Proceedings of the Korean Institute of Building Construction Conference (한국건축시공학회:학술대회논문집)
The Korean Institute of Building Construction
- Semi Annual
Domain
- Construction/Transportation > Construction Engineering/Materials/Management
2008.11a
-
In this study, batcher plant composition test and mock-up test were carried out to conduct comparison and analysis on flow behavior and strength properties of concrete at early age. As a result, it was found that slump and amount of air in batcher plant composition test reached the target range. As for compressive strength, composition using HESPC showed the most excellent strength development. In mock-up test which was carried out to find out the strength properties, two methods with specimen and core test body both revealed HESPC as the most excellent composition. However, strength estimation with ultrasonic survey presented less reliable data. As a result of the previously conducted indoor composition test and the mock-up test in this study, target performance of concrete at early age was 4day/cycle. It was found that the optimum conditions that meet the required strength, 5MPa/18hr and 14MPa/36hr in mullion and transom are; curing temperature above 15℃, W/B 45%, unit-water 165kg/㎥ and CHC cement.
-
We constructed Seal type waterproofing with adhesive and swelling properties in the field of construction work as yet. But we have many problems of seal type waterproofing with adhesive and swelling properties for construction. Because it has high viscosity, so wokers are too adhered for the work. So, we developed and applied about the high temperature and spray equipments of piston type better than before. We able to be expect that cost reduction and increase construction ability by high temperature and spray equipments of piston type.
-
This paper is to present the performance data for improved direct setting method using tile bond for application of porcelain tile under 1 percent absorptance. For this purpose, improved direct setting method type 1 & 2(tile bond curing time 0, 24H) were compared with the conventional setting methods(including direct setting method and improved pressure setting method) in the sight of the adhesive stability of porcelain tile. It tested for tiles after 14, 28days under standard condition and severe conditions. The severe conditions were water immersion, heat ageing(70℃) and freeze-thaw cycle. On the basis of test results, the adhesive strength of direct setting method was lowest for the conventional setting methods. But improved direct setting method using tile bonds(A, B) came close to the result of improved pressure setting method using tile bonds.
-
This study investigated the fundamental properties and cracking shapes of mortar for the floor after Mock-up test with FRP as wastes of crafts. For the flowability of fresh mortar without FRP, it was favorable compared with fresh mortar using FRP, and the drop time at O-Lot was similar to the flowability. For the compressive strength of fresh mortar with FRP, it was increased about 10% compared with plain. The flexible strength was also increased on fresh mortar with FRP. On the cracking shape, there was many penetrated crack in all directions on plain. In the case that FRP was used, it seemed to have excellent resistance to the crack occurrence because there was no directive crack at a limited part.
-
In this paper, the temperature history and the strength development of concrete corresponded to various bubble sheets layer and curing temperature. Based on the results, In case of the test temperature of -5℃, concrete subject in the exposure condition, result in a frost damage at initial stage by a fall of below zero temperature. In case of the combination of PE film and non woven fabric was after 36 hour, and combination of bubble sheet over double, a tremendous insulating effect of bubble sheet over double is confirmed due to the temperature of concrete fall of below zero temperature after 60 hours. Meanwhile, regarding the -15℃ of temperature, special measure for insulation curing is necessary to secure stability against early frost damage because frost damage was not affected by the lapping thickness of bubble sheet subjected to severe cold weather condition.
-
This study investigated the application of red muds, which were industrial wastes fired at 800℃, with a coloring agents. The results were summarized as following. The slumpflow, air content and unit weight volume were satisfied with each target values. The setting time was shortened on the case that 3 % of the red coloring agent and fired red mud were simultaneously replaced about 1 hour compared with the previous study which was 6 % of the red coloring agent was individually used. For the length change ratio caused by drying shrinkage and depth of neutralization on hardened concrete, they were declined when 3 % of the red coloring agent and fired red mud were simultaneously replaced compared with the previous study. On the measurement of forming colors, the case that 3 % of the red coloring agent and fired red mud were simultaneously replaced was similar to the previous study.
