International Journal of Naval Architecture and Ocean Engineering
The Society of Naval Architects of Korea
- Monthly
- /
- 2092-6782(pISSN)
- /
- 2092-6790(eISSN)
Aim & Scope
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
https://www.journals.elsevier.com/international-journal-of-naval-architecture-and-ocean-engineering KSCI KCI SCOPUS SCI SCIEVolume 11 Issue 1
-
Nowadays, the study on Floating Offshore Wind Turbines (FOWTs) is being performed globally. Dozens of numerical simulation tools have been developed for designing FOWTs and simulating their performances in combined wave and wind environments. On the other hand, model tests are still required to verify the results obtained from numerical simulation tools. To predict seakeeping performance of the OC3-Hywind platform, a OC3 spar model moored by a 3-leg catenary spread mooring system with a delta connection was built with a 1/128 scale ratio. The model tests were carried out for various sea states, including rotating rotor effect with wind in the Ocean Engineering Wide Tank, University Of Ulsan (UOU). The model test results are compared with the numerical simulations by UOU in-house code and FAST.
-
Goo, Bongeun;Lee, Joohee;Seo, Suwon;Chang, Daejun;Chung, Hyun 11
In product design, the initial design stage is being increasingly emphasized because it significantly influences the successive product development and production stages. However, for larger and more complex products, it is very difficult to accurately predict product reliability in the initial design stage. Various design methodologies have been proposed to resolve this issue, but maintaining reliability while exploring design alternatives is yet to be achieved. Therefore, this paper proposes a methodology for conceptual design considering reliability issues that may arise in the successive detailed design stages. The methodology integrates the independency of axiomatic design and the hierarchical structure of failure mode, effects, and criticality analysis (FMECA), which is a technique widely used to analyze product reliability. We applied the proposed methodology to a liquefied natural gas fuel gas supply system to verify its effectiveness in the reliability improvement of the design process. -
Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan 22
On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms. -
Jasak, Hrvoje;Vukcevic, Vuko;Gatin, Inno;Lalovic, Igor 33
A comparison between sea trial measurements and full-scale CFD results is presented for two self-propelled ships. Two ships considered in the present study are: a general cargo carrier at Froude number$F_n=0:182$ and a car carrier at$F_n=0:254$ . For the general cargo carrier, the propeller rotation rate is fixed and the achieved speed and trim are compared to sea trials, while for the car carrier, the propeller rotation rate is adjusted to achieve the 80% MCR. In addition, three grids are used for each ship in order to assess the grid refinement sensitivity. All simulations are performed using the Naval Hydro pack based on foam-extend, a community driven fork of the OpenFOAM software. The results demonstrate the possibility of using high-fidelity numerical methods to directly calculate ship scale flow characteristics, including the effects of free surface, non-linearity, turbulence and the interaction between propeller, hull and the flow field. -
Liu, Zhijun;Cho, Shingo;Takezawa, Akihiro;Zhang, Xiaopeng;Kitamura, Mitsuru 44
Designing sophisticate ship structures that satisfy several design criteria simultaneously with minimum weight and cost is an important engineering issue. For a ship structure composed of a shell and stiffeners, this issue is more serious because their mutual effect has to be addressed. In this study, a two-stage optimization method is proposed for the conceptual design of stiffeners in a ship's prow. In the first stage, a topology optimization method is used to determine a potential stiffener distribution based on the optimal results, whereupon stiffeners are constructed according to stiffener generative theory and the material distribution. In the second stage, size optimization is conducted to optimize the plate and stiffener sections simultaneously based on a parametric model. A final analysis model of the ship-prow structure is presented to assess the validity of this method. The analysis results show that the two-stage optimization method is effective for stiffener conceptual design, which provides a reference for designing actual stiffeners for ship hulls. -
Choi, Yoo Youl;Lee, Seok Hee;Park, Jae-Cheul;Choi, Doo Jin;Yoon, Young Soo 52
Marine emissions of Volatile Organic Compounds (VOCs) have received much attention because the International Maritime Organization (IMO) requires the installation of vapour emission control systems for the loading of crude oils or petroleum products onto ships. It was recently recognised that significant corrosion occurs inside these vapour emission control systems, which can cause severe clogging issues. In this study, we analysed the chemical composition of drain water sampled from currently operating systems to investigate the primary causes of corrosion in vapour recovery systems. Immersion and electrochemical tests were conducted under simulated conditions with various real drain water samples, and the impact of corrosion on the marine vapour recovery system was carefully investigated. Moreover, corrosion tests on alternative materials were conducted to begin identifying appropriate substitutes. Thermodynamic calculations showed the effects of environmental factors on the production of condensed sulphuric acid from VOC gas. A model of sulphuric acid formation and accumulation by the characteristics of VOC from crude oil and flue gas is suggested. -
This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.
