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WEIGHTED PROJECTIVE LINES WITH WEIGHT

PERMUTATION

Lina Han and Xintian Wang

Abstract. Let X be a weighted projective line defined over the algebraic

closure k = Fq of the finite field Fq and σ be a weight permutation of X.
By folding the category coh-X of coherent sheaves on X in terms of the

Frobenius twist functor induced by σ, we obtain an Fq-category, denoted

by coh-(X, σ; q). We then prove that coh-(X, σ; q) is derived equivalent to
the valued canonical algebra associated with (X, σ).

1. Introduction

The notions of weighted projective lines X and categories coh-X of their
coherent sheaves were first introduced by Geigle and Lenzing in [9]. It turns
out that weighted projective lines are important from various points of view and
are closely related to many branches of mathematics, such as representation
theory of finite dimensional algebras, singularity theory, invariant theory, and
function theory, etc.

The key observation of Geigle and Lenzing was that each weighted projective
line X admits a tilting sheaf T such that the endomorphism ring Λ is a canonical
algebra in the sense of Ringel [14]. Thus, by applying a result of Happel [11], the
category of finite dimensional Λ-modules is derived equivalent to the category
coh-X. Because coh-X is a hereditary abelian category, the structure of this
derived category is closely related to that of coh-X.

In [5], the authors introduced a Frobenius morphism F on an algebra A
over the algebraic closure k = Fq of the finite field Fq and constructed natu-
rally Frobenius twist functors on both the category mod-A of finite dimensional
A-modules and its bounded derived category Db(mod-A). They further proved
that the module category mod-AF for the F -fixed point algebra AF is equiva-
lent to the subcategory (mod-A)F of F -stable A-modules. This equivalence is
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further lifted to the derived category level in [6]. In particular, by applying the
construction above to canonical algebras with Frobenius morphisms, we obtain
valued canonical Fq-algebras; see the general case studied by Ringel [14] and a
special case in [3].

In the present paper we deal with a weighted projective line X over k = Fq
together with weight permutation σ. On the one hand, σ induces a Frobenius
twist functor on the category coh-X which gives an Fq-category coh-(X, σ; q)
consisting of F -stable objects in coh-X. On the other hand, σ defines a Frobe-
nius morphism on the canonical algebra Λ associated with X which induces a
Frobenius twist functor on mod-Λ. We then prove that the liftings of these
two functors on their derived categories Db(coh-X) and Db(mod-Λ) are com-
patible. As an application, we obtain that the bounded derived categories of
coh-(X, σ; q) and mod-ΛF are equivalent.

We organize the paper as follows. Section 2 recalls the notion of Frobenius
morphism on an algebra A over k = Fq and gives a brief introduction on the
category of coherent sheaves over a weighted projective line X. In Section 3, we
consider a weighted projective line X together with weight permutation σ and
define the corresponding Fq-category coh-(X, σ; q). In Section 4, we prove that
the Frobenius twist functors on Db(coh-X) and Db(mod-Λ) are compatible. As
a result, the category coh-(X, σ; q) is derived equivalent to the category of finite
dimensional modules over the fixed point algebra ΛF .

Throughout this paper we always assume that Fq is a finite field with q

elements, k = Fq is the algebraic closure of Fq. For an algebra A over a field,
by mod-A we denote the category of all finite dimensional left A-modules.

2. Preliminaries

In this section we recall some basic facts on Frobenius twist functors induced
by Frobenius morphisms on k-algebras from [5,7], and those on the categories
of coherent sheaves over weighted projective lines from [9].

We first recall the notion of a Frobenius morphism on a k-algebra. Let V be
a k-vector space. An Fq-linear isomorphism F : V → V is called a Frobenius
map on V if

(1) F (λv) = λqF (v) for all v ∈ V and λ ∈ k ,
(2) For any v ∈ V, F t(v) = v for some t ≥ 1.

Let A be a k -algebra with identity 1. A map F : A→ A is called a Frobenius
morphism on A if it is a Frobenius map on the underlying k -vector space A
which additionally satisfies

F (ab) = F (a)F (b) for all a, b ∈ A.