-
This study aims to examine the effects of thickness of the concrete members and curing temperature on the properties of low heat concrete through heat of hydration analysis. Type of the members that was analyzed in the experiment is ternary mixture of ordinary portland cement, blast-furnace slag incorporating ratio(20%) and fly ash incorporating ratio(30%), which formed a mat foundation. Thicknesses of the concrete members were 1, 2 and 3(m) and three levels of curing temperatures were 10, 20 and 30(℃). They were applied to analyze the effects on the temperature and thermal cracking index. As a result, for temperature history, temperature difference between the central area and the surface tended to decrease as the thickness of the concrete members get thinner. For the temperature cracking index, on the other hand, the risk of cracking tended to decrease as the curing temperature gets higher and as the thickness gets thinner.
-
According to the recent rapidly increasing that construction works are gradually Manhattanized mainly the grand scaled residential buildings, the foundation of the building that is related to safety is increasing for building as a grand scaled mat concrete. Because mat concrete can not be simultaneously placing of concrete in a great quantity due to the circumstance at the field, the inequal deformation of the tensile stress that according to the time lag of hydration heat between the upper layer and the lower layer is affecting as a cause that is the possibility of crack occurrence by increasing. Accordingly, this research checked the efficiency of super retard concrete in applying real structures, and we implemented the preparatory experiment to settle up the inequal deformation of the tensile stress substantially that is according to the time lag of placement between the upper layer and the lower layer by controlling the setting time using the super retarding agent. As the result of test, the more target of delay time lengthened, the more fluidity increased and air content indicated a little differences. There was from 2 to 10 hours between the standard curing and the outside curing at the setting time and in case of calculating the rate of mixing at real structure is required that mix promotion, increasing the amount of mixing, by setting up the curing temperature. The super retard concrete showed the result that in compressive strength, early-age strength was smaller than normal concrete whereas it was same or more figures from at the aging 28days because of the super retarding agent.
-
CWSII method was developed to overcome the problems of frequent occurrence in the application of existing downward construction methods, especially in the case of using slurry wall instead of SCW or CIP as a retaining wall. By the improvements in connecting steel beams with the wall, CWSII method is able to ensure the settlement of a steel beam and the diaphragm effect of a slab while reducing the degree of difficulty and the term of works and the cost of construction. As the desired results, CWS method can be applied as a practical downward construction method regardless of the type of retaining wall. In this paper, besides the concept and features of CWSII method, it can be seen that the method can provide reliable and economical performances by comparing with existing methods.
-
The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire-resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire-resistant boards. 1. Improved PF board was prepared by adding inorganic fiber to existing board and using aggregate with grain size of 3mm or less. Molding was done at temperature higher than that for existing PF board molding. While wet curing is used for existing PF boards, this study used dry curing in order to enhance heat insulation performance. 2. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116℃ in 15mm, 103.8℃ in 20mm, and 94℃ in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3-hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.
-
This paper is to investigate the change of the period of hot weather concrete with elapse of age based on climate data. Climate data for 30 years and 5 years are used respectively. Determination of the period of hot weather concreting on architectural execution in Korea according to the specifications of AIJ, KSCE, and ACI are discussed. According to the research, the period of hot weather concreting with each specification in most regions lasts over 35 days. Compared with the period of cold weather concreting in hillside and inland area, coastal areas have shorter period in the same latitude. The period of hot weather concreting tends to decrease with high latitude. As expected, with the elapse of age, the period of hot weather concrete exhibited to decrease, especially, big city like Seoul, Busan etc had remarkably increased period by as much as a week. This is due to the global warming and industrialization effect with the elapse of age.
-
According to the recent tendency that the buildings in the downtown concerning rising land prices and efficient use of building are gradually Manhattanized mainly the grand scaled residential buildings, structure of the buildings relates to safety and so the very thick mat concrete is selected as the foundation of architectures. Because mat concretes can not be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred because of the time lag. Thus, this study checked the efficiency to apply "The hydration heat controlling method of mass concrete for horizontal partition pouring construction" to the skyscraper sites under construction at Haiundai in Busan. After applying this method, the result of observation that the cracks by hydration heat in all over the placement surface did never be founded. Also, in case of the economic analysis that the hydration heat reduction method using super retarding agent by difference of setting time is approximately 80% cheaper than the hydration heat reduction method by pipe cooling in the construction expenses.