-
An improved three dimensional Rankine source method is developed to solve numerically water wave problems in time domain. The free surface and body surface are both represented by continuous panels rather than a discretization by isolated points. The integral of Rankine source 1/r on free surface panel is calculated analytically instead of numerical approximation. Due to the exact algorithm of Rankine source integral applied on the free surface and body surface, a space increment free surface source distribution method is developed and much smaller amount of source panels are required to cover the fluid domain surface than other numerical approximation methods. The proposed method shows a higher accuracy and efficiency compared to other numerical methods for various water wave problems.
-
Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae 82
A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once. -
Based on Nonlinear Finite Element Analysis (NFEA), this paper focuses on the bi-axial ultimate strength of typical bottom structures under corrosion. On one hand, uniform and not simultaneous corrosion across different structures is introduced, and surrogate models by Gaussian Process (GP) are built for both longitudinal and transverse cases individually, and corresponding probabilistic characteristics are investigated; meanwhile, corrosion effects on interaction between bi-axial stresses at ultimate state are studied. On the other hand, non-uniform localized pitting corrosion of normally distributed circular shapes is introduced, and different pitting corrosion densities are considered; structural bi-axial ultimate strengths under pitting corrosion are studied, and the results are compared with that from equivalent uniform corrosion; the probabilistic characteristics of structural ultimate strength in life cycle are studied; finally, the ultimate strength under randomly distributed pitting corrosion is compared with results from normally distributed pitting and uniform corrosion under various boundary conditions.
-
This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.
-
Shin, Yong Jin;Kim, Moon Chan;Lee, Joon-Hyoung;Song, Mu Seok 131
In this paper, a Wavy Twisted Rudder (WTR) is proposed to address the discontinuity of the twisted section and increase the stalling angle in comparison to a conventional full-spade Twisted Rudder (TR). The wave configuration was applied to a KRISO Container Ship (KCS) to confirm the characteristics of the rudder under the influence of the propeller wake. The resistance, self-propulsion performance, and rudder force at high angles of the wavy twisted rudder and twisted rudder were compared using Computational Fluid Dynamics (CFD). The numerical results were compared with the experimental results. The WTR differed from the TR in the degree of separation flow at large rudder angles. This was verified by visualizing the streamline around the rudder. The results confirmed the superiority of the WTR in terms of its delayed stall and high lift-drag ratio. -
Hizir, Olgun;Kim, Mingyu;Turan, Osman;Day, Alexander;Incecik, Atilla;Lee, Yongwon 143
In this study, numerical simulations for the prediction of added resistance for KVLCC2 with varying wave steepness are performed using a Computational Fluid Dynamics (CFD) method and a 3-D linear potential method, and then the non-linearities of added resistance and ship motions are investigated in regular short and long waves. Firstly, grid convergence tests in short and long waves are carried out to establish an optimal mesh system for CFD simulations. Secondly, numerical simulations are performed to predict ship added resistance and vertical motion responses in short and long waves and the results are verified using the available experimental data. Finally, the non-linearities of added resistance and ship motions with unsteady wave patterns in the time domain are investigated with the increase in wave steepness in both short and long waves. The present systematic study demonstrates that the numerical results have a reasonable agreement with the experimental data and emphasizes the non-linearity in the prediction of the added resistance and the ship motions with the increasing wave steepness in short and long waves. -
Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik 154
A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves. -
Ivosevic, Spiro;Mestrovic, Romeo;Kovac, Natasa 165
This paper considers corrosion wastage of two ship hull structure members as a part of investigated fuel oil tanks of 25 aging bulk carriers. Taking into account that many factors which influence corrosion wastage of ship hull structures are of uncertain nature, the related corrosion rate ($c_1$ ) is considered here as a real-valued continuous distribution, assuming that the corrosion wastage starts after 5, 6 or 7 years. In all considered cases, by using available data and applying three basic statistical tests, it is established that between two-parameter continuous distributions, normal, Weibull and logistic distributions are best fitted distributions for the mentioned corrosion rate ($c_1$ ). Note that the presented statistical, numerical and graphical results concerning two mentioned ship hull structure members allow to compare and discuss the corresponding probabilistic estimates for the corrosion rate ($c_1$ ). -
The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.
