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a b s t r a c t

This paper proposes a novel method for efficient prediction of joint distributions of heights and periods
of nonlinear ocean waves. The proposed novel method utilizes a transformed linear simulation which is
based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic
polynomial, calibrated such that the first four moments of the transformed model match the moments of
the true process. This proposed novel method is utilized to predict the joint distributions of wave heights
and periods of a sea state with the surface elevation data measured at the Gulfaks C platform in the North
Sea, and the novel method's accuracy and efficiency are favorably validated by using comparisons with
the results from an empirical joint distribution model, from a linear simulation model and from a
second-order nonlinear simulation model.
© 2018 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accurate prediction of joint distributions of wave heights and
periods is of vital importance to the design and safety analysis of
ships and floating offshore structures. Firstly, wave breaking (a
phenomenon that can lead to the risk of ship capsizing) takes place
when wave height and period cannot maintain the equilibrium
condition needed for stability. Therefore, it is necessary to have the
knowledge of the joint distribution of the wave heights and the
associated wave periods in order to predict the possibility of the
occurrence of wave breaking (see e.g. Liu et al., 2015, 2016; Perlin
et al., 2013) in a given sea state. Secondly, in the design of a
floating offshore structure it is very important to take into
consideration of the joint probability distribution of wave height
and period. This is because one of the most important consider-
ations for the design of a floating offshore structure is to avoid the
occurrence of resonant motion which occurs when wave periods
are close to the natural motion period of the floating offshore
structure. If the wave period is sufficiently long or sufficiently short
in comparison with the natural period of the floating offshore

structure's motion, the offshore structure may be in no danger even
if the wave height is relatively large. On the contrary, the motion
responsewill reach a level critical for the floating offshore structure
if wave periods are close to the structure's natural period (see Ochi,
2005). In designing a floating offshore structure, it is therefore very
important to know the statistical information about the wave
heights having periods that are close to the structure's natural
period in the areas where the floating offshore structure will be
installed and operated.

Waves in the real world are random in nature. In the literature,
there exist some empirical (or theoretical) models of joint distri-
butions of wave heights and periods of random ocean waves (see
e.g. Cavani�e et al., 1976; Lindgren and Rychlik, 1982; Longuet-
Higgins, 1975; Longuet-Higgins, 1983; Stansell et al., 2004). How-
ever, the previous researchwork ofWang and Xia (2012) has shown
that such kind of empirical (or theoretical) formulaswill sometimes
predict wave characteristic distributions that differ considerably
from the true ones. In order to overcome the weakness of the
empirical (or theoretical) approach for predicting the joint distri-
butions of wave heights and periods, Monte Carlo Simulation (MCS)
can be performed through the superposition of harmonics based on
awave spectrum, and in the ocean engineering literature this is also
called a linear simulation method. Based on some idealized target
spectra, Rodríguez and Soares (1999) and Rodríguez et al. (1999)
performed linear simulations to obtain long wave time series and
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aggregated all the simulated waves into a joint histogram to obtain
the joint distributions of wave height and period. However, their
simulatedwaves (and the subsequently obtained joint distributions
of wave height and period) are good approximations to the real
ones only under the condition of small oscillation amplitudes.
Meanwhile, Rodríguez and Soares (1999) and Rodríguez et al.
(1999) did not verify their research results with field data.

Starting from a specific wave power spectral density function,
there is another approach to obtain the joint distributions of wave
height and period by using a nonlinear simulation method. Wang
and Xia (2012) used a nonlinear simulation method to compute
the wave surface elevations for nonlinear random ocean waves. In
their numerical implementation, they divided the problem into
two processes, i.e. first generating a first order linear (Gaussian)
wave process with a specific wave spectrum, then correcting it by
adding the simulated second order nonlinear wave process. Their
obtained time histories of waves were then statistically processed
to obtain the joint distribution of wave height and period. However,
in their simulation project there were a huge number of second
order corrections that need to be evaluated. Therefore, using the
nonlinear simulation method for predicting the joint distributions
of wave height and period has become very time consuming,
laborious and unsuitable for practical implementations.