-
Not only mechanical properties, bonding properties, electro chemical properties, etc. but also fire safety is required in patch repair materials such as polymer modified cement mortar (PCM) which are used to deteriorated reinforced concrete structure. Unfortunately, it is very difficult to choice the appropriate repair materials because there are not enough information about fire safety properties of PCM. In this study, The combustion characters of PCM were evaluated through the heat release rate test and non-combustibility test. The pyrogenicity test uses the cone calorimeter based on the oxygen consumption method. The non-combustibility test is from the temperature change inside the furnace during the test. The effect of the types of polymer and polymer content were evaluated from the series of test. The results are like followings. 1) The higher the W/C of PCM, the lower the gross calorific value and heat generation rate in the heat release rate test. The amount of heat generation of PCM is like the order of VVA, EVA, and SBR in this study. 2) Some materials such as E45-100, E50-100, E60-100, S50-50, and S50-100 were estimated as not appropriate building materials in the non combustibility test.
-
Blast Furnace slag a pigiron waste that is produced more than 800 thousand tons per year, and micronized double quenching blast furnace slag improves flexibility of concrete, and even shows improvement effect of long-term intensity. However, the concrete that used micronized double quenching blast furnace slag is restricted in its use because of many problems to assure early intensity. Even micronized blast furnace slag can assure its early intensity of concrete when maximizing, and is considered that can be applied in high strength of blast furnace slag as an alternation material for Silica-fume that depends on overall import. Hereby this paper is revised activity index and fluidity of mortar that used Nano Slag that is produced by rotten Nano crush equipment to propose its size, and possible utility of Nano Slag that was produced by blast furnace slag made in Korea as an alternation material, with the conclusion as following. 1. To measure micronized Nano slag, it is judged that it should be in progress with BET method that is based on micronized Silica-fume for concrete. 2. As a result, the test based on KS L ISO 679 is shown to satisfy the basic additive size of KS F 2563 and of KS F 2567, and to determine new combination of stipulations. 3. The strength development of Nano Slag was shown excellent in the daily initial installment of 1, 3, 7 days against the basic additive. This is judged that contains CaO controlling initial strength against Silica-fume, and contributes to higher fineness than the basic blast furnace slag 1 type.
-
Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can be used widely for various purpose in the archtectural and civil structures. This paper were examined the influence of the mixing factor on the fresh and hardened properties of lightweight concrete that are used 2types of the differences properties of lightweight aggregates. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are have need higher s/a; 2~4% on mixing proportion. Lightweight concrete was somewhat exhibit lower compressive strength than ordinary concrete. However it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic the lightweight aggregate are highest performance in fresh and hardened concrete.
-
With excellent mechanical properties and durability of concrete and construction materials so far because, as has been the most widely used. However, existing in the electrical conductivity of the concrete material is given the characteristics of the concrete can not expand a lot of applications. For example, the cathode material of a parameter, ground resistance materials, electromagnetic shielding materials, sense of self-diagnostic materials, and anti-static materials are available. Currently, research on the electromagnetic shielding and absorbing mortar is incomplete. And Japan, the United States is part of the research in research institutions. Therefore, this research rate in the mouth in a different mix of conductive graphite particle the physical properties of cement mortar about the basic performance characteristics of the robbery was to figure out.
-
As super-high-strength concrete uses a large amount of binder, there is an autogenous shrinkage strain larger than dry shrinkage and it degrades the quality of structures. Thus, we need a technology to minimize the shrinkage strain of super-high-strength concrete. Accordingly, the present study prepared super-high-strength concrete with design strength of over 100MPa and, using an embedded gauge, measured the shrinkage strain of free shrinkage specimens for super-high-strength concrete containing expansion agent. According to the results of this study, the expansion rate of concrete increased in the early stage due to the admixture of expansion agent, but the shrinkage rate went down with the lapse of time. The effect of the admixture of expansion agent on compressive strength appeared insignificant. Further research shall be made on different kinds of expansion agents and various mixture ratios for basic analysis to reduce autogenous shrinkage of super-high-strength concrete.