-
Shi, Binghua;Su, Yixin;Zhang, Huajun;Liu, Jiawen;Wan, Lili 202
The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning. -
Campos, E.;Monroy, J.;Abundis, H.;Chemori, A.;Creuze, V.;Torres, J. 211
This paper deals with a nonlinear controller based on saturation functions with variable parameters for set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In many cases, saturation functions with constant parameters are used to limit the input signals generated by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this abrupt bounded harms the performance of the controller. We, therefore, propose to replace the conventional saturation function, with constant parameters, by a saturation function with variable parameters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/buoyancy compensation and the nonlinear PD + controllers that we propose in this paper. Consequently, the mathematical model is obtained, considering the featuring operation of the underwater vehicle LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for the depth control problems in the case of set-point regulation and trajectory tracking control. -
Sitorus, Patar Ebenezer;Park, JineSoon;Ko, Jin Hwan 225
In recent years, nonlinear dynamic models have been developed for flapping-type energy harvesting systems with a rigid wing, but not for those with a flexible wing. Thus, in this study, flexible wing designs of NACA0012 section are proposed and measurements of the forces of rigid cambered wings, which are used to estimate the performance of the designed wings, are conducted. Polar curves from the measured lift and drag coefficients show that JavaFoil estimation is much closer to the measured values than Eppler over the entire given range of angles of attack. As the camber of the rigid cambered wings is increased, both the lift and drag coefficients increase, in turn increasing the resultant forces. Moreover, the maximum resultant forces for all rigid cambered wings are achieved at the same angle of attack as the maximum lift coefficient, meaning that the lift coefficient is dominant in representations of the wing characteristics. -
Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang 233
In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated. -
Kim, Sung-soo;Lee, Jae-chul;Kang, Donghoon;Lee, Soon-sup 244
Interest in renewable energy has been increasing in recent years for many reasons, and there have been many studies on new types of wave energy converters and mechanisms for them. However, in this paper, motion characteristics of a wave energy converter with a wave activating body type is studied with an experiment. In order to conduct the experiment, a simple wave activating body type's wave energy converter is proposed. Experimental variations consist of connection type and location. The connection type controls the rotation motions of structures, and the connection location controls the distance between structures. The movement of floating structures, such as rotation, velocity, and acceleration, is measured with a potentiometer and a motion capture camera. Using the recorded data, the motion characteristics derived from the experimental variations are investigated. -
Nowadays interceptors have been widely used in a vast range of high-speed crafts. In this study, the results of interceptor adeptness experiments made in Istanbul Technical University's Towing Tank are unveiled. The model was tested through three transverse locations of interceptors with six different deployment depths. For three locations, the interceptor was positioned transverse on the aft; close to chine, in the middle and close to the keel. The fourth interceptor was a full length of 13.00% LWL. The results show a significant drag reduction in benefits of 1.50%-11.30% for Fn 0.58-1.19 and the trim reduction was observed in between 1.60 and
$4.70^{\circ}$ . Besides, one of the most significant conclusions indicates that the effect of the interceptor decreases from keel to chine for the same blade deployment heights so the blades should be controlled separately at least in three parts from keel to chine area, if operable. -
Sun, Yushan;Ran, Xiangrui;Zhang, Guocheng;Wu, Fanyu;Du, Chengrong 274
The control architectures of Chuan Suo (CS) deep submergence rescue vehicle are introduced. The hardware and software architectures are also discussed. The hardware part adopts a distributed control system composed of surface and underwater nodes. A computer is used as a surface control machine. Underwater equipment is based on a multi-board-embedded industrial computer with PC104 BUS, which contains IO, A/D, D/A, eight-channel serial, and power boards. The hardware and software parts complete data transmission through optical fibers. The software part involves an IPC of embedded Vxworks real-time operating system, upon which the operation of I/O, A/D, and D/A boards and serial ports is based on; this setup improves the real-time manipulation. The information flow is controlled by the software part, and the thrust distribution is introduced. A submergence vehicle heeling control method based on ballast water tank regulation is introduced to meet the special heeling requirements of the submergence rescue vehicle during docking. Finally, the feasibility and reliability of the entire system are verified by a pool test. -
Yu, Yue-Min;Ma, Ning;Fan, She-Ming;Gu, Xie-Chong 285
In the present paper, model tests of suppressing sloshing fitted with two perforated floating plates are carried out. The study involves identification of system performance such as the suppression and the solidity ratio. Three different solidity ratios of perforated plates have been tried out as potential positive slosh damping devices. A series of painstaking experiments have been conducted in a rigid rectangular tank on six degrees of freedom motion platform under roll harmonic excitation. Comparison of the clean tank shows that the three types of perforated plates are all effective on damping the run-up and impact pressure along the bulkhead. The parametric study indicates that the perforated plate with the median solidity ratio is the most optimal one in suppressing sloshing among three configurations. -
On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.
