Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2018.01.002

The impact of corrosion on marine vapour recovery systems by VOC generated from ships  

Choi, Yoo Youl (R&D Center, Korean Register)
Lee, Seok Hee (Department of Materials Science and Engineering, Yonsei University)
Park, Jae-Cheul (R&D Center, Korean Register)
Choi, Doo Jin (Department of Materials Science and Engineering, Yonsei University)
Yoon, Young Soo (Department of Chemical Engineering, Gachon University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.11, no.1, 2019 , pp. 52-58 More about this Journal
Abstract
Marine emissions of Volatile Organic Compounds (VOCs) have received much attention because the International Maritime Organization (IMO) requires the installation of vapour emission control systems for the loading of crude oils or petroleum products onto ships. It was recently recognised that significant corrosion occurs inside these vapour emission control systems, which can cause severe clogging issues. In this study, we analysed the chemical composition of drain water sampled from currently operating systems to investigate the primary causes of corrosion in vapour recovery systems. Immersion and electrochemical tests were conducted under simulated conditions with various real drain water samples, and the impact of corrosion on the marine vapour recovery system was carefully investigated. Moreover, corrosion tests on alternative materials were conducted to begin identifying appropriate substitutes. Thermodynamic calculations showed the effects of environmental factors on the production of condensed sulphuric acid from VOC gas. A model of sulphuric acid formation and accumulation by the characteristics of VOC from crude oil and flue gas is suggested.
Keywords
Volatile Organic Compounds (VOCs); Vapour emission control system; Vapour recovery system; Corrosion; Sulphuric acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chung, C., Lee, M., Choe, E.K., 2004. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 58, 417-420. https://doi.org/10.1016/j.carbpol.2004.08.005.   DOI
2 Cox, A., Lyon, S.B., 1994. An electrochemical study of the atmospheric corrosion of mild steel-III. The effect of sulphur dioxide. Corros. Sci. 36, 1193-1199. https://doi.org/10.1016/0010-938X(94)90143-0.   DOI
3 Dai, N., Zhang, J., Chen, Q., Yi, B., Cao, F., Zhang, J., 2015. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment. Corros. Sci. 99, 295-303. https://doi.org/10.1016/j.corsci.2015.07.029.   DOI
4 DeLuchi, M.A., 1993. Emissions from the production, storage, and transport of crude oil and gasoline. Air Waste 43, 1486-1495. https://doi.org/10.1080/1073161X.1993.10467222.   DOI
5 Everaert, K., Baeyens, J., 2004. Catalytic combustion of volatile organic compounds. J. Hazard Mater. 109, 113-139. https://doi.org/10.1016/j.jhazmat.2004.03.019.   DOI
6 Guidance manual for material selection and inspection of inert gas systems, 1980. American Bureau of Shipping.
7 Guidelines for the development of a VOC management plan, 2009. Resolution MEPC185(59), IMO.
8 Gupta, V.K., Verma, N., 2002. Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chem. Eng. Sci. 57, 2679-2696. https://doi.org/10.1016/S0009-2509(02)00158-6.   DOI
9 Hung-Lung, C., Jiun-Horng, T., Shih-Yu, C., Kuo-Hsiung, L., Sen-Yi, M., 2007. VOC concentration profiles in an ozone non-attainment area: a case study in an urban and industrial complex metroplex in southern Taiwan. Atmos. Environ. 41, 1848-1860. https://doi.org/10.1016/j.atmosenv.2006.10.055.   DOI
10 International Convention for the Prevention of Pollution from Ships, 2008. MARPOL ANNEX VI Regulation 15 Volatile Organic Compounds, IMO.
11 Ito, M., Kashima, K., Honda, T., Hara, M., Inami, A., Nishimura, S., 2015. Nippon Steel Sumitomo Metal Technical Report. Corrosion resistant steel plate for crude oil tanker (NSGPTM), vol. 110, pp. 84-89.
12 Jaworowski, R.J., Mack, S.S., 1979. Evaluation of methods for measurement of $SO_3/H_2SO_4$ in flue gas. J. Air Pollut. Control Assoc. 29, 43-46. https://doi.org/10.1080/00022470.1979.10470750.   DOI
13 Jayne, J.T., Poschl, U., Chen, Y., Dai, D., Molina, L.T., Worsnop, D.R., Kolb, C.E., Molina, M.J., 1997. Pressure and temperature dependence of the gas-phase reaction of $SO_3$ with $H_2O$ and the heterogeneous reaction of $SO_3$ with $H_2O/H_2SO_4$ surfaces. J. Phys. Chem. A 101, 10000-10011. https://doi.org/10.1021/jp972549z.   DOI
14 Huang, W., Bai, J., Zhao, S., Lv, A., 2011. Investigation of oil vapor emission and its evaluation methods. J. Loss Prev. Process. Ind. 24, 178-186. https://doi.org/10.1016/j.jlp.2010.12.004.   DOI
15 Singh, D.D.N., Yadav, S., Saha, J.K., 2008. Role of climatic conditions on corrosion characteristics of structural steels. Corros. Sci. 50, 93-110. https://doi.org/10.1016/j.corsci.2007.06.026.   DOI
16 Kerbachi, R., Boughedaoui, M., Bounoua, L., Keddam, M., 2006. Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos. Environ. 40, 3995-4003. https://doi.org/10.1016/j.atmosenv.2006.02.033.   DOI
17 Khan, F.I., Ghoshal, A. Kr, 2000. Removal of volatile organic compounds from polluted air. J. Loss Prev. Process. Ind. 13, 527-545. https://doi.org/10.1016/S0950-4230(00)00007-3.   DOI
18 Kim, Y.-J., 1999. Analysis of oxide film formed on type 304 stainless steel in $288^{\circ}C$ water containing oxygen, hydrogen, and hydrogen peroxide. Corrosion 55, 81-88. https://doi.org/10.5006/1.3283969.   DOI
19 Seddiek, I.S., Mosleh, M., Banawan, A.A., 2012. Thermo-economic approach for absorption air condition onboard high-speed crafts. Int. J. Nav. Archit. Ocean Eng. 4, 460-476. https://doi.org/10.2478/IJNAOE-2013-0111.   DOI
20 Shonnard, D.R., Hiew, D.S., 2000. Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream. Environ. Sci. Technol. 34, 5222-5228. https://doi.org/10.1021/es0010857.   DOI
21 Spivey, J.J., 2005. Catalysis in the development of clean energy technologies. Catal. Today 100, 171-180. https://doi.org/10.1016/j.cattod.2004.12.011.   DOI