-
This research analyzed the basic characteristics of unhardened concrete and the compression strength characteristics of hardened concrete according to liquidity retention agent mix rate change to improve the liquidity fluidity retention performance of high performance concrete, and produced the following results. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, which increased fluidity retention agent mix rate, slump flow decreased, and in the case of slump flow according to the progress time change by the fluidity retention agent mix rates, the more fluidity retention agent mix rate increased, the lower slump flow change rate became. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, fluidity retention agent mix rate increased compared to non-mixture of fluidity retention agent, and the air amount by progress time change by the fluidity retention agent mix rates slightly increased, however target range is still met and unit volume mass is inversely proportional to air amount. Compression strength according to age progress by the fluidity retention agent mix rates was shown to increase slightly with increase in fluidity retention agent mix rate, and yet the difference was not significant.
-
This research performed strength improvement analysis after evaluating strength characteristics by estimated temperatures to evaluate the real time strength performance of 50 to 80 MPa high performance concrete equipped with heat resistance, and the results are as follows. The lesser W/B and the lesser target slump flow value difference, compression strength was shown to increase, and the more curing temperature becomes, the strength increased accordingly. According to the correlation review result of strength improvement analysis by estimated temperature change performed using logistic analysis model, the compression strength value predicted with logistic curve expression and the compression strength value measured in experiment were shown to have similar correlation, and the strength improvement analysis value by logistic model was shown to be estimated good when W/B is high.
-
As the number of concrete building structures in marine environment increases, it is important to study and predict the durability and the compound deterioration of the concrete which is exposed in both chloride and freezing-thawing damage. The concrete's resistance against freezing and thawing is tested based on KS F 2456, while its chloride ion diffusion coefficient is evaluated based on NT BUILD 492. In result, the more exposure to freezing and thawing process, the shorter life it gets, due to the increased amount of chloride ion diffusion coefficient.
-
Because the physical·chemical properties of bottom ash are inferior, most bottom ash is disused. But the use of bottom ash helps in reducing environmental pollution and solving some bottom ash waste problems. So, we have been investigating about the optimum mixture, hardening mechanism, curing condition and environmental safety of a paste composed of a bottom ash and alkali. optimal mixing proportion of bottom ash solid was cement 5%, water 30%, NaOH 10%. After curing during 28days, bottom ash solid can be achieved compressive strength 15.13MPa. As a result, Compressive strength tests of alkali-activated bottom ash have potential as a replacement of coarse aggregate.
-
As high-rise buildings with 100 or more stories are being constructed, it is inevitable to use high-performance materials including high-performance concrete. What is most important in high-performance concrete is extremely high strength in order to reduce the section of members in high-rise buildings. During the last several years, there have been active researches on Ultra-high-strength concrete. While these researches have been mostly focused on strength development, however, other accompanying physical properties have not been studied sufficiently. Thus, this study purposed to obtain and analyze data on the physical-mechanical properties of Ultra-high-strength concrete through experiments and to use the results as basic information on required performance of concrete used in high-rise buildings.
-
In these days, properties of concrete has been demanded to be high performance because concrete structure was bigger and higher. So studies on high strength concrete and lightweight concrete has been frequently done. But lightweight concrete has been used to limited non-structural elements in th country. Lightweight aggregate mixed with lightweight concrete was only coarse aggregate in case of the structural lightweight concrete. In the country studies on the lightweight concrete was poor and unvaried. Also it is difficult to be practical use of lightweight concrete was that it has been expensive. It was study on the using fine lightweight aggregate with lightweight concrete to crushed by-products and wastes to get to make foamed glass with recycled glass. So it was tested by fine aggregate standard and mixed with.
-
The Purpose of this is properties of CFT filled with expansion concrete. CFT(concrete filled steel tube) is the structure that circle shape steel column filled with concrete. 3 kinds of expansive additives and variation of replacement rate. we changed expansive additive from 0%, 10%, 20%, 30% of ratio of addition rate are selected for this experiment. Merits of CFT are concrete internal force rising influenced by steel shape restriction, reinforcing the local buckling, excellent resistance to transformation. Generally, High rise building using CFT utilize the high strength and fluidity concrete for packing the tube inside. As the result a steel tube charged expensive concrete has stiffness 1.5times more than a steel tube not charged concrete. Increase of resisting power about compressive stress by binding expansion of expansive concrete affects strength increase and softness.
