Browse > Article
http://dx.doi.org/10.4134/CKMS.2016.31.2.217

REGULARITY OF TRANSFORMATION SEMIGROUPS DEFINED BY A PARTITION  

Purisang, Pattama (Department of Mathematics Faculty of Science Silpakorn University)
Rakbud, Jittisak (Department of Mathematics Faculty of Science Silpakorn University)
Publication Information
Communications of the Korean Mathematical Society / v.31, no.2, 2016 , pp. 217-227 More about this Journal
Abstract
Let X be a nonempty set, and let $\mathfrak{F}=\{Y_i:i{\in}I\}$ be a family of nonempty subsets of X with the properties that $X={\bigcup}_{i{\in}I}Y_i$, and $Y_i{\cap}Y_j={\emptyset}$ for all $i,j{\in}I$ with $i{\neq}j$. Let ${\emptyset}{\neq}J{\subseteq}I$, and let $T^{(J)}_{\mathfrak{F}}(X)=\{{\alpha}{\in}T(X):{\forall}i{\in}I{\exists}_j{\in}J,Y_i{\alpha}{\subseteq}Y_j\}$. Then $T^{(J)}_{\mathfrak{F}}(X)$ is a subsemigroup of the semigroup $T(X,Y^{(J)})$ of functions on X having ranges contained in $Y^{(J)}$, where $Y^{(J)}:={\bigcup}_{i{\in}J}Y_i$. For each ${\alpha}{\in}T^{(J)}_{\mathfrak{F}}(X)$, let ${\chi}^{({\alpha})}:I{\rightarrow}J$ be defined by $i{\chi}^{({\alpha})}=j{\Leftrightarrow}Y_i{\alpha}{\subseteq}Y_j$. Next, we define two congruence relations ${\chi}$ and $\widetilde{\chi}$ on $T^{(J)}_{\mathfrak{F}}(X)$ as follows: $({\alpha},{\beta}){\in}{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}={\chi}^{({\beta})}$ and $({\alpha},{\beta}){\in}\widetilde{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}{\mid}_J={\chi}^{({\alpha})}{\mid}_J$. We begin this paper by studying the regularity of the quotient semigroups $T^{(J)}_{\mathfrak{F}}(X)/{\chi}$ and $T^{(J)}_{\mathfrak{F}}(X)/{\widetilde{\chi}}$, and the semigroup $T^{(J)}_{\mathfrak{F}}(X)$. For each ${\alpha}{\in}T_{\mathfrak{F}}(X):=T^{(I)}_{\mathfrak{F}}(X)$, we see that the equivalence class [${\alpha}$] of ${\alpha}$ under ${\chi}$ is a subsemigroup of $T_{\mathfrak{F}}(X)$ if and only if ${\chi}^{({\alpha})}$ is an idempotent element in the full transformation semigroup T(I). Let $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ be the sets of functions in $T_{\mathfrak{F}}(X)$ such that ${\chi}^{({\alpha})}$ is injective, surjective and bijective respectively. We end this paper by investigating the regularity of the subsemigroups [${\alpha}$], $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ of $T_{\mathfrak{F}}(X)$.
Keywords
full transformation semigroup; regular element; character;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Kemprasit and T. Changphas, Regular order-preserving transformation semigroups, Bull. Austral. Math. Soc. 62 (2000), no. 3, 511-524.   DOI
2 S. Lei and P. Huisheng, Green's relations on semigroups of transformations preserving two equivalence relations, J. Math. Res. Exposition 29 (2009), no. 3, 415-422.
3 W. Mora and Y. Kemprasit, Regular elements of some order-preserving transformation semigroups, Int. J. Algebra 4 (2010), no. 13, 631-641.
4 S. Nenthein, P. Youngkhong, and Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl. 16 (2005), no. 3, 307-314.
5 H. Pei, Equivalences, ${\alpha}$-semigroups and ${\alpha}$-congruences, Semigroup Forum 49 (1994), no. 1, 49-58.   DOI
6 H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Commun. Algebra 33 (2005), no. 1, 109-118.   DOI
7 H. Pei, A note on semigroups of linear transformations with invariant subspaces, Int. J. Algebra 6 (2012), no. 27, 1319-1324.
8 H. Pei and D. Zou, Green's equivalences on semigroups of transformations preserving order and an equivalence relation, Semigroup Forum 71 (2005), no. 2, 241-251.   DOI
9 J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum 83 (2011), no. 1, 134-146.   DOI
10 J. Sanwong and W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 2008 (2008), Article ID 794013, 11 pages.
11 R. P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Austral. Math. Soc. 77 (2008), no. 3, 441-453.
12 P. Zhao and M. Yang, Regularity and Green's relations on semigrouops of transformatiions preseving order and compression, Bull. Korean Math. Soc. 49 (2012), no. 5, 1015-1025.   DOI
13 L.-Z. Deng, J.-W. Zeng, and B. Xu, Green's relations and regularity for semigroups of transformations that preserve double direction equivalence, Semigroup Forum 80 (2010), no. 3, 416-425.   DOI
14 R. Chinram, Green's relations and regularity of generalized semigroups of linear transformations, Lobachevskii J. Math. 30 (2009), no. 4, 253-256.   DOI
15 A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, RI, USA, 1961.
16 A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, RI, USA, 1967.
17 P. Honyam and J. Sanwong, Semigroups of transformations with invariant set, J. Korean Math. Soc. 48 (2011), no. 2, 289-300.   DOI
18 P. Honyam and J. Sanwong, Semigroups of linear transformations with invariant subspaces, Int. J. Algebra 6 (2012), no. 8, 375-386.