Then the F -fixed point algebra AF = {a ∈ A |F (a) = a} is clearly a finite
dimensional Fq-algebra.

Suppose that f : k → k is the field automorphism given by f(λ) = λq. For
each A-module M , let M [1] be the new A-module obtained from M by base
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change via f:

M [1] = M ⊗f k ,

and the action of A on M [1] is given as

(1) a · (m⊗ 1) = (F−1
A (a)m)⊗ 1, ∀ a ∈ A, m ∈M.

Thus, for m ∈ M and λ ∈ k , we have λm ⊗ 1 = m ⊗ λq. In other words, let
m(1) := m⊗ 1,

(m+ n)(1) = m(1) + n(1),

(λm)(1) = λqm(1),

a · (m(1)) = (F−1
A (a)m)(1).

We call M [1] the Frobenius twist of M . If f : M → N is an A-module ho-
momorphism, then the map f [1] := f ⊗ 1 : M [1] → N [1] is again an A-module
homomorphism.

Proposition 2.1 ([7, Prop. 2.9]). The correspondence M 7→ M [1] induces
a category equivalence ( )[1] : mod-A → mod-A, called the Frobenius (twist)
functor on mod-A.

Inductively, define the s-fold Frobenius twist M [s] := (M [s−1])[1] of M and
f [s] := (f [s−1])[1] for s ≥ 1, where M [0] = M and f [0] = f by convention.

Let M be an A-module and FM be a Frobenius map on M . Define M [FM ]

to be the A-module with M [FM ] = M as a vector space and the A-module
structure given by

(2) a ∗m = FM (F−1
A (a)F−1

M (m)).

We call M [FM ] the FM -twist of M . If f : M → N is an A-module homo-
morphism, then the map f [F ] = FN ◦ f ◦ F−1

M : M [FM ] → N [FN ] is again an
A-module homomorphism.

Inductively, define the s-fold FM -twist M [FM ]s := (M [FM ]s−1

)[FM ] of M and

f [F ]s := (f [F ]s−1

)[F ] = F sN ◦f ◦F
−s
M for s ≥ 1, where M [FM ]0 = M and f [F ]0 = f

by convention.

Lemma 2.2 ([7, Lem. 2.11]). Let M be an A-module and FM a Frobenius mor-
phism on M . The FM -twist M [FM ] and the Frobenius twist M [1] are isomorphic
as A-modules.

Proof. Let $M : M → M [1] be the Fq-linear isomorphism given by $M (m) =

m⊗ 1, ϕM = $M ◦ F−1
M : M [FM ] →M [1] is a k-linear isomorphism and

ϕM (a ∗m) = $MF
−1
M (FMF

−1
A (a)F−1

M (m)) = (F−1
A (a)F−1

M (m))(1)

= a · ((F−1
M (m))(1)) = a · (ϕM (m)).

So ϕM is an A-module isomorphism. �
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An A-module M is called Frobenius periodic (or F -periodic) if M ∼= M [r]

for some r ≥ 1. The minimal positive integer r with this property is called
the F -period of M , denoted by pF (M). If pF (M) = 1, we call M is Frobenius
stable (or F -stable).

Let (mod-A)F be the category as follows:

Objects: M such that φM : M [1] ∼−→M in mod-A,

Morphisms: Hom(mod-A)F (M,N)={f ∈Hommod-A(M,N) |φN ◦ f [1] =f ◦ φM}.

Theorem 2.3 ([6, Thm. 2.10]). The category (mod-A)F defined above is equiv-
alent to the category mod-AF of finite dimensional left AF -modules.

From now on, we assume that A is a finite dimensional k-algebra. By [6],
the Frobenius twist functor on mod-A can be lifted to the derived category
level. Let C(mod-A) denote the category of (chain) complexes of mod-A. For
each complex M∈ C(mod-A),

M = (M i, di) = · · · // M i−1 di−1
// M i di // M i+1 di+1

// · · · ,

where d2 = 0. Applying the Frobenius functor to each M i, we obtain a new
chain complex

M[1] = ((M i)[1], ( di)[1])

= · · · // (M i−1)[1]
(di−1)[1]

// (M i)[1]
(di)[1]

// (M i+1)[1]
(di+1)[1]

// · · · .