In order to improve the simulation efficiency, a novel approach
for predicting the joint distributions of wave heights and periods by
utilizing a transformed linear simulation method will be first pro-
posed in this article. The proposed transformed linear simulation
method will be based on a Hermite transformation model where
the transformation is chosen to be a monotonic cubic polynomial,
calibrated such that the first four moments of the transformed
model match the moments of the true process. The proposed new
approach will be utilized to predict the joint distributions of wave
heights and periods of a sea state with the surface elevation data
measured at the Gulfaks C platform in the North Sea, and its ac-
curacy and efficiency will be validated by using comparisons with
the results from an empirical joint distribution model, from a linear
simulation model and from a second-order nonlinear simulation
model.

2. The nonlinear random sea waves and the proposed
transformed linear simulation method

Waves in an idealized linear Gaussian random sea have crest-
trough symmetry. However, it is known that waves in the real sea
are nonlinear, and the ocean surface elevation process deviates
from the Gaussian assumption, i.e. the wave crests are becoming
steeper and higher and the wave troughs are becoming flatter and
shallower than expected under the Gaussian assumption. In the
following we briefly introduce the theories of the nonlinear
random sea waves.

For an idealized flow, the flow velocity can be described as the
gradient of a velocity potential Fðx; y; z; tÞ in which x and y are the
horizontal Cartesian coordinates, z is the vertical Cartesian coor-
dinate and t is time. The positive z-direction points upward. The
free surface is located at z¼ h(x, y, t), and the bottom of the fluid
region is at z¼�d(x, y). Assuming incompressible flow, the velocity
field is divergence-free and the velocity potential Fðx; y; z; tÞ sat-
isfies Laplace's equation

V2F ¼ 0 (1)

The free-surface boundary conditions for surface gravity waves
e using a potential flow description e consist of a kinematic and a
dynamic boundary condition. The kinematic boundary condition
ensures that the normal component of the fluid's flow velocity (vF/

vx, vF/vy, vF/vz)T at the free surface equals the normal velocity
component of the free-surface motion z¼ h (x, y, t):

vh

vt
þ vF

vx
vh

vx
þ vF

vy
vh

vy
¼ vF

vz
at z ¼ hðx; y; tÞ (2)

The dynamic boundary condition states that, without surface
tension effects, the atmospheric pressure just above the free surface
equals the fluid pressure just below the surface. For an unsteady
potential flow this means that the Bernoulli equation is to be
applied at the free surface. In case of a constant atmospheric
pressure, the dynamic boundary condition becomes:

vF

vt
þ 1
2

"�
vF
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�2

þ
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vF

vy

�2

þ
�
vF

vz

�2
#
þ gh ¼ 0 at z ¼ hðx; y; tÞ

(3)

where the constant atmospheric pressure has been taken equal to
zero, without loss of generality. For permanent waves above a
horizontal bed, the mean depth d is a constant and the boundary
condition at the bed becomes:

vF

vz
¼ 0 at z ¼ �d (4)

Using a perturbation-series approach (Stokes expansion), solu-
tions of the system (1)e(4) can be sought using the following
equations (see, e.g. Toffoli et al. (2006)):

�
F ¼ Fð1Þ þ Fð2Þ þ :::
h ¼ hð1Þ þ hð2Þ þ :::

where
Fðnþ1Þ

FðnÞ ¼ hðnþ1Þ

hðnÞ
¼ Oð~εÞ (5)

In Eq. (5) ~ε is a small parameter in the expansion and it is
typically proportional to thewave steepness. For a random sea state
characterized by a specific wave power spectral density function
ShðuÞ where u is the radian frequency, it can be shown that a first
order linear Gaussian solution of the system (1)e(5) has the
following form ((see, e.g. Toffoli et al. (2006); Ma et al. (2010))):

