) and also an (n — 1)-auto-Kappe, we get
[zlfn 17n] nfl]fal’" _ [z,anfl]fl.

,of = [z, « = [z,«

On the other hand, since ™! is a right 2-auto-Engel element, it is also a left
one and so o, "1 2"~ 1] = 1. Therefore [z'7",a] = [z"~!,a]~!. This implies
that [2"~! a] = [x,a" 1] and hence G is an (n — 1)-auto-Bell group.

(ii) Since G is an m-auto-Kappe, one may show that [z",p,a™! a] = 1,
where ¢, is the inner automorphism defined by the element x. Replacing «
by o~ Lo, yields [z", o, tp,] = 1. Thus [2",0]® & = z[z", o] and hence
[27, a)z® = 2%[2",a]®. Therefore z71[2", ajzr~tz® = z7la¥z" a]* and
from the fact that G is an n-auto-Bell group, it follows that [z", a]*[z, o] =
[z,a][r,a™]®. This shows that [z""1 a] = [z,a"!]. Thus G is an (n + 1)-
auto-Bell. O

3. Upper autocentral series in auto-Bell groups

Given a group G, the n-th autocommutator subgroup of G is
K,.(G)={z,a1,0a2,...,ap] : ¢ € G,aq,...,a, € Aut(G)).

It can be easily seen that for every n € N, the n-th autocommutator subgroup
is a characteristic subgroup of G containing v,+1(G). Now, we obtain the
following series of subgroups

G = Ko(G) > K(G) = K1(G) > Ks(G) > -+ > Kn(G) > -,
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which is called the lower autocentral series of G. In [10], it is proved that for
any finite abelian group G and every natural number n, there exists a finite
abelian group H such that G = K,,(H).

Now, the n-th absolute centre of G is defined inductively by Li(G) = L(G)
and L,(G) = {z € G : [z,a1,09,...,a,] = 1 for all a; € Aut(G)}. Clearly,
the n-th absolute centre of G is contained in the n-th centre of G, Z,(G). One
obtains an ascending chain of characteristic subgroups of G as follows:

1= Lo(@) S Li(G) < -+ S Ly(G) < -+,

which we may call the upper autocentral series of G. In the following theorem,
we prove that if G is an n-auto-Bell group, then [G**("=1) «, 3,~] = 1 for every
a, 8,7 € Aut(G).

Theorem 3.1. Let G be an n-auto-Bell group. Then the factor group G/L3(Q)
has finite exponent dividing 2n(n — 1).

Proof. First, we show that for any right 2-auto-Engel element = of G, the sub-
group zA"(E) = (2 : o € Aut(G)) is abelian. Let a and 3 be automorphisms
of G. Then

0,27 = [0, 2] = [alw, ap ™", 2)° = [[2,087 ], 2)°

On the other hand, every right 2-auto-Engel element is also a left 2-auto-Engel
element. Hence [af~!,z,2] = 1 and this implies that [z*,2%] = 1 and hence
zA(E) ig abelian.

Now, by Theorem 2.4, g := z"("~1)

is a right 2-auto-Engel element. So, for
each a € Aut(G), we have [g,a™ '] = [g,a]~'. On the other hand, since g*"*(¢)
is abelian, we get [g, af] = [g, &][g, B][g, v, B] (observe that [g, a] € g~ for
every a, 3 € Aut(G). Hence [g,a8]"! = [g,8 'a™!] and the above equality
shows that
[g’aaﬁ] = [g,ﬁ,a]_l.

Now, suppose that «, 8 and « are arbitrary automorphisms of G. One may
check that the equality [g,a, 3] = [g, 37,a]~! implies that [g,, 8,7]?> = 1
and since g is a 2-auto-Engel element, we obtain [¢2, o, 3,7] = 1. Therefore
[z2*("=1D a, 3,4] = 1 and this completes the proof. O

4. Abelian n-auto-Bell groups

Clearly, every abelian group is an n-Bell group, but this statement is not
true for n-auto-Bell groups. In what follows, we give some examples of auto-
Bell groups and also discuss some results about n-auto-Bell abelian groups.
Observe that by Proposition 2.3, in this section we may suppose that n > 2.

Example 4.1. (i) Let G be a non-periodic abelian group, and consider the
inverting automorphism « € Aut(G) and a torsion-free element z € G. Then
one can easily see that [z",a] = 72" and [z,a"] = z("V"~1. If G is an n-
auto-Bell group, then we must have —2n = (—1)™ — 1, and this implies that
n € {0,1}. So, G cannot be an n-auto-Bell group for every integer n # 0, 1.
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(ii) In [7], Jamali constructed the following family of groups. For m > 3, let
G, be a 2-group with the following presentation

Gm = {a1,...,am,b: a3 =a3=---=a} =1,a2,_, =% [a1,b] =1,
[am,b] = a1, [ai—1,b] = a2, [aj,ar] = 1,3 <i <m,1 < j < k<m).