22 Standards for vapour emission control systems, MSC/Circ.585, IMO.
23 Tamaddoni, M., Sotudeh-Gharebagh, R., Nario, S., Hajihosseinzadeh, M., Mostoufi, N., 2014. Experimental study of the VOC emitted from crude oil tankers. Process Saf. Environ. Prot. 92, 929-937. https://doi.org/10.1016/j.psep.2013.10.005.   DOI
24 Tyagi, B., Chudasama, C.D., Jasra, R.V., 2006. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64, 273-278. https://doi.org/10.1016/j.saa.2005.07.018.   DOI
25 Belo, L.P., Elliott, L.K., Stanger, R.J., Sporl, R., Shah, K.V., Maier, J., Wall, T.F., 2014. High-temperature conversion of $SO_2$ to $SO_3$: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing. Energy Fuels 28, 7243-7251. https://doi.org/10.1021/ef5020346.   DOI
26 Buhaug, O., Corbett, J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., et al., 2009. Second IMO GHG Study, IMO.
27 Carrillo, A.M., Carriazo, J.G., 2015. Cu and Co oxides supported on halloysite for the total oxidation of toluene. Appl. Catal. B Environ. 164, 443-452. https://doi.org/10.1016/j.apcatb.2014.09.027.   DOI
28 Kujawa, J., Cerneaux, S., Kujawski, W., 2015. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Memb. Sci. 474, 11-19. https://doi.org/10.1016/j.memsci.2014.08.054.   DOI
29 Yamashita, M., Miyuki, H., Matsuda, Y., Nagano, H., Misawa, T., 1994. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci. 36, 283-299. https://doi.org/10.1016/0010-938X(94)90158-9.   DOI
30 Abe, M., Kawashima, K., Kozawa, K., Sakai, H., Kaneko, K., 2000. Amination of activated carbon and adsorption characteristics of its aminated surface. Langmuir 16, 5059-5063. https://doi.org/10.1021/la990976t.   DOI
31 Akhmatskaya, E.V., Apps, C.J., Hillier, I.H., Masters, A.J., Watt, N.E., Whitehead, J.C., 1997. Formation of $H_2SO_4$ from $SO_3$ and $H_2O$, catalysed in water clusters. Chem. Commun. 707-708. https://doi.org/10.1039/A700802C.   DOI
32 Avery, R.J., 2006. Reactivity-based VOC control for solvent products: more efficient ozone reduction strategies. Environ. Sci. Technol. 40, 4845-4850. https://doi.org/10.1021/es060296u.   DOI
33 Azapagic, A., 1999. Life cycle assessment and its application to process selection, design and optimisation. Chem. Eng. J. 73, 1-21. https://doi.org/10.1016/S1385-8947(99)00042-X.   DOI
34 Kumar, S., Mahto, V., 2016. Emulsification of Indian heavy crude oil in water for its efficient transportation through offshore pipelines. Chem. Eng. Res. Des. 115, 34-43. https://doi.org/10.1016/j.cherd.2016.09.017.   DOI
35 Panossian, Z., de Almeida, N.L., de Sousa, R.M.F., de Souza Pimenta, G., Marques, L.B.S., 2012. Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review. Corros. Sci. 58, 1-11. https://doi.org/10.1016/j.corsci.2012.01.025.   DOI
36 Lee, S., Choi, I., Chang, D., 2013. Multi-objective optimization of VOC recovery and reuse in crude oil loading. Appl. Energy 108, 439-447. https://doi.org/10.1016/j.apenergy.2013.03.064.   DOI
37 Marier, P., Dibbs, H.P., 1974. The catalytic conversion of $SO_2$ to $SO_3$ by fly ash and the capture of $SO_2$ and $SO_3$ by CaO and MgO. Thermochim. Acta 8, 155-165. https://doi.org/10.1016/0040-6031(74)85082-3.   DOI
38 Murphy, C.F., Allen, D.T., 2005. Hydrocarbon emissions from industrial release events in the Houston-Galveston area and their impact on ozone formation. Atmos. Environ. 39, 3785-3798. https://doi.org/10.1016/j.atmosenv.2005.02.051.   DOI
39 Pilidis, G.A., Karakitsios, S.P., Kassomenos, P.A., 2005. BTX measurements in a medium-sized European city. Atmos. Environ. 39, 6051-6065. https://doi.org/10.1016/j.atmosenv.2005.06.044.   DOI
40 Seddiek, I.S., Elgohary, M.M., 2014. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. Int. J. Nav. Archit. Ocean Eng. 6, 737-748. https://doi.org/10.2478/IJNAOE-2013-0209.   DOI