Fð1Þðx; tÞ ¼ Re
XN
n¼0

igcn
un

cosh kðzþ dÞ
cosh kd

expðiðunt � knxþ εnÞÞ

(6)

hð1Þðx; tÞ ¼ Re
XN
n¼0

cn expðiðunt � knxþ εnÞÞ (7)

as N tends to infinity. In Eqs. (6) and (7), Re denotes the real part of
the complex number, and for each elementary cosine wave cn de-
notes its complex valued amplitude which is directly related to the
specific wave power spectral density function ShðuÞ by the relation
E½jcnj2� ¼ ShðunÞDu. In Eqs. (6) and (7), un is the radian frequency
and un ¼ nDu ¼ nðuc=NÞ, and uc is the upper cut off frequency
beyond which the wave spectrum ShðuÞmay be assumed to be zero
for either mathematical or physical reasons. kn is the wave number,
and εn is the phase angle uniformly distributed in the interval [0,
2p]. Furthermore, the individual frequencies un and wave numbers
kn in Eqs. (6) and (7) are functionally related through the following
equation:

u2
n ¼ gkn tanhðkndÞ (8)

where g is the gravitational acceleration and d is the water depth.
The traditional linear simulation method in the ocean engineer-
ing practice is to numerically implement Eqs. (7) and (8) to
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generate the first order, linear (Gaussian) wave time histories at a
specific location of the sea. However, waves in the real sea are
nonlinear and non-Gaussian. Therefore, the linear Gaussian sea
model as expressed in Eqs. (7) and (8) should be corrected by
including second-order (quadratic) terms. Following Langley,
(1987) and Hasselmann, (1962) the second-order (quadratic) cor-
rections are given by:

In the above two equations Pðun;umÞ , rmn and qmn are called
second-order (quadratic) transfer functions. The quadratic transfer
function Pðun;umÞ is given by:

Pðun;umÞ¼
�
1�d�n;m

�g2knkm2unum
�1

4

�
u2
nþu2

mþunum
�þg2

4
ðunk

2
mþumk

2
nÞ

unumðunþumÞ
ðunþumÞ�g knþkm

ðunþumÞtanhððknþkmÞdÞ
(11)

In the above equation d�n;m is the Kroenecker delta whose value
equals unity if n þ m¼ 0. d�n;m ¼ 0 if n þ ms0. This Kroenecker
delta (d�n;m) is introduced to avoid a singular Pðun; umÞ.

The quadratic transfer functions rmn and qmn are given by:

In the above two equations the wave numbers kn and fre-
quenciesun satisfy the same relation as in the linear case. Finally, by
combining Eqs. (7) and (10) the wave surface elevations for the
nonlinear random ocean waves can be written as:

hðx; tÞ ¼ hð1Þðx; tÞ þ hð2Þðx; tÞ ¼ Re
XN
n¼0

cnexpðiðunt � knxþ εnÞÞþ

Re
XN
m¼0

XN
n¼0

cmcn½rmn expðiðumt � kmxþ εm þ unt � knxþ εnÞÞ
þqmn expðiðumt � kmxþ εm � unt þ knx� εnÞÞ�

(14)

The traditional nonlinear simulation method in the ocean
engineering practice is to numerically implement Eqs. (14) and (8)
to generate the nonlinear wave time histories at a specific location

Fð2Þðx; tÞ ¼ 2Re
XN
n¼0

XN
m¼�0

icncmPðun;umÞ coshðkn þ kmÞðzþ dÞ
coshðkn þ kmÞd expðiðunt � knxþ εnÞÞ

expðiðumt � kmxþ εnÞÞ þ2
XN
n¼0

c2ngkn
sinh 2knh

t

(9)

hð2Þðx; tÞ ¼ Re
XN
m¼0

XN
n¼0

cmcn½rmn expðiðumt � kmxþ εm þ unt � knxþ εnÞÞ
þqmn expðiðumt � kmxþ εm � unt þ knx� εnÞÞ�

(10)
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1
g
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@
� 1
4umun

�
2ðum þ unÞ

�
u2
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2
m � knkmg2

�
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�
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m � g2k2m

�
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�
u4
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�

ðum þ unÞ2 coshððkm þ knÞdÞ � gðkm þ knÞsinhððkm þ knÞdÞ

1
A
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1
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��
kmkng2 � u2

nu
2
m

�
þ
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1
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��
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�
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� 1
4umun
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�
u2
nu

2
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�
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�

ðun � umÞ2 coshðjkm � knjdÞ � gjkn � kmjsinhðjkn � kmjdÞ

1
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1
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�
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��
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�
(13)
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of the sea. For the numerical implementation of the nonlinear
simulation, the problem is usually divided into two processes, i.e.
first generating the first order, linear (Gaussian) time histories with
a specific wave spectrum at a specific location, for each of these the
numerical algorithm then evaluates the full set of second order
corrections according to the hydrodynamic theory as specified in
this Section. Therefore, the first order wave process, with N com-
ponents at frequencies un, gives rise to a total of N 2 corrections,
spreading over all sum frequencies at frequencies un þ um, and to
another N 2 corrections over all difference frequencies un � um.
However, the nonlinear simulation method as explained above will
become very time consuming when N becomes large. In order to
overcome this drawback, we propose to utilize a transformed linear
simulation method in this paper for predicting the wave heights
and periods joint distributions, and in the following the theoretical
background of this method will be elucidated.

Our proposed transformed linear simulation method is an
alternative and faster method than including the second order
correction terms to the linear model. It will use a deterministic and
time instantaneous functional transformation. The non-Gaussian
wave elevation process, hðx; tÞ is then a function of a single
Gaussian process, hð1Þðx; tÞ:

hðx; tÞ ¼ G
�
hð1Þðx; tÞ

�
(15)

where G ($) is a continuously differentiable function with positive
derivative. In this article, the G($) function is proposed to be based
on a Hermite transformation model. This transformation is chosen
to be a monotonic cubic polynomial, which is calibrated such that
the first four moments of the transformed model match the mo-
ments of the true process. In the following we write hð1Þðx; tÞ as bz ¼
hð1Þðx; tÞ. First we give the definition of Hermite polynomials. The
Hermite polynomials of degree n, denoted by HnðbzÞ , is defined as a
function which satisfies the relationship given by

dn

dbzn exp
�
� bz2

2

�
¼ ð�1ÞnHnðbzÞexp

�
� bz2

2

�
(16)

We next define the notion of a “Hermite moment” hn as (see e.g.
Wang, (2014)):

hn ¼ 1
n!

E½HnðbzÞ� (17)

We can then use the following formula for calculating the G ($)
function (see e.g. Wang, (2014)):

GðbzÞ ¼ bmh þ bksh
hbz þ ~h3

�bz2 � 1
�
þ ~h4

�bz3 � 3bz�þ :::
i

(18)

In the above equation bmh and sh are respectively the mean and
standard deviation of the surface elevation process hðx; tÞ. The co-
efficient bk is a scaling factor, while the coefficients ~hn may be
related to the Hermite moments hn in Eq. (17) by applying a Her-
mite polynomial to Eq. (18) and take expectations. For N¼ 4 mo-
ments, the solution is (see e.g. Wang, (2014)):

~h3 ¼ r3
6
ð1� 0:015jr3j þ 0:3r32Þ=ð1þ 0:2ðr4 � 3ÞÞ (19)

~h4 ¼ 0:1�
�
ð1þ 1:25ðr4 � 3ÞÞ1=3 � 1

�

�
�
1� 1:43r23=ðr4 � 3Þ

�ð1�0:1r0:84 Þ
(20)

In the above two equations the r3 and r4 are respectively the
skewness and kurtosis of the surface elevation process hðx; tÞ. The

above Eqs. (18)-(20) are the core procedures within the “trans-
formed linear simulation method” proposed in this article. Mean-
while, we can obviously see that the accuracy of the functional
transformation calculated according to Eq. (18) depends on how
manymoments are kept during the calculation. Themoremoments
are kept, the more accurate the functional transformation will be.
From the above mentioned derivation process it can be noted that
in order to calculate the G ($) function, we need to know the values
of the mean, standard deviation, skewness and kurtosis of the
second order nonlinear random waves. In the following, the
detailed mathematical procedures for obtaining these statistical
parameters will be illustrated.