This will be called the Frobenius twist ofM. Further, each complex morphism
f = (f i) : M→ N induces a morphism f [1] = ((f i)[1]) : M[1] → N [1]. Thus,
the Frobenius functor on mod-A induces a functor

( )[1] = ( )
[1]
C(mod-A) : C(mod-A) −→ C(mod-A),

which we still call the Frobenius (twist) functor (on complexes).
A morphism f :M→N is homotopic to zero if and only if so is f [1]. Thus,

the Frobenius functor ( )[1] on C(mod-A) induces a functor

( )[1] = ( )
[1]
H(mod-A) : H(mod-A) −→ H(mod-A),

which is an equivalence of triangulated categories.
A morphism f : M → N is a quasi-isomorphism if and only if so is f [1].

Thus, the Frobenius functor ( )[1] on H(mod-A) induces a functor

( )[1] = ( )
[1]

Db(mod-A)
: Db(mod-A) −→ Db(mod-A),

which is again an equivalence of triangulated categories. If

ξ ∈ HomDb(mod-A)(M,N )

denotes the equivalence class (L, s, f) of the triple (L, s, f), where L is an
object in Db(mod-A), s ∈ HomH(mod-A)(L,M) is quasi-isomorphism, and f ∈
HomH(mod-A)(L,N ), then ξ[1] is the equivalence class of (L[1], s[1], f [1]).
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Let (Db(mod-A))F denote the category with

Objects: M such that φM : M [1] ∼−→M in Db(mod-A),

Morphisms: Hom(Db(mod-A))F (M,N)

= {ξ ∈ HomDb(mod-A)(M,N) | φN ◦ ξ[1] = ξ ◦ φM}.

Theorem 2.4 ([6, Thm. 5.4]). The category (Db(mod-A))F defined above is
equivalent to the category Db(mod-AF ).

We now briefly introduce the category coh-X of coherent sheaves on a weight-
ed projective line X, and its basic properties. Let P1

k be the projective line
over k and λ = (λ1, λ2, . . . , λt) be a collection of distinct closed points of
P1
k. Without loss of generality, we may assume λ1 = ∞, λ2 = 0. Further,

let p = (p1, p2, . . . , pt) be a weight sequence, that is, a sequence of positive
integers, and let L = L(p) denote the rank 1 abelian group

L = L(p) = 〈~x1, . . . , ~xt | p1~x1 = · · · = pt~xt〉.
The element ~c := p1~x1 is called the canonical element of L, and, moreover, each
element ~x ∈ L can be uniquely written in the normal form ~x =

∑t
i=1 li~xi + l~c

with 0 ≤ li ≤ pi − 1 and l ∈ Z.
Set

S = S(p,λ) = k [X1, X2, . . . , Xt]/(X
pi
i −(Xp2

2 −λiX
p1

1 ))ti=3 := k[x1, x2, . . . , xt].

Then S becomes an L-graded commutative algebra by setting deg xi = ~xi,
i = 1, . . . , t, called the L-graded k-algebra associated with (p,λ). The weighted
projective line X = (P1

k ,p,λ) associated with the pair (p,λ) is defined to be

SpecLS, the spectrum of L-graded homogeneous ideals of S.

By an L-graded version of the Serre construction [15], the category of co-
herent sheaves on X is defined to be the quotient category

coh-X = modL-S/modL
0 -S,

where modL-S is the category of finitely generated L-graded S-modules and
modL

0 -S is the Serre subcategory of finite length L-graded S-modules.
Note that L acts on modL-S by grading shift: each ~x ∈ L defines a functor

~x : modL-S −→ modL-S, M 7−→M(~x),

where M(~x) is the S-module M with the new grading M(~x)~y = M~x+~y. The
free module S gives the structure sheaf O, and each line bundle L on X has
the form L = O(~x) for some uniquely determined ~x ∈ L.