-
In order to design efficient Urea Decomposition Chamber (UDC) for the Low Pressure (LP) Selective Catalytic Reduction (SCR) system, numerical simulations were conducted with respect to various design parameters. The design parameters examined in this simulation include the chamber diameter, inlet and outlet shape of chamber, and urea injection point. Reaction kinetics for the urea decomposition was proposed and validated with the experimental data in the range of
$300{\sim}450^{\circ}C$ . The effects of design parameters on the performance of UDC were evaluated by the calculated urea conversion and pressure drop. As a result, the local optimum design values were derived by the parametric study. -
Wang, Yanxu;Yin, Zegao;Liu, Yong;Yu, Ning;Zou, Wei 314
This paper attempts to combine the pneumatic breakwater and submerged breakwater to increase the effectiveness of wave damping for long-period waves. A series of physical experiments concerning pneumatic breakwater, submerged breakwater and their joint breakwater was conducted and used to validate a mathematical model based on Reynolds-averaged Navier-Stokes equations, the RNG$k-{\varepsilon}$ turbulence model and the VOF method. In addition, the mathematical model was used to investigate the wave transmission coefficients of three breakwaters. The nonlinear wave propagation behaviors and the energy transfer from lower frequencies to higher frequencies after the submerged breakwater were investigated in detail. Furthermore, an optimal arrangement between pneumatic breakwater and submerged breakwater was obtained for damping longer-period waves that cannot be damped effectively by the pneumatic breakwater alone. In addition, the reason for the appearance of the combination effect is that part of the energy of the transmitted waves over the submerged breakwater transfers to shorter-period waves. Finally, the impact of the joint breakwater on the wave field during wave propagation process was investigated. -
Kim, Hyuncheol;Roh, Myung-Il;Han, Soonhung 329
In order to simulate the evacuation simulation of a ship during a sinking, the slope angle change of the ship must be reflected during the simulation. In this study, the passenger evacuation simulation is implemented by continuously applying the heeling angle change during sinking. To reflect crowd behavior, the human density and the congestion algorithm were developed in this research and the walking speed experiment in the special situation occurring in the inclined ship was conducted. Evacuation simulation was carried out by applying the experimental results and the change of the walking speed according to the heeling angle of the ship. In order to verify the evacuation simulation, test items suggested by International Maritime Organization (IMO) and SAFEGUARD Validation Data Set conducted on a large Ro-PAX ferry (SGVDS 1) which performed real evacuation trial in full-scale ships were performed and the results of simulation were analyzed. Based on hypothetical scenario of when a normal evacuation command is delivered to the passengers of MV SEWOL in time, we predicted and analyzed the evacuation process and the number of casualties. -
Liu, Kang;Chen, Guoming;Zhu, Gaogeng;Zhu, Jingyu 344
Marine production strings are continuously affected by unstable internal fluid during operation. In this paper, the structural governing equation for marine production string self-induced vibration is constructed. A finite element analysis model is established based on Euler-Bernoulli theory and solved by the Newmark method. Furthermore, based on reliability theory, a self-design procedure is developed to determine the operability envelope for marine production string self-induced vibration. Case studies show: the response frequency of the production strings is consistent with the excitation frequency under harmonic fluctuation and mainly determined by the first-order natural frequency under stochastic fluctuation. The operability envelope for marine production string self-induced vibration is a near symmetrical trapezium. With the increasing of natural gas output, the permissible fluctuation coefficient dramatically decreases. A reasonable centralizer spacing, increasing top tension, and controlling natural gas output are of great significance to the risk control in marine production string operation. -
Li, Xinhong;Chen, Guoming;Zhang, Renren;Zhu, Hongwei;Xu, Changhang 353