Without loss of generality we set the position coordinate x in
hðx; tÞ to be x¼ 0. Meanwhile, we also write hð0; tÞ in a simplified
way as to be hðtÞ. Then, after a lengthy derivation process as shown
in Langley (1987), Eq. (14) can be re-written in the following matrix
notation:

hðtÞ ¼ sTXþ XT ½Q þ R�Xþ YT ½Q � R�Y (21)

where Q and R are real symmetric matrix whose nmth components
are snsmqmn and snsmrmn respectively, s is a vector whose nth
components are sn (sn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ShðunÞdu
p

). X and Y are vectors whose
nth components are xn and yn respectively, and xn and yn are
Gaussian random variables whose expressions are shown in
Langley (1987). By performing an eigenvalue decomposition, the
above equation becomes:

hðtÞ ¼ sTXþ XTPT1L1PXþ YTPT2L2P2Y (22)

where L1 is a diagonal matrix with the eigenvalues of the matrix
½Q þ R� in the respective diagonal and P1 contains the corre-
sponding eigenvectors per row. Meanwhile, L2 is a diagonal matrix
with the eigenvalues of the matrix ½Q � R� in the respective diag-
onal and P2 contains the corresponding eigenvectors per row.
Introducing a new set of Gaussian random variables Zj, such that:

Z ¼


P1 0
0 P2

�

X
Y

�
(23)

We can then write the stochastic process hðtÞ as (this is called
the Kac-Siegert solution):

hðtÞ ¼
X2N
j¼1

bjZj þ ljZ
2
j (24)

where Zj are independent Gaussian processes with unit variance,
and bj and lj are coefficients computed based on the information
provided by the wave power spectral density function ShðuÞ, which
is chosen for a given sea state. Specifically, the coefficients in the
above equation are computed as follows:

b ¼


P1s
0

�
(25)

l ¼
"
ðL1Þd
ðL2Þd

#
(26)

where ðLiÞd denotes a column vector formed by the diagonal ele-
ments of Li . Having obtained the values of bj and lj, the values of
the mean, standard deviation, skewness and kurtosis of the second
order nonlinear random waves can then be calculated as (Langley
(1987)):
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bmh ¼
X2N
j¼1

lj (27)

sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2N
j¼1

b2j þ 2
X2N
j¼1

l2j

vuut (28)

r3 ¼

"
6
P2N
j¼1

ljb
2
j þ 8

P2N
j¼1

l3j

#

s3h
(29)

r4 ¼
3þ 48

P2N
j¼1

l2j b
2
j þ 48

P2N
j¼1

l4j

s4h
(30)

3. A calculation example and discussions

In this Section we will utilize our proposed transformed linear
simulation method for calculating the joint distributions of wave
height and period of a sea state with the surface elevation data
measured at the Gulfaks C platform in the North Sea from 17.00
p.m. to 21.20 p. m. on December 24, 1989. Fig. 1 shows the
geographical position of the Gulfaks C platform. This measured data
set contains 39,000 measurements, and the sampling rate is 2.5 Hz.

Fig. 1. The geographical position of the Gulfaks C platform in the North Sea.

Fig. 2. The wave spectrum corresponding to the measured surface elevation data at the Gulfaks C platform.
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The water depth is 218m. There are two EMI laser sensors named
219 and 220. This data set is obtained from sensor 219, which is
located in the Northwest corner approximately two platform leg
diameters away from the closest leg. Thus the wave elevation is not
expected to be significantly affected by diffraction effects for
incoming waves in the western sector. The significant wave height
is Hs¼ 6.8m, and the spectral peak period is Tp¼ 10.5 s. The wind
direction for this period is from the south. The wave spectrum for
this data set can then be calculated, and is shown in Fig. 2 (Note that
the extreme upper tails of the spectrum are not plotted here).
Clearly, the wave spectrum is a bimodal one indicating the sea state
is a combination of wind waves and swell.

Figs. 3e6 show our calculated joint distributions of wave crest
height and period for this measured specific sea state. The solid
black lines in Fig. 3 represent the results of the joint distribution of
wave crest height and period directly obtained from the measured
wave elevation points at the Gulfaks C platform. For obtaining these
results, the time series of wave crest height are first extracted from
these measured wave elevation points. The time series of wave
crest front period and crest back period are also extracted from
these measured wave elevation points, and adding these two
together we can obtain the time series of wave period. Please note
that in this paper the definition of the wave crest front period is the

Fig. 3. The wave crest height and period joint distributions calculated with different
methods (Measured data and Cavanie et al. [5]).

Fig. 4. The wave crest height and period joint distributions calculated with different
methods (Measured data and Transformed linear simulation).