Theorem 2.5 ([9]). The category coh-X is k-linear and abelian with the fol-
lowing properties:

(1) coh-X is connected and Noetherian, that is, ascending chains of subob-
jects are stationary.

(2) coh-X is Ext-finite and hereditary.
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(3) coh-X has a Serre duality in the form

DExt 1
coh-X(X,Y ) ∼= Hom coh-X(Y,X(~ω)),

where D = Homk(−, k) and ~ω := (t−2)~c−
∑t
i=1 ~xi (called the dualizing

element of L). In particular, Auslander–Reiten translation τ : coh-X→
coh-X is the grading shift M 7→M(~ω).

(4) coh-X has a splitting torsion pair (coh0-X, vect-X), where coh0-X and
vect-X are full subcategories of torsion sheaves and vector bundles, re-
spectively.

(5) For any ~x, ~y ∈ L, Hom coh-X(O(~x),O(~y)) ∼= S~y−~x.

The category coh0-X decomposes into a coproduct cohλ-X, where cohλ-X
denotes the uniserial category of finite length sheaves concentrated at the point
λ. If λ is an ordinary point, i.e., λ ∈ Hk := P1

k\{λ1, . . . , λt}, then there is
exactly one simple object in cohλ-X, while for an exceptional point λi, cohλi-X
has exactly pi simple objects (up to isomorphism). The simple finite length
sheaf at an ordinary point λ is given as the cokernel of the exact sequence

0 // O
x
p2
2 −λx

p1
1// O(~c) // Sλ // 0,

while the pi exceptional simple sheaves concentrated at λi arise as the cokernels
of exact sequences

0 // O(j~xi)
xi // O((j + 1)~xi) // Si,j // 0, ∀ j ∈ Z/piZ.

3. Weighted projective lines with weight permutation

In this section, we consider a weighted projective line X together with a
permutation σ on the weights. We will show that σ induces a Frobenius twist
functor on the category coh-X of coherent sheaves and define a subcategory of
coh-X whose objects are invariant under the Frobenius twist functor. We keep
all the notations in the previous section.

Definition. Let X be the weighted projective line associated to (p,λ), where
p = (p1, . . . , pt) and λ = (λ1, . . . , λt) with λ1 = ∞ and λ2 = 0. A weight
permutation σ for X is a permutation of {1, . . . , t} such that pσ(i) = pi and

(1) λσ(i) = λqi for i ∈ {3, . . . , t} when t > 3;
(2) either λ3 ∈ Fq and σ = id, or λ3 = −1 and σ = (12) when t = 3;
(3) either σ = id or σ = (12) when t = 2.

The triple (X, σ; q) is called a weighted projective line with weight permutation
σ over k = Fq.

Example 3.1. (1) Let k = F3, p = (2, 2, 2, 2), and λ = (∞, 0, λ, λ3), where
λ = x̄ ∈ F3[x]/(x2 + 1) ∼= F32 . Then σ = (34) is a weight permutation of X.

(2) Let p = (2, 2, 3) and λ = (∞, 0,−1). Then σ = (12) is a weight permu-
tation of X.



WEIGHTED PROJECTIVE LINES WITH WEIGHT PERMUTATION 225

Let (X, σ) be a weighted projective line X with weight permutation σ and
S(p,λ) be the associated L-graded k -algebra. Then σ induces a Frobenius
morphism

F = FS = FX,σ;q : S(p,λ) −→ S(p,λ)∑
n

cnfn 7−→
∑
n

cqnσ(fn),

where n = (n1, . . . , nt) ∈ Nt, cn ∈ k , fn = xn1
1 xn2

2 · · ·x
nt
t , and σ(fn) =

xn1

σ(1)x
n2

σ(2) · · ·x
nt
σ(t).

The weight permutation σ induces a group homomorphism

σL : L −→ L, ~xi 7−→ ~xσ(i), ∀ 1 ≤ i ≤ t.
By (1), each L-graded S-module M gives rise to a new L-graded S-module
M [1] = M ⊗f k with L-graded structure given by

(M [1])~x = Mσ−1
L (~x) ⊗f k, ∀ ~x ∈ L.