-
As buildings becoming higher and more enormous the portion of steel works has been increased, which makes the schedule planning and management more significant. However, in actual construction sites, management is more based on a manager's construction experience than productivity data accumulated in previous projects. Moreover, most of the existing studies also featured a theoretical approach rather than an analysis of data straightforwardly collected in sites. In this study, a steel-erection site was visited to collect productivity data. The study found that there were significant disparities between aboveground work productivity and underground work. However, the productivities of 'first node on ground' and 'second node on ground' were estimated similar. The productivity data collected and factors affecting the productivity will help managers to plan and control their similar steel-erection works. This study will also be beneficial for those performing related studies.
-
For the construction of Top-Down structures, it is crucial to have a solid connection between prefounded columns and slabs. This paper presents a new construction method for the connection when using a circular Concrete Filled Tube (CFT) as a prefounded column as an alternative to currently using wide flange type columns. The development of shear studded jackets along with a shear band suitable for the circular shape of the column has been made. The details and mechanism of the connection is explained together with the results of experiments which verified the structural integrity of the connection.
-
Kang, Seung-Ryong;Rhim, Hong-Chul;Kim, Seung-Weon;Park, Dae Young;Kim, Dong-Gun;Song, Jee-Yun;Jeong, Mee-Ra 135
For deep basement construction of buildings downtown, the usage of Top-Down Method is increasing as much as ever from strong demand. One of the essential elements for the construction by Top Down Method is the pre-founded columns, which are installed in the ground and on which a building is installed. The fact that the pre-founded columns are placed in the ground makes them susceptible to its plumbness; this aspect distinguishes pre-founded columns from general columns. However, there are no criteria for erection tolerance. Therefore, field-measured-data concerning out-of-plumb of pre-founded columns in the construction field should be accumulated and investigated so that criteria and specifications for the erection tolerance of pre-founded columns may be established through the understanding of its aspects. In this paper, we investigate out-of-plumb of pre-founded columns for the construction case and analyze its aspects, and propose considerations for design and construction phase. -
Because of world financial crisis, The Korea domestic construction industry has been damaged hugely on material supplying work. A current domestic material supply system can't react properly on a great rise of foreign exchange rate and raw material price, so the system has a problem which is not properly supplying material. To solve this problem, a more innovative material supply work system is seriously needed than ever. So this study wants to improve material supply system for supplying material right time, right place through applying a web-based system. Applying this, overall process of material-supply-work can be done on a web-based system for immediately understanding change of ordering and warehousing by material-supply-schedule to a domestic construction field.
-
According to consumer's needs of agriculture like vegetables and paprika, etc. are being various, the agricultural facilities are diversifying. In current trends of agricultural facilities, area and heigh of those is becoming bigger and higher to plant various agriculture. But the software and support for constructing the various agricultural facilities is insufficient. And understanding the current status of agricultural facilities to help farmer and users of agricultural facilities is needed. Therefore, in this study, the status of the agricultural facilities are examined by interviewing farmer and users of facilities. The results of this survey on the status of agricultural facilities are presented. Firstly, the construction cost of facilities is most important. Secondly, the materials and technology for constructing facilities is also important.
-
In today's agriculture, there has been an increase in the construction of agricultural facilities due to the need to maximize land usage and many customer demands for products. But many agricultural facilities are constructed by not qualified construction company so it often causes many accidents like breakdowns and repairs. this study is to understand the construction process of agricultural facilities. The results of this research are that greenhouse is lack of the law of contract and the performance and need for the construction process supervision. Vinyl House is needed to supervise the design of the structure.
-
This paper shows construction management focused on waste management in construction project in planning stage Construction waste is given a great deal of weight on total waste. And it is issued in government policy. But it show the limit of problem.As a result of having referenced idea as describe above, this paper will be studied by this process. First, present condition of development waste, cases is researched in construction projects. Second, problems of development pattern and management system are investigated and checked in project cases. Third, maintenance and management method project are proposed by application of planning Stage.