This paper presents a comprehensive simulation and assessment of gas dispersion above sea from a subsea release using a Computational Fluid Dynamics (CFD) approach. A 3D CFD model is established to evaluate the behavior of flammable gas above sea, and a jack-up drilling platform is included to illustrate the effect of flammable gas cloud on surface vessels. The simulations include a matrix of scenarios for different surface release rates, distances between surface gas pool and offshore platform, and wind speeds. Based on the established model, the development process of flammable gas cloud above sea is predicted, and the dangerous area generated on offshore platform is assessed. Additionally, the effect of some critical factors on flammable gas dispersion behavior is analyzed. The simulations produce some useful outputs including the detailed parameters of flammable gas cloud and the dangerous area on offshore platform, which are expected to give an educational reference for conducting a prior risk assessment and contingency planning. -
Wave-induced ship motion and load responses are usually investigated on the assumption that the incident waves are long-crested. The realistic sea waves are however short-crested irregular waves. Real practice reveals that the ship motion and load responses induced by short-crested waves are different from those induced by long-crested waves. This paper aims to conduct a comprehensive study on ship motions and loads in different wave fields. For this purpose, comparative studies by small-scale model towing tank test and large-scale model sea trial are conducted to experimentally identify the difference between ship motions and loads in long-crested and short-crested irregular waves. Moreover, the influences of directional spreading function of short-crested waves on ship motions and loads are analyzed by numerical seakeeping calculation. The results and conclusions obtained from this study are of great significance for the further extrapolation and estimation of ship motions and loads in short-crested waves based on long-crested wave response results.
-
Liu, Wendi;Demirel, Yigit Kemal;Djatmiko, Eko Budi;Nugroho, Setyo;Tezdogan, Tahsin;Kurt, Rafet Emek;Supomo, Heri;Baihaqi, Imam;Yuan, Zhiming;Incecik, Atilla 380
Seakeeping, especially for the roll motions, is of critical importance to the safe operation of fishing boats in Indonesia. In this study, a traditional East Java Fishing Boat (EJFB) has been analysed in terms of its seakeeping performance. Furthermore, a bilge keel was designed to reduce the roll motions of the EJFB using multiple stages approach. After installing the designed bilge keels, it was shown that up to 11.78% and 4.87% reduction in the roll response of irregular seaways and the total resistance under the design speed, respectively. It was concluded that the roll-stabilized-EJFB will enhance the well-being of the fisherman and contribute to the boats' safe operation, especially in extreme weather conditions. Moreover, the total resistance reduction of the EJFB due to the installation of the designed bilge keels also resulted in increased operational efficiency and reduced fuel costs and fuel emissions for local stakeholders. -
Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao 396
The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed. -
Chen, Zhanyang;Gui, Hongbin;Dong, Pingsha;Yu, Changli 409
Investigation of hydroelastic responses of high-speed vessels in irregular sea state is of major interest in naval applications. A three dimensional nonlinear time-domain hydroelastic method in oblique irregular waves is developed, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface and slamming force are considered. In order to solve the two technical problems caused by irregular sea state, the time-domain retardation function and Proportional, Integral and Derivative (PID) autopilot model are applied respectively. Besides, segmented model tests of a high-speed trimaran in oblique waves are performed. An oblique wave testing system for trimarans is designed and assembled. The measured results of main hull and cross-decks are analyzed, and the differences in distribution of load responses between trimarans and monohull ships are discussed. Finally, from the comparisons, it is confirmed that the present concept for dealing with nonlinear hydroelastic responses of ships in oblique irregular waves is reliable and accurate. -
Several model-scale tests with a ship model have been performed in the ice tank of the Marine Technology Group in the Aalto University. The ship model of ice going tanker Uikku was mounted rigidly to the main carriage and towed through ice fields. The model tests were performed by changing ice thickness, drift angles and speeds in different ice fields. This paper reports the testing results and different phenomenon during model tests. The measured ice forces are presented and compared to level ice forces. The process of ice forces from broken ice on the ship is also analyzed for some typical tests. The research work could provide guidance on marine structures operating in waters covered by broken ice.