Indeed, if a ∈ S~x and m(1) ∈ (M [1])~y = Mσ−1
L (~y) ⊗f k, then

a ·m(1) = (F−1(a)m)(1) ∈ (M [1])~x+~y.

We call M [1] the Frobenius twist of L-graded S-module M . If f : M → N is
an L-graded S-module homomorphism, then

f [1]((M [1])~x) = (f⊗1)(Mσ−1
L (~x)⊗fk) = fMσ−1

L (~x)⊗fk ⊆ Nσ−1
L (~x)⊗fk = (N [1])~x.

Hence, f [1] : M [1] → N [1] is again an L-graded S-module homomorphism.

Proposition 3.2. (1) The functor ( )
[1]

modL-S
: modL-S → modL-S is an equiv-

alence. Moreover, its restriction to modL
0 -S gives an equivalence modL

0 -S →
modL

0 -S.

(2) The functor ( )
[1]

modL-S
compatible with the grading shift, that is, for each

M ∈ modL-S and ~x ∈ L,

M(~x)[1] = (M [1])(σL(~x)).

Proof. (1) Take M ∈ modL-S and consider the k-vector space M [−1] = M⊗f−1

k, where f−1 : k → k, λ 7→ q
√
λ. Define an S-module structure on M [−1] via

a · (m⊗ 1) = (FS(a)m)⊗ 1, ∀ a ∈ S, m ∈M,

as well as an L-grading on M [−1] given by

(M [−1])~x = MσL(~x) ⊗f k, ∀ ~x ∈ L.

Then M [−1] lies in modL-S. Moreover, if f : M → N is an L-graded S-
module homomorphism, then f [−1] = f ⊗ 1 is again an L-graded S-module
homomorphism. Thus, we obtain a functor

( )
[−1]

modL-S
: modL-S −→ modL-S.
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It is easy to check that

( )
[1]

modL-S
◦ ( )

[−1]

modL-S
∼= idmodL-S

∼= ( )
[−1]

modL-S
◦ ( )

[1]

modL-S
.

Hence, ( )
[1]

modL-S
: modL-S → modL-S is an equivalence.

If M is a finite length L-graded S-module, so is M [1]. Thus, the restriction
of the above functor to modL

0 -S

( )
[1]

modL
0-S

: modL
0 -S −→ modL

0 -S

is also a category equivalence.
(2) By the definition, for each ~y ∈ L,

(M(~x)[1])~y = M(~x)σ−1
L (~y) ⊗f k = M~x+σ−1

L (~y) ⊗f k

= (M [1])σL(~x)+~y = ((M [1])(σL(~x)))~y.

By the definition, the actions of S on the homogeneous spaces (M(~x)[1])~y and

(M [1])(σL(~x))~y coincide. Hence, M(~x)[1] = (M [1])(σL(~x)). �

The functor ( )
[1]

modL-S
is called the Frobenius (twist) functor on modL-S.

Now let M be an L-graded S-module together with a Frobenius map FM :
M →M . As in Section 2, we obtain an S-module M [FM ]. Moreover, M [FM ] is
also L-graded with

(M [FM ])~x = FM (Mσ−1
L (~x)), ∀ ~x ∈ L.

Indeed, if a ∈ S~x and m ∈ (M [FM ])~y, then by (2),

a ∗m = FM (F−1
S (a)F−1

M (m)) ∈ FM (Mσ−1
L (~x)+σ−1

L (~y)) = (M [FM ])~x+~y.

We call M [FM ] the FM -twist of L-graded S-module M . Moreover, if f : M → N
is an L-graded S-module homomorphism and FM , FN are Frobenius mor-
phisms, respectively, then

f [F ]((M [FM ])~x) = (FN ◦ f ◦ F−1
M )(FM (Mσ−1

L (~x)))

= (FN ◦ f)(Mσ−1
L (~x)) ⊆ FN (Nσ−1

L (~x)) = (N [FN ])~x.

Hence, f [F ] : M [FM ] → N [FN ] is again an L-graded S-module homomorphism.