The group G,, is of order 22™ with exponent 4 whose automorphism group is
isomorphic to Z’Q”2 and also Z(G,,) = Z5*. Clearly, for every m > 3, G, is a
non-abelian 2-auto-Bell (and hence an n-auto-Bell, for every n > 3) group. By
using GAP [5], one can check that Gg = (Zy x Zy) X Zy.

(iii) Let G = Zg X Zy x Zy = (x) X (y) x (z). Consider the automorphism
a defined by a(r) = zy, a(y) = 22yz and a(z) = z*y?z. One can easily check
that 1 = [2*, a] # [z, a?] and so G is not a 4-auto-Bell group.

Recall that there are only two non-trivial abelian 2-auto-Bell groups, namely
ZQ and Z4.

Observe that if G =2 H x K is an n-auto-Bell group, then so are H and K.
Now, let G be an abelian n-auto-Bell group (n > 3) and « be the inverting au-
tomorphism. Clearly, the identity [2", a] = [z, @] implies that exp(G) divides
2n or 2(n — 1) when n is an even or an odd integer, respectively. By Proposi-
tion 2.3, G is also a (1 — n)?-auto-Bell group. Hence, the exponent of Aut(G)
divides n(n — 2) or (n — 1)? when n is an even or an odd integer, respectively.

By the above statement, it is easy to see that the 3-auto-Bell abelian groups
are actually 2-auto-Bell. Assume that n = 4. Therefore G is a direct sum
of cyclic groups of order 2,4 or 8. Hence, Example 4.1(iii) and the fact that
Zo X Lo, Zy X Z4 and Zg X Zg have an automorphism of order 3, show that G
is isomorphic to one of the groups Zso, Z4, Zg, Zo X Ly, Lo X Zg or Ly X Zsg.

Finally, let G be a 5-auto-Bell abelian group. It is easy to see that exp(QG)
and exp(Aut(G)) divide 8 and 16, respectively. One may check that the abelian
5-auto-Bell groups are actually 4-auto-Bell.

Remark 4.2. Let p be an odd prime, n > 6 and G be an abelian n-auto-Bell
p-group (if any). By the above statement, it is easy to see that exp(Aut(G))
divides n or (n — 1) when n is an even or an odd integer, respectively.

The following theorem may be considered as a criterion for recognition of
abelian p-groups which are not n-auto-Bell.

Theorem 4.3. Let G be a finite abelian n-auto-Bell group with |G| =[]/~ p:"".
Then for every 1 < j < m, the numbers p;j(p; — 1) and [[;", p; divide n or
(n — 1) when n is an even or an odd integer, respectively.

Proof. Suppose that an arbitrary prime p divides the order of G. Clearly, the
Sylow p-subgroup P of G is also an n-auto-Bell group. If p = 2 or 3 the result is
true. Suppose that n is an even integer and p > 5. By considering the inverting
automorphism, we get p|n. Let o : 2 + 2> be an automorphism of P, where
1< A< pand (\,p—1)=1. Then the identity [z",a] = [x,a™] implies that
pl(A™ —nX +n —1). Therefore A" =1 (mod p).
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On the other hand, Euler’s theorem implies that A»~1 = 1 (mod p) and
since (A,p — 1) =1, we get (p — 1)|n. Therefore p(p — 1)|n. Similarly, it may
be shown that p(p — 1)|(n — 1), if n is an odd integer. Therefore the proof is
complete. O

The above theorem immediately yields the following corollary.
Corollary 4.4. There is no abelian n-auto-Bell p-group for n < p(p — 1).

Proposition 4.5. If G is an abelian p(p — 1)n-auto-Bell p-group (p odd and
1<n<p-1), then G=Z,.

Proof. Clearly, Z, is a p(p — 1)m-auto-Bell group for every m € N. It is
enough to show that Z, x Z, and Zy (k > 2) are not p(p — 1)n-auto-Bell.
Since Aut(Z, x Z,) = GL(2,p) and exp(GL(2,p)) = p(p* — 1), we obtain
1 = [zPP=1)7 ] £ [z, a?P~D"] for some z € Z, x Z, and o € GL(2, p).

Also, since p* does not divide p(p—1)n, we get [zPP~D" o] # [z, a?P~D7] =
1 and hence the cyclic group of order p* (k > 2) cannot be a p(p— 1)n-auto-Bell
p-group. (I

Remark 4.6. In the previous proposition, it is not difficult to show that if
n = p, then G = Zj, or Zy>. If n =p+ 1, then G = Z, or Z, x Z, and finally
if n =p+ 2, then G = Z,. Observe that if n > p + 2, then the structure of G
may depend on the odd prime p.
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