-
For deciding the profitability and feasibility of the construction project, the schematic estimation has to not only link the design decision-making but also estimate the cost with reliability. The Object-based schematic estimation system was developed for easily linking with design-making and supports to evaluate the design alternatives in the design development stage but didn't consider the cost estimated by object supplementary and parameter work item. This research presents the Integrated Object-Parameter Schematic Estimation Model in the design development stage that can lead to more accurately estimate the cost through analyzing historical data from the high-storied office buildings. For the development of the proposed model for schematic estimation, after analyzing and classifying the work items from the Bills of Quantities(BOQs) and drawings of historical data, this research proposed the methods of estimating cost in accordance with attributes of each work item using regression analysis. In addition, a case study is performed for the effectiveness as comparing the proposed model with the previous estimating model.
-
HwaSungSungYouk was one of the construction project in viewpoint of today's construction management and various information how to build the HwaSung at the last of the eighteen century had been recored in HwaSungSungYoukEuGye. The purpose of this study is to analyse the HwaSungSungYoukEuGye' management technic in viewpoint of today's construction management. In the record, there are a lot of informtion relate to record management, time management, cost management, etc. and the concept of the managements can be applied to today's construction project effectively. The concept and detail of the HwaSungSungYouk's project management should be analysed more.
-
This is green roof bottom system which composed by aluminum valve and glass fiber together as major reinforcement, so the cooper sheet can have root proof, and using recycled tire gel-type membrane waterproofing system which dost not contains VOCs. The copper sheet reduce the plants' root growing, so it helpes to maintain the waterproofing layer and stability of root proofing. Gel type membrane waterproofing system can do waterproofing, stress dispersion, and reducing leakage expansion. So those two materials can help each other to make green roof bottom layer would have the stability and durability.
-
The purpose of this study is analyzing the frequent defect about each inspection part of Pre-qualification of residential building reconstruction and finding the cause of occurrence so that can supply a solution of the problem during the plalnning and constructure. The frequent defects are naturally following the deterioration and more occur in the structure body than a skin. The meaning that supply the cause and the managing method for preventing frequent defects about each inspection part is as follows. To prevent the defects, it is needed that the choice of the appropriate materials, giving a sufficient space for facilities, reliable constructure for the part of expecting the defects. The quality of life will go up due to making a good dwelling environment and extending the life cycle of structures from the inspection and managing the part of expecting defects.
-
It is necessary to develop a technology for effectively controling explosive spalling of high strength concrete caused increasing construction of high rise building and putting up the fireproof standard of high strength concrete by MLTM (Ministry of Land, Transport and Maritime Affairs). Accordingly, it was investigated basic properties such as slump, air content and compressive strength, and fire resistance properties of high strength concrete using polypropylene fiber for field application as a countermeasure for explosive spalling of concrete on fire in this study, As a test result, it was confirmed that PP fiber is available as fire resistance method of high strength concrete.
-
This study enforced to produce the planting concrete block which could be applied to various slopes economically. First of all, the physical properties was investigated with the various types of aggregate and aggregate ratio of the paste for the lead to mixture proportion of the planting concrete. As a result, the orchid stone as aggregate and 30% of aggregate ratio of the paste were used as the basic mixture proportion considering 20~30% of maintained void ratio for the growth of plant, over 20% of capillary suction for holding water, and 3MPa as the minimum strength. For the result of the test to the new planting block which was quite different from existing planting concrete block, it could complement the problems and be possible to produce effectively and economically because various slopes like 40゚~75゚, continual produce by extrusion, and pumping out were possible were possible.
-
With recent trend in domestic and global market requiring architectures' conversion into skyscrapers seasoned with the features of landmarks, structural problems in relation with explosive spatting during fire emergencies are arising as controversial issues. Accordingly, many productive researches have been made in relation to the reinforcement techniques for improving fire resistance and the number of applications in the field is gradually increasing. In this study, a ductile outline form using ECC (Engineered Cementations Composites) was made with improvements on the structure and fire resistance to examine its applicability. Also, currently in Japan, the number of studies and applications is increasing focusing on reduction of construction time and improvement of workability with application of Half-PCa method. However, using such method of construction, large structural members decrease the utilization of space and architecture-wise, there is a disadvantage of the weight increase. Therefore, in such context, it would be worth reducing the weight of the structural members by reducing the size using ECC. In addition, its excellent pseudo strain-hardening due to fiber may have great effects on seismic designs. In the mean time, this study planned 3 equal conditions for mix water, PVA fiber and additives excluding binder and refractory to evaluate the mechanical properties of resistance against pressure and internal force. Finally, an evaluation was executed on the fire resistance of the newly made ductile outline form. As a result, from ECC-I to ECC-III, all showed excellent mechanical properties due to pseudo strain-hardening and in the fire resistance test conducted with ISO 834 heating curve, most of them tended to be in the range of the reference temperature (538℃-180min), so there was no occurrence of any explosive spatting.