-
Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using
$MATLAB^{(R)}$ . To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions. -
Jiang, Yanqing;Li, Ye;Su, Yumin;Cao, Jian;Li, Yueming;Wang, Youkang;Sun, Yeyi 448
Changes in gravity and buoyancy of a Full Ocean Depth Autonomous Underwater Vehicle (FOD-AUV) during its descending and ascending process must be considered very carefully compared with a Human Occupied Vehicle (HOV) or a Remotely Pperated Vehicle (ROV) whose activities rely on human decision. We firstly designed a two-step weight dropping pattern to achieve a high descending and ascending efficiency and a gravity-buoyancy balance at designed depth. The static equations showed that gravity acceleration, seawater density and displacement are three key aspects affecting the balance. Secondly, we try our best to analysis the gravity and buoyancy changing according to the previous known scientific information, such as anomaly of gravity acceleration, changing of seawater states. Finally, we drew conclusion that gravity changes little (no more than 0.1kgf, it is impossible to give a accurate value). A density-depth relationship at the Challenger Deep was acquired and the displacement changing of the FOD-AUV was calculated preciously. -
Seo, Hyung-Yoon;Seo, Pan-Ki;Kang, Chung-Gil 462
The effects of the location and dimension of the gate, location, and volume of the feeder, application of a chill, chill volume, and heating method of the feeder with respect to the effect of the mold-designing technologies on the defect status of the products are described. It is possible to increase the solidification time of the feeder by heating feeder. Furthermore, the pressure generated from the feeder is imposed on a product, and this decreases the generation of shrinkage porosities. In this study, two types of gating and feeding systems had been proposed: the bottom L-type junctions and the top L-type junctions. Additionally, solidification behaviors, such as solidification time, shrinkage porosities, weight percentage of chill system to product, hot spot, and solidification time ratio (=Solidification time of feeder/solidification time of product), are extensively analyzed by using commercial casting simulation software. Based on the solidification behaviors, reasonable mold design, feeding system, critical feeder heating temperature, and solidification time ratios are proposed in the sand casting process for the fabrication of carrier housing in order to reduce the casting defects and to increase the recovery rate. -
Lee, Hee-Su;Lee, Byung-Hyuk;Kim, Kyung sung;Kim, Sung Yong;Park, Jong-Chun 474
The speed trial of a ship is one of the important elements guaranteeing its performance under the contract between the ship owner and shipbuilding company. A speed trial at sea, where the tidal current and waves are suppressed to the maximum, can prevent measurement errors due to external force conditions. On the other hand, it is difficult to maintain a calm sea state in most sea areas determined by the influence of the tidal current, wave, wind, etc. Therefore, this study evaluated a method of simulating a tidal current, which is one of the external force conditions, at the speed test operation of a ship, and applied the simulation result to the plan of a speed trial. -
Chen, Cheng;Yuan, Xulong;Liu, Xiyan;Dang, Jianjun 482
In this paper, the oblique water-entry impact of a vehicle with a disk cavitator is studied experimentally and numerically. The effectiveness and accuracy of the numerical simulation are verified quantitatively by the experiments in this paper and the data available in the literature. Then, the numerical model is used to simulate the hydrodynamic characteristics and flow patterns of the vehicle under different entry conditions, and the axial force is found to be an important parameter. The influences of entry angle, entry speed and cavitator area on the axial force are studied. The variation law of the force coefficient and the dimensionless penetration distance at the peak of the axial force are revealed. The research conclusions are beneficial to engineering calculations on the impact force of a vehicle with a disk cavitator over a wide range of water-entry parameters. -
Chen, Chen;Sun, Tiezhi;Wei, Yingjie;Wang, Cong 495
The objective of this study is to analyze the compressibility effects of multiphase cavitating flow during the water-entry process. For this purpose, the water-entry of a projectile at transonic speed is investigated computationally. A temperature-adjusted Tait equation is used to describe the compressibility effects in water, and air and vapor are treated as ideal gases. First, the computational methodology is validated by comparing the simulation results with the experimental measurements of drag coefficient and the theoretical results of cavity shape. Second, based on the computational methodology, the hydrodynamic characteristics of flow are investigated. After analyzing the cavitating flow in compressible and incompressible fluids, the characteristics under compressible conditions are focused upon. The results show that the compressibility effects play a significant role in the development of cavitation and the pressure inside the cavity. More specifically, the drag coefficient and cavity size tend to be larger in the compressible case than those in the incompressible case. Furthermore, the influence of entry velocities on the hydrodynamic characteristics is investigated to provide an insight into the compressibility effects on cavitating flow. The results show that the drag coefficient and the impact pressure vary with the entry velocity, and the prediction formulas for drag coefficient and impact pressure are established respectively in the present study. -
To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.
