Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2018.04.001

Obstacles modeling method in cluttered environments using satellite images and its application to path planning for USV  

Shi, Binghua (School of Automation, Wuhan University of Technology)
Su, Yixin (School of Automation, Wuhan University of Technology)
Zhang, Huajun (School of Automation, Wuhan University of Technology)
Liu, Jiawen (School of Automation, Wuhan University of Technology)
Wan, Lili (School of Automation, Wuhan University of Technology)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.11, no.1, 2019 , pp. 202-210 More about this Journal
Abstract
The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning.
Keywords
Obstacles model; Satellite images; Convex hull; Path planning; USV;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Graham, R., 1972. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett. 1 (4), 132-133. https://doi.org/10.1016/0020-0190(72)90045-2. http://www.sciencedirect.com/science/article/pii/0020019072900452Crossref.   DOI
2 M. K. Habib, H. Asama, Efficient method to generate collision free paths for an autonomous mobile robot based on new free space structuring approach, in: Intelligent Robots and Systems '91.'Intelligence for Mechanical Systems, Proceedings IROS '91. IEEE/RSJ International Workshop on, 1991, pp. 563-567 vol. 2. 10.1109/IROS.1991.174534.
3 Hoang, V.-D., Jo, K.-H., 2015. Path planning for autonomous vehicle based on heuristic searching using online images. Vietnam Journal of Computer Science 2 (2), 109-120. https://doi.org/10.1007/s40595-014-0035-4. https://doi.org/10.1007/s40595-014-0035-4.   DOI
4 Kristan, M., Pers, J., Sulic, V., Kovacic, S., 2015. A Graphical Model for Rapid Obstacle Image-map Estimation from Unmanned Surface Vehicles. Springer International Publishing, Cham, pp. 391-406.
5 Lining, G., Fukun, B., Teng, L., Jian, Y., 2011. Ship detection algorithm for optical remote sensing images. J. Tsinghua Univ. (Sci. Technol.) 51 (1), 105-110. https://doi.org/10.16511/j.cnki.qhdxxb.2011.01.026.   DOI
6 Macqueen, J.B., 1967. Some methods of classification and analysis of multivariate observations. Probab. Math. Stat. 281-297.
7 Metz, C.E., 1978. Basic principles of roc analysis. Semin. Nucl. Med. 8 (4), 283-298. https://doi.org/10.1016/S0001-2998(78)80014-2. http://www.sciencedirect.com/science/article/pii/S0001299878800142.   DOI
8 Naouai, M., Hamouda, A., Weber, C., 2010. Urban Road Extraction from High-resolution Optical Satellite Images, vol. 4. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 420-433. Ch.
9 Serra, J., 1982. Mathematical Morphology and Image Analysis, vol. 38. Academic Press, pp. 536-537 (2).
10 Anil, P.N., Natarajan, S., 2013. Road extraction using topological derivative and mathematical morphology. J. Indian. Soc. Rem. Sens. 41 (3), 719-724. https://doi.org/10.1007/s12524-012-0231-6. https://doi.org/10.1007/s12524-012-0231-6.   DOI
11 Dunn, J.C., 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3 (3), 32-57.   DOI
12 Bin, L., Tao, W., 2012. An efficient convex hull algorithm for planar point set based on recurisive method. Acta Autom. Sin. 38 (8), 1375-1379.   DOI
13 Campbell, S., Naeem, W., Irwin, G., 2012. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu. Rev. Contr. 36 (2), 267-283. https://doi.org/10.1016/j.arcontrol.2012.09.008. http://www.sciencedirect.com/science/article/pii/S1367578812000430.   DOI
14 Corbane, C., Najman, L., Pecoul, E., Demagistri, L., Petit, M., 2010. A complete processing chain for ship detection using optical satellite imagery. Int. J. Rem. Sens. 31 (22), 5837-5854. https://doi.org/10.1080/01431161.2010.512310 arXiv: https://doi.org/10.1080/01431161.2010.512310. https://doi.org/10.1080/01431161.2010.512310.   DOI
15 J. Fukuto, H. Imazu, New collision alarm algorithm using obstacle zone by target (ozt), {IFAC} Proceedings Volumes 46(33) (2013) 91-96, 9th {IFAC} Conference on Control Applications in Marine Systems. https://doi.org/10.3182/20130918-4-JP-3022.00044. URL http://www.sciencedirect.com/science/article/pii/S1474667016461392.
16 Gongxing, W., Shi, D., Guo, J., 2016. Deliberative collision avoidance for unmanned surface vehicle based on the directional weight. J. Shanghai Jiaot. Univ. 21 (3), 307-312. https://doi.org/10.1007/s12204-016-1726-z.   DOI
17 van der Werff, H., van der Meer, F., 2008. Shape-based classification of spectrally identical objects. ISPRS J. Photogrammetry Remote Sens. 63 (2), 251-258. https://doi.org/10.1016/j.isprsjprs.2007.09.007. http://www.sciencedirect.com/science/article/pii/S0924271607001244.   DOI
18 Shi, W., Miao, Z., Debayle, J., 2014. An integrated method for urban main-road centerline extraction from optical remotely sensed imagery. IEEE Trans. Geosci. Rem. Sens. 52 (6), 3359-3372. https://doi.org/10.1109/TGRS.2013.2272593.   DOI
19 Singh, P.P., Garg, R.D., 2013. Automatic road extraction from high resolution satellite image using adaptive global thresholding and morphological operations. J. Indian. Soc. Rem. Sensing. 41 (3), 631-640. https://doi.org/10.1007/s12524-012-0241-4. https://doi.org/10.1007/s12524-012-0241-4.   DOI
20 Singh, N., Arya, R., Agrawal, R., 2016. A convex hull approach in conjunction with Gaussian mixture model for salient object detection. Digit. Signal Process. 55, 22-31. https://doi.org/10.1016/j.dsp.2016.05.003. http://www.sciencedirect.com/science/article/pii/S1051200416300318.   DOI
21 Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund, P., 2016. A review of road extraction from remote sensing images. J. Traffic Transport. Eng. 3 (3), 271-282. https://doi.org/10.1016/j.jtte.2016.05.005. http://www.sciencedirect.com/science/article/pii/S2095756416301076.   DOI
22 Yan, R.-j., Pang, S., Sun, H.-b., Pang, Y.-j., 2010. Development and missions of unmanned surface vehicle. J. Mar. Sci. Appl. 9 (4), 451-457. https://doi.org/10.1007/s11804-010-1033-2. https://doi.org/10.1007/s11804-010-1033-2.   DOI
23 Yang, J.-M., Tseng, C.-M., Tseng, P., 2015. Path planning on satellite images for unmanned surface vehicles. Int. J. Nav. Architect. Ocean Eng. 7 (1), 87-99. https://doi.org/10.1515/ijnaoe-2015-0007. http://www.sciencedirect.com/science/article/pii/S2092678216301030.   DOI