Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.4.923

AUTOCOMMUTATORS AND AUTO-BELL GROUPS  

Moghaddam, Mohammad Reza R. (Department of Mathematics Khayyam Higher Education Institute, Centre of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad)
Safa, Hesam (Department of Mathematics Faculty of Basic Sciences University of Bojnord)
Mousavi, Azam K. (Faculty of Mathematical Sciences International Branch Ferdowsi University of Mashhad, Centre of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.4, 2014 , pp. 923-931 More about this Journal
Abstract
Let x be an element of a group G and be an automorphism of G. Then for a positive integer n, the autocommutator $[x,_n{\alpha}]$ is defined inductively by $[x,{\alpha}]=x^{-1}x^{\alpha}=x^{-1}{\alpha}(x)$ and $[x,_{n+1}{\alpha}]=[[x,_n{\alpha}],{\alpha}]$. We call the group G to be n-auto-Engel if $[x,_n{\alpha}]=[{\alpha},_nx]=1$ for all $x{\in}G$ and every ${\alpha}{\in}Aut(G)$, where $[{\alpha},x]=[x,{\alpha}]^{-1}$. Also, for any integer $n{\neq}0$, 1, a group G is called an n-auto-Bell group when $[x^n,{\alpha}]=[x,{\alpha}^n]$ for every $x{\in}G$ and each ${\alpha}{\in}Aut(G)$. In this paper, we investigate the properties of such groups and show that if G is an n-auto-Bell group, then the factor group $G/L_3(G)$ has finite exponent dividing 2n(n-1), where $L_3(G)$ is the third term of the upper autocentral series of G. Also, we give some examples and results about n-auto-Bell abelian groups.
Keywords
n-auto-Bell group; autocentral series; autocommutator subgroup; n-auto-Engel group; n-Bell group;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.4.12, (2008), (http://www.gap-system.org/).
2 P. V. Hegarty, The absolute centre of a group, J. Algebra 169 (1994), no. 3, 929-935.   DOI   ScienceOn
3 A. R. Jamali, Some new non-abelian 2-groups with abelian automorphism groups, J. Group Theory 5 (2002), no. 1, 53-57.
4 L.-C. Kappe and R. F. Morse, Groups with 3-abelian normal closures, Arch. Math. (Basel) 51 (1988), no. 2, 104-110.   DOI
5 M. R. R. Moghaddam, M. Farrokhi, and H. Safa, Some properties of 2-auto-Engel groups, Submitted.
6 M. R. R. Moghaddam, F. Parvaneh, and M. Naghshineh, The lower autocentral series of abelian groups, Bull. Korean Math. Soc. 48 (2011), no. 1, 79-83.   과학기술학회마을   DOI   ScienceOn
7 M. R. R. Moghaddam and H. Safa, Some properties of autocentral automorphisms of a group, Ricerche Mat. 59 (2010), no. 2, 257-264.   DOI
8 D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Parts 1 and 2, Springer-Verlag, 1972.
9 A. Tortora, Some properties of Bell groups, Comm. Algebra 37 (2009), no. 2, 431-438.   DOI   ScienceOn
10 M. Deaconescu, G. Silberberg, and G. L. Walls, On commuting automorphisms of groups, Arch. Math. (Basel) 79 (2002), no. 6, 423-429.   DOI
11 M. Deaconescu and G. L. Walls, Cyclic groups as autocommutator groups, Comm. Al-gebra 35 (2007), no. 1, 215-219.
12 C. Delizia, M. R. R. Moghaddam, and A. Rhemtulla, The structure of Bell groups, J. Group Theory 9 (2006), no. 1, 117-125.
13 R. Brandl and L.-C. Kappe, On n-Bell groups, Comm. Algebra 17 (1989), no. 4, 787-807.   DOI   ScienceOn