Fig. 5. The wave crest height and period joint distributions calculated with different
methods (Measured data and linear simulation).

Fig. 6. The wave crest height and period joint distributions calculated with different
methods (Measured data and nonlinear simulation).
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time span from an up-crossing to the next wave crest, and the
definition of the crest back period is the time from a wave crest to
the next down-crossing. The wave crest period is a sumvalue of the
wave crest front period and the crest back period. Next, exact
Epanechnikov kernel density estimates are carried out for obtain-
ing the joint distribution of wave crest height and period as shown
by the black lines in Fig. 3. Herewe shouldmention that some kinds
of kernel density functions are commonly used: uniform, biweight,
triweight, triangle, tricube, Epanechnikov, Gaussian, and cosine.
However, the kernel density function that minimizes the mean
integrated square error is the Epanechnikov kernel, which has the
following expression:

KðhÞ ¼ 3
4

�
1� h2

�
1fjhj�1g (31)

where 1fjhj�1g is the indicator function. We can obviously notice
that the joint distribution of wave crest height and period directly
obtained from the measured wave elevation data is not symmet-
rical with respect to the normalized wave period.

The solid red lines in Fig. 3 represent the empirical joint dis-
tribution of wave crest height and period as developed in Cavani�e
et al. [5] that has the following mathematical expressions:

f ðTC ;ACÞ ¼ c
A2
C

T5C
Exp

(
� A2

C

8ε2T4C

"�
T2C �

�
1� ε

2

1þ g2

��2

þ b2
�
1� ε

2

1þ g2

�#)
(32)

where

c ¼ 1
4

�
1� ε

2
�� 1

2p

�0:51
ε

1
a2

�
1

1þ g2

�2
(33)

a2 ¼ 1
2

�
1þ

�
1� ε

2
�0:5�

(34)

b ¼ ε
2
.�

1� ε
2
�

(35)

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

2
m0m4

s
(36)

g ¼ m0m2

m2
1

� 1 (37)

where m0, m1, m2 and m4 are various orders of spectral moments
calculated from the specific wave spectrum as shown in Fig. 2.
Obviously in this case the Cavani�e et al. [5] joint distribution of
wave crest height and period deviates a lot from the corresponding
real joint distribution obtained directly from the measured data.

In Fig. 4 the solid black lines again represent the results of the
joint distribution of wave crest height and period directly obtained
from themeasured wave elevation points at the Gulfaks C platform.
In Fig. 4 the solid green lines represent the results of the joint
distribution of wave crest height and period obtained from utilizing
our proposed transformed linear simulation method. In applying
the transformed linear simulation method, two matrices ½Q þ R�
and ½Q � R� as specified in Eq. (21) are first calculated and the ele-
ments in these two matrices are directly related to the wave
spectrum as shown in Fig. 2 and the quadratic transfer functions
rmn and qmn. Subsequently the coefficients bj and lj are calculated

by using Eq. (25) and Eq. (26) based on the wave spectrum as
shown in Fig. 2. Having obtained the values of bj and lj , the values
of the mean, standard deviation, skewness and kurtosis of the
nonlinear random waves can then be calculated by using Eqs.
(27)e(30). Finally, the Gð�Þ function is calculated by using Eqs.
(18)e(20) in Section 2, and this Gð�Þ function is subsequently used
to transform a linearly simulated 2000000 wave elevation points
time history from the wave spectrum in Fig. 2 into a non-Gaussian
time history. For this non-Gaussian time history the wave crests
have become higher and sharper, and the wave troughs have
become shallower and flatter (i.e. the waves have become more
nonlinear). Next, from this non-Gaussian time history the wave
crest height time series are extracted. The wave crest front period
and crest back period time series are also extracted from this non-
Gaussian time history, and adding these two together we can
obtain the wave period time series. Then exact Epanechnikov
kernel density estimates are carried out for obtaining the wave
crest height and period joint distribution as shown by the green
lines in Fig. 4. We can see that the results from the Transformed
linear simulation method fit the measured data much better than
the results obtained from using the Cavani�e et al. [5] joint distri-
bution model. Moreover, we can obviously notice that the joint
distribution of wave crest height and period obtained using the
Transformed linear simulation method is not symmetrical with
respect to the normalized wave period. Finally, it is mentioned that
in this case it takes only about 18 s on a desktop computer (HP
dx2310MT (VP784PA), Pentium (R) Dual-Core CPU E5300
@2.60GHz) to obtain the green curves in Fig. 4 by utilizing our
proposed transformed linear simulation method.

