• 제목/요약/키워드: weighted algebra

검색결과 17건 처리시간 0.018초

Automorphisms of Lotka-Volterra algebras

  • Yoon, Suk-Im
    • 대한수학회논문집
    • /
    • 제12권1호
    • /
    • pp.45-50
    • /
    • 1997
  • The purpose of this paper is to give a characterization of automorphisms of the weighted Lotka-Volterra algebra $(A,\omega)$ at idempotent elements and to offer a condition that $(A,\omege)$ becomes a Jordan algebra.

  • PDF

ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES

  • Bouchikhi, Lahcen;El Kinani, Abdellah
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1159-1170
    • /
    • 2020
  • We consider the weighted spaces ℓp(𝕊, 𝜑) and ℓp(𝕊, 𝜓) for 1 < p < +∞, where 𝜑 and 𝜓 are weights on 𝕊 (= ℕ or ℤ). We obtain a sufficient condition for ℓp(𝕊, 𝜓) to be multiplier weighted-space of ℓp(𝕊, 𝜑) and ℓp(𝕊, 𝜓). Our condition characterizes the last multiplier weighted-space in the case where 𝕊 = ℤ. As a consequence, in the particular case where 𝜓 = 𝜑, the weighted space ℓp(ℤ,𝜓) is a convolutive algebra.

WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.507-514
    • /
    • 2018
  • Let $\{{\varphi}_n\}_{n{\geq}1}$ be a sequence of analytic self-maps of ${\mathbb{D}}$. It is proved that if the union set of the ranges of the composition operators $C_{{\varphi}_n}$ on the weighted Bergman spaces contains the disk algebra, then ${\varphi}_k$ is an automorphism of ${\mathbb{D}}$ for some $k{\geq}1$.

WEIGHTED COMPOSITION OPERATORS ON WEIGHTED SPACES OF VECTOR-VALUED ANALYTIC FUNCTIONS

  • Manhas, Jasbir Singh
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1203-1220
    • /
    • 2008
  • Let V be an arbitrary system of weights on an open connected subset G of ${\mathbb{C}}^N(N{\geq}1)$ and let B (E) be the Banach algebra of all bounded linear operators on a Banach space E. Let $HV_b$ (G, E) and $HV_0$ (G, E) be the weighted locally convex spaces of vector-valued analytic functions. In this paper, we characterize self-analytic mappings ${\phi}:G{\rightarrow}G$ and operator-valued analytic mappings ${\Psi}:G{\rightarrow}B(E)$ which generate weighted composition operators and invertible weighted composition operators on the spaces $HV_b$ (G, E) and $HV_0$ (G, E) for different systems of weights V on G. Also, we obtained compact weighted composition operators on these spaces for some nice classes of weights.

ON STEPANOV WEIGHTED PSEUDO ALMOST AUTOMORPHIC SOLUTIONS OF NEURAL NETWORKS

  • Lee, Hyun Mork
    • Korean Journal of Mathematics
    • /
    • 제30권3호
    • /
    • pp.491-502
    • /
    • 2022
  • In this paper we investigate some sufficient conditions to guarantee the existence and uniqueness of Stepanov-like weighted pseudo almost periodic solutions of cellular neural networks on Clifford algebra for non-automomous cellular neural networks with multi-proportional delays. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

APPROXIMATE IDENTITY OF CONVOLUTION BANACH ALGEBRAS

  • Han, Hyuk
    • 충청수학회지
    • /
    • 제33권4호
    • /
    • pp.497-504
    • /
    • 2020
  • A weight ω on the positive half real line [0, ∞) is a positive continuous function such that ω(s + t) ≤ ω(s)ω(t), for all s, t ∈ [0, ∞), and ω(0) = 1. The weighted convolution Banach algebra L1(ω) is the algebra of all equivalence classes of Lebesgue measurable functions f such that ‖f‖ = ∫0∞|f(t)|ω(t)dt < ∞, under pointwise addition, scalar multiplication of functions, and the convolution product (f ⁎ g)(t) = ∫0t f(t - s)g(s)ds. We give a sufficient condition on a weight function ω(t) in order that L1(ω) has a bounded approximate identity.

WEIGHTED PROJECTIVE LINES WITH WEIGHT PERMUTATION

  • Han, Lina;Wang, Xintian
    • 대한수학회지
    • /
    • 제58권1호
    • /
    • pp.219-236
    • /
    • 2021
  • Let �� be a weighted projective line defined over the algebraic closure $k={\bar{\mathbb{F}}}_q$ of the finite field ��q and σ be a weight permutation of ��. By folding the category coh-�� of coherent sheaves on �� in terms of the Frobenius twist functor induced by σ, we obtain an ��q-category, denoted by coh-(��, σ; q). We then prove that coh-(��, σ; q) is derived equivalent to the valued canonical algebra associated with (��, σ).

SOME INEQUALITIES OF WEIGHTED SHIFTS ASSOCIATED BY DIRECTED TREES WITH ONE BRANCHING POINT

  • KIM, BO GEON;SEO, MINJUNG
    • East Asian mathematical journal
    • /
    • 제31권5호
    • /
    • pp.695-706
    • /
    • 2015
  • Let ${\mathcal{H}}$ be an infinite dimensional complex Hilbert space, and let $B({\mathcal{H}})$ be the algebra of all bounded linear operators on ${\mathcal{H}}$. Recall that an operator $T{\in}B({\mathcal{H})$ has property B(n) if ${\mid}T^n{\mid}{\geq}{\mid}T{\mid}^n$, $n{\geq}2$, which generalizes the class A-operator. We characterize the property B(n) of weighted shifts $S_{\lambda}$ over (${\eta},\;{\kappa}$)-type directed trees which appeared in the study of subnormality of weighted shifts over directed trees recently. In addition, we discuss the property B(n) of weighted shifts $S_{\lambda}$ over (2, 1)-type directed trees with nonzero weights are being distinct with respect to $n{\geq}2$. And we give some properties of weighted shifts $S_{\lambda}$ over (2, 1)-type directed trees with property B(2).