Proposition 3.3. Let M be an L-graded S-module. Then ϕM = $M ◦ F−1
M :

M [FM ] →M [1] is an isomorphism of L-graded S-modules.

Proof. By Lemma 2.2, the homomorphism ϕM is an S-module isomorphism.
It suffices to check that ϕM keeps L-gradings. Indeed, for each m ∈ (M [FM ])~x,

ϕM (m) = $M ◦ F−1
M (m) ∈ $M (Mσ−1

L (~x)) = (M [1])~x. �
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By [2, Lem. 1.2.4], the category coh-X can be viewed as the localization of
modL-S at the class S of all morphisms in modL-S with kernel and cokernel
in modL

0 -S. We claim that f ∈ S if and only if f [1] ∈ S . If f : M → N ∈ S ,
then there is an exact sequence

0 // Ker f // M
f
// N // Coker f // 0.

Applying ( )[1] : modL-S → modL-S to the exact sequence above gives the
exact sequence

0 // (Ker f)[1] // M [1] f [1]

// N [1] // (Coker f)[1] // 0.

Since the functor ( )[1] is an equivalence, we have

Ker(f [1]) ∼= (Ker f)[1] ∈ modL
0 -S, Coker(f [1]) ∼= (Coker f)[1] ∈ modL

0 -S.

Hence, f [1] ∈ S . Similarly, f [1] ∈ S implies f ∈ S . Therefore, the Frobenius
functor on modL-S induces a functor

( )[1] = ( )
[1]
coh-X : coh-X −→ coh-X,

which is again an equivalence.

Proposition 3.4. Let (X, σ; q) be a weighted projective line with weight per-
mutation σ. Then

(1) O(~x)[1] ∼= O(σL(~x)), ∀ ~x ∈ L;

(2) S
[1]
i,j
∼= Sσ(i),j , ∀ 1 ≤ i ≤ t, j ∈ Z/piZ;

(3) if σ fixes 1 and 2, then (Sλ)[1] = Sλq , where λ ∈ Hk; if σ swaps 1 and
2, then (Sλ)[1] = S1/λq ;

(4) if M ∈ coh-X is indecomposable, then τ(M [1]) = (τM)[1], where τ is
the Auslander–Reiten translation in coh-X.

Proof. (1) The map ψ~x : O(~x)[1] → O(σL(~x)) taking m ⊗ 1 7−→ FS(m) is an
isomorphism of S-modules. Moreover, ψ~x((O(~x)[1])~y) = ψ~x(S~x+σ−1

L (~y) ⊗f k) ⊆
SσL(~x)+~y = O(σL(~x))~y. Hence, ψ~x is an L-graded S-module isomorphism.

(2) For given 1 ≤ i ≤ t, j ∈ Z/piZ, there are two short exact sequences

0 // O(j~xi)
xi // O((j + 1)~xi) // Si,j // 0 and

0 // O(j~xσ(i))
xσ(i)

// O((j + 1)~xσ(i)) // Sσ(i),j
// 0.

Applying the functor ( )[1] to the first one gives the exact sequence

0 // O(j~xi)
[1] xi⊗1

// O((j + 1)~xi)
[1] // S

[1]
i,j

// 0.
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Hence, from the commutative diagram

S(j~xi)
[1] xi⊗1

//

ψj~xi
∼=
��

S((j + 1)~xi)
[1]

ψ(j+1)~xi
∼=
��

S(j~xσ(i))
xσ(i)

// S((j + 1)~xσ(i))

we obtain that S
[1]
i,j
∼= Sσ(i),j .