-
Recently, selects method of waterproofing where is suitable with method and material physical properties, construction technique, Productive technique and specifications and maintenance techniques evaluation for the same evaluation method is coming to be presented. Respects the application which select system is substantial objectively reflects a weight to evaluation item the research for is necessary. This research the evaluation which in order is effective and the decision-making to be possible about technically countermeasures for a quality security from waterproofing materials, method selection processes, clearly responsible dividing of construction and maintenance techniques. A sets weight of evaluation item for right select system, it stratify the causes which affect in priority based on AHP.
-
Recently automatic construction system is attended in construction domains because of the increase of aged workers and the shortage of the experienced. The research level of automatic construction system in Korea will soon attain to the stage of full automation like Japan, which is the highest level in the world. However, in the fully automated level, it is difficult for the automatic system to operate flexibly like the human in various work condition. In the result, the higher the level of automation in the system is, the less efficient the automatic system work in the site. So, it's necessary the development material design to compensate for the flexibility shortage of the system. Therefore, this study proposes the development process to material design suitable for automatic construction system using QFD technique.
-
-
Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.
-
Cable systems are a construction of elements carrying only tension and no compression or bending in membrane structure. Tensile membrane structures are most often used as roofs as they can economically and attractively span large distances. But cable systems have weaknesses to vibration by earthquake, wind and vehicle loads. Damage detection of cable systems by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. If cable snaps are occurred to cable release and tear in tension structures, these are set up a vibration. So, we used piezo-electric materials, and The principle of operation of a piezoelectric sensor is that a physical dimension, transformed into a force, acts on two opposing faces of the sensing element. In this study, the development on test method of cable system is proposed and tested by tensile strength using piezo-electric materials.
-
Recently, The high Air-Tightness and high heat insulation for building construction cause a ventilation air volume deficiency. Also, Worldwide high energy price is strongly urging to economize the air conditioning energy. Therefore Heat Recovery Ventilation is used for the satisfaction of ventilation air volume and building energy saving. Accordingly, this study dose the heat exchanger performance evaluation and economic efficiency evaluation of Heat Recovery Ventilation. And, we wish to make a basic study about HRV System application of HVAC System and Multi System Air-conditioning.
-
The purpose of this study is to test performances of 14 types of root barrier materials by applying testing plants and soils suitable for weather and natural features of Korea. For testing plants, Plioblastus pygmaed Mitford A. and Pyracantha angustifolia have been selected. For testing soil, mixture of pearlite and peat moss in 3:1 ratio(volume). Testing container has been fabricated with duplicated structure having inner and outer containers. And the outer container has 2 hinges on its side wall to allow opening and closing. Wet rock wool with 50mm in thickness has been inserted between inner and outer containers to allow root to penetrate through root barrier material and continue to grow. We planted 12 Plioblastus pygmaed Mitford A. and 4 Pyracantha angustifolia per one testing container. Three testing samples have been made for 1 type of root barrier material, which become a total 42 specimens. Planted testing samples have been installed within the greenhouse, which will be observed regularly for 2 years from now on. We started test from July 11, 2008 and had performed intermediate observations every month for initial 3 months. From the 3rd intermediate observation on Sept. 18, we confirmed that 6 types of root barrier materials have penetrated roots. Even though two types of them(EDPM Sheet, Polyethylene Sheet) have been generally used as root barrier materials for roof planting system, all of three testing samples have a lot of penetrated roots. This result proves that it is not reasonable to introduce testing methods of root barrier from Europe or Japan.