-
Ren, Shaofei;Liu, Wencheng;Song, Ying;Geng, Hang;Wu, Fangguang 521
Interlocked armor layers of unbonded flexible risers may crush when risers are being launched. In order to predict the behavior of interlocked armor layers, they are usually simplified as rings with geometric and contact nonlinearity ignored in the open-literature. However, the equivalent thickness of the interlocked armor layer has not been addressed yet. In the present paper, a geometric coefficient${\gamma}$ is introduced to the equivalent stiffness method, and a linear relationship between${\gamma}$ and geometric parameters of interlocked armor layers is validated by analytical and finite element models. Radial stiffness and equivalent thickness of interlocked armor layers are compared with experiments and different equivalent methods, which show that the present method has a higher accuracy. Furthermore, hoop stress distribution of interlocked armor layer under crushing is predicted, which indicates the interlocked armor layer can be divided into two compression and two expansion zones by four symmetrically distributed singular points. -
Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin 530
To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool$OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles. -
Ye, L.Y.;Guo, C.Y.;Wang, C.;Wang, C.H.;Chang, X. 542
The strength assessment is the most important part at the design of ice-class propeller. Based on ice rules for ice-class propeller in IACS URI3 and FEM, the strength assessment method of ice-class propeller is established in this paper. To avoid the multifarious meshing process of propeller blade, an automatic meshing method has been developed by dividing the propeller geometry into a number of 8-node hexahedron elements along radial, chordwise and thickness directions, then the loaded areas in five cases can easily be calculated and identified. The static FEM is applied to calculate the stress and deformation of propeller blade. The fair agreements between the results of the present method and ANSYS/Workbench demonstrate its robust and the feasibility, and also the method is able to produce smooth gradient field. The blade stress and deformation distributions for five load cases are studied, and then the strength of the whole blade is checked. -
Geometric variation including welding distortion accumulates as many parts are joined together, ultimately affecting the final product. This variation is then subjected to correction, which requires considerable effort, time, and cost. This variation can be categorized as in-plane/out-of-plane variation. To date, studies on variation simulation have largely focused on the out-of-plane variation, however the variation generated in the in-plane direction requires more time and efforts to correct afterwards. This research aims to construct a variation simulation model considering both the in-plane and out-of-plane variations. A geometric analysis was performed to derive an equation that reflects the coupling effect of the out-of-plane variation on the in-plane variation. The proposed model is validated with case study analysis and the results shows that good fidelity in predicting and diagnosing the in-plane variation during the block assembly process considering welding distortion.
-
This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.
-
Liu, Sheng;Niu, Hongmin;Zhang, Lanyong;Xu, Changkui 584
This paper presents a Modified Adaptive Complementary Sliding Mode Control (MACSMC) system for the longitudinal motion control of the Fully-Submerged Hydrofoil Craft (FSHC) in the presence of time varying disturbance and uncertain perturbations. The nonlinear disturbance observer is designed with less conservatism that only boundedness of the derivative of the disturbance is required. Then, a complementary sliding mode control system combined with adaptive law is designed to reduce the bound of stabilization error with fast convergence. In particularly, the modified complementary sliding mode surface which contains the estimation of the disturbance can reduce the switching gain and retain the normal performance of the system. Moreover, a hyperbolic tangent function contained in the control law is utilized to attenuate the chattering of the actuator. The global asymptotic stability of the closed-loop system is demonstrated utilizing the Lyapunov stability theory. Ultimately, the simulation results show the effectiveness of the proposed approach. -
This paper proposes a novel method for efficient prediction of joint distributions of heights and periods of nonlinear ocean waves. The proposed novel method utilizes a transformed linear simulation which is based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the first four moments of the transformed model match the moments of the true process. This proposed novel method is utilized to predict the joint distributions of wave heights and periods of a sea state with the surface elevation data measured at the Gulfaks C platform in the North Sea, and the novel method's accuracy and efficiency are favorably validated by using comparisons with the results from an empirical joint distribution model, from a linear simulation model and from a second-order nonlinear simulation model.
-
The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust
$H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust$H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect. -
Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li 624
A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.