(3) Take λ ∈ Hk. If σ fixes 1 and 2, then we have the commutative diagram

0 // O[1] zλ //

∼=ψ0

��

O(~c)[1] //

∼= ψ~c

��

S
[1]
λ

//

��

0

0 // O
x
p2
2 −λ

qx
p1
1// O(~c) // Sλq // 0,

where zλ = (xp2

2 − λx
p1

1 ) ⊗ 1. Thus, (Sλ)[1] ∼= Sλq . If σ swaps 1 and 2, then
p := p1 = p2 and the commutative diagram

0 // O[1] zλ //

∼=ψ0

��

O(~c)[1] //

∼= − 1
λq ψ~c

��

S
[1]
λ

//

��

0

0 // O
xp2−( 1

λq )xp1// O(~c) // S1/λq
// 0

gives the isomorphism (Sλ)[1] ∼= S1/λq .
(4) Since σL(~ω) = ~ω, we have by Proposition 3.2(2),

τ(M [1]) = M [1](~ω) = M [1](σL(~ω)) = (M(~ω))[1] = (τM)[1]. �

By (coh-X)F we denote the category with

Objects: M together with an isomorphism φM : M [1] ∼−→M in coh-X,

Morphisms: Hom(coh-X)F (M,N)={ζ ∈ Homcoh-X(M,N) | φN ◦ ζ [1] = ζ ◦ φM}.

Since (λf)[1] = λf [1] for each f : M → N and λ ∈ Fq, it follows that (coh-X)F

is an Fq-category. In the following, we denote (coh-X)F by coh-(X, σ; q), and
its objects will be called “coherent sheaves” on (X, σ; q).

Remark 3.5. By an argument similar to that in [5, Thm. 7.4], we infer that
coh-(X, σ; q) has Auslander–Reiten sequences, which are obtained by folding
those in coh-X.

As in [6], the Frobenius functor ( )[1] : coh-X → coh-X can be lifted to a

Frobenius functor ( )
[1]

Db(coh-X)
: Db(coh-X)→ Db(coh-X). This is an equivalence

of triangulated categories and gives an Fq-category (Db(coh-X))F . Moreover,
each object in Db(coh-(X, σ; q)) can be viewed as an object in (Db(coh-X))F .
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Remark 3.6. In [8], the author studies the quotient category T G of a triangu-
lated category T with an action of a group G. It is shown that under certain
condition, T G is again a triangulated category; see [8, Cor. 6.10]. This implies
that (Db(coh-X))F is a triangulated category.

Theorem 3.7. The Fq-category coh-(X, σ; q) is an abelian category.

Proof. We first show that coh-(X, σ; q) is an abelian category. Let

M = (M,φM ) and N = (N,φN )

be two objects in coh-(X, σ; q) and ζ ∈ Hom coh-(X,σ;q)(M,N). It suffices to
show that ζ admits a kernel and a cokernel, and the canonical factorization

Ker ζ
ζ′

// M
ζ

//

��

N
ζ′′
// Coker ζ

Coker ζ ′
ζ̄
// Ker ζ ′′

OO

of ζ induces an isomorphism ζ̄. Then we have the following commutative
diagram:

0 // K [1] //

∼=
��

M [1] ζ[1]

//

φM ∼=
��

N [1] //

φN ∼=
��

C [1] //

∼=
��

0

0 // K // M
ζ
// N // C // 0,

where K = Ker ζ, C = Coker ζ. The upper sequence is exact, since ( )[1] is
an equivalence. It implies that Ker ζ and Coker ζ are both in coh-(X, σ; q).
Consider the following diagram:

0 K [1] M [1] N [1] C [1] 0

M [1]/K [1] N ′[1]

0 K M N C 0.

M/K N ′

//

//

//

//

//

//

//

//
�� ��

π[1]

''
ι[1]dd

π
''

ιee

ζ[1]

//

g[1]

//

g
//

φM

��
φM/K

��

φN′

��

ζ
//

φN

��

We claim that φN ′g
[1] = gφM/K . Let g′ = φ−1

N ′ gφM/K , we get ι[1]g′π[1] =

ι[1]φ−1
N ′ gφM/Kπ

[1] = φ−1
N ιgπφM = φ−1

N ζφM = ζ [1] = ι[1]g[1]π[1]. Note that g′

and g[1] are isomorphisms, ι[1] is a monomorphism, and π[1] is an epimorphism.
Thus g[1] = g′, i.e., φN ′g

[1] = gφM/K . So coh-(X, σ; q) is abelian. �