In Fig. 5 the solid black lines again represent the results of the
joint distribution of the wave crest height and period directly ob-
tained from the measured wave elevation points at the Gulfaks C
platform. In Fig. 5 the solid green lines represent the results of the
joint distribution of thewave crest height and period obtained from
using the linear simulation method, i.e. by numerically imple-
menting Eqs. (7) and (8) to generate a time series of sea waves with
2000000 elevation points based on thewave spectrum in Fig. 2, and
then statistically processing this time series to obtain the joint
distribution of the wave crest height and period. We can obviously
find that the results from the linear simulation fit poorer to the real
distribution than the results from the transformed linear simula-
tion do. By comparing Figs. 4 and 5, the obvious improvement is
that the results in the period range (4s-7s) and the height range
7m-8m where the new method is better than the traditional
method. For some waves with very high crest heights (e. g. >7m),
the traditional linear simulation method predicts too lower crest
heights corresponding to a specific wave period.

In Fig. 6 the solid black lines again represent the results of the
joint distribution of the wave crest height and period directly ob-
tained from the measured wave elevation points at the Gulfaks C
platform. In Fig. 6 the solid green lines represent the results of the
joint distribution of thewave crest height and period obtained from
using the nonlinear simulation method, i.e. by numerically imple-
menting Eq. (14) to generate a time series of sea waves with
200000 elevation points, and then statistically processing this time
series to obtain the joint distribution of the wave crest height and
period. In this case, it takes about 247 s on a desktop computer (HP
dx2310MT (VP784PA), Pentium (R) Dual-Core CPU E5300
@2.60GHz) to obtain the green curves in Fig. 6 by using the
nonlinear simulation method. If we look more closely to Figs. 6 and
4 and compare them, we can find that the results from the
nonlinear simulation still fit somewhat poorer to the real distri-
bution than the results from the transformed linear simulation do.
For some waves with very high crest heights (e. g. in the range of
7e8m), the nonlinear simulation method predicts too shorter
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corresponding periods. In case of some waves of very long (Tc) and
small (Ac) the curves in Fig. 6 are also agreeing much poorer. The
aforementioned research results demonstrate that our proposed
transformed linear simulation method has higher accuracy and
efficiency for predicting the joint distribution of the wave crest
height and period than the nonlinear simulation method does.

It should be further noted that the transformed linear simula-
tion method is not a certain approximation to the nonlinear
simulation method. The transformed linear simulation method is
not an extension of the nonlinear simulation method. These are
two entirely different techniques. The nonlinear simulationmethod
is obviously a numerical technique. However, strictly speaking, the
transformed linear simulation is an analytical method whose
detailed procedures are specified in Section 2 of this paper. The
nonlinear simulations of the first order waves and the second order
correction waves are based on Eqs (7-14) in this paper while the
random phase angles are designated to be uniformly distributed in
the range of [0, 2p]. These nonlinearly simulated “uniformly”
randomwaves do not include all of the natural variability of the real
sea waves. On the contrary, the transformed linear simulation
method focuses more on analytically following the intrinsic non-
Gaussian nature of the real sea waves. Based on Eqs. (15-30) in
this paper, the transformed linear simulation method obtained the
results of the joint distribution of the wave crest height and period
as shown in Fig. 4 in this paper, and these results turn out to fit the
measured wave data very well.

In order to give some quantitative comparisons besides using
the above figures (Figs. 3e6), we have summarized some values of
the joint wave crest height and period probability densities ob-
tained using various methods in the following tables (Table 1-
Table 3). Table 1 shows the values of the joint wave crest height and
period probability densities for some waves with very high crest
heights (in the range of 7.60e7.69m) and relatively short periods (in
the range of 5.04e5.56s). These values are directly obtained from
the measured wave elevation points at the Gulfaks C platform and

are used as the benchmark for verifying the accuracy of the
calculation results obtained using other methods. Table 2 summa-
rizes the values of the joint wave crest height and period proba-
bility densities for some waves with very high crest heights (in the
range of 7.58e7.72m) and relatively short periods (in the range of
4.98e5.53s) obtained using the nonlinear simulation method.
Table 3 shows the values of the joint wave crest height and period
probability densities for some waves with very high crest heights
(in the range of 7.59e7.71m) and relatively short periods (in the
range of 5.04e5.61s) obtained using the nonlinear simulation
method. By carefully study the data in these three tables we can
find that the joint probability density values obtained using the
transformed linear simulation method are generally more close to
the corresponding density values directly obtained from the
measured wave elevation points at the Gulfaks C platform. For
example the joint wave crest height (Ac¼ 7.6m) and period
(Tc¼ 5.04s) probability density value 0.0002 obtained using the
transformed linear simulation is more close to the corresponding
benchmark value 0.000406, while the joint wave crest height
(Ac¼ 7.6m) and period (Tc¼ 5.04s) probability density value
0.0001 obtained using the nonlinear simulation deviates more
from the corresponding benchmark value 0.000406. These calcu-
lation results quantitatively demonstrate that our proposed trans-
formed linear simulation method has higher accuracy for
predicting the joint wave crest height and period probability den-
sities than the nonlinear simulation method does.

Please note that from Fig. 5 we can already clearly notice that
the joint wave crest height and period probability densities ob-
tained using the linear simulation method deviate significantly
from the corresponding benchmark values. Therefore, it is not
necessary to add another table here containing the linear simula-
tion results in order to save space for this article.

4. Conclusions

The detailed mathematical formulas of a proposed transformed
linear simulation method for predicting the joint distributions of
the wave heights and periods of nonlinear waves have been
elucidated in this article, and the corresponding computer pro-
grams have also been developed. The basic points of the method-
ology proposed are as follows: The proposed transformed linear
simulation method is based on a Hermite transformation model
where the transformation is chosen to be a monotonic cubic
polynomial, calibrated such that the first four moments of the
transformed model match the moments of the true process. The

Table 1
The joint wave crest height and period probability densities obtained from the measured Gulfaks data.

Ac (m) Tc (s)

5.04 5.12 5.19 5.26 5.34 5.41 5.49 5.56

7.60 0.0004060 0.0003898 0.0003769 0.0003687 0.0003621 0.000355 0.0003502 0.0003474
7.64 0.0003568 0.0003433 0.0003349 0.0003311 0.0003271 0.0003237 0.0003244 0.000325
7.69 0.0003141 0.0003032 0.0002973 0.0002961 0.0002953 0.0002964 0.0003011 0.000304

Table 2
The joint wave crest height and period probability densities obtained from the nonlinear simulation method.

Ac (m) Tc (s)

4.98 5.07 5.16 5.25 5.35 5.44 5.53

7.58 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100
7.62 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100
7.67 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100
7.72 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100 0.000100

Table 3
The joint wave crest height and period probability densities obtained from the
transformed linear simulation method.

Ac (m) Tc (s)

5.04 5.14 5.23 5.33 5.42 5.52 5.61

7.59 0.00020 0.00020 0.00020 0.00020 0.00020 0.00014 0.00013
7.65 0.00015 0.00015 0.00015 0.00014 0.00013 0.00011 0.00010
7.71 0.00013 0.00013 0.00012 0.00011 0.00010 0.00010 0.00010
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obtained Hermite transformation model is subsequently used to
transform a linearly simulated wave elevation points time history
into a non-Gaussian time series. Next, from this non-Gaussian time
series the wave crest height and wave period time series are
extracted. Then exact Epanechnikov kernel density estimates are
carried out for obtaining the joint distribution of the wave crest
height and period. The proposed new method has been utilized for
calculating the joint distributions of thewave height and period of a
sea state with the surface elevation data measured at the Gulfaks C
platform in the North Sea, and its accuracy and efficiency have been
demonstrated to be higher than those of the linear and nonlinear
simulationmethods. The research results in this paper demonstrate
that our proposed transformed linear simulation method can be
utilized by engineers as a valuable tool for predicting the joint
distributions of the wave height and period in their ocean engi-
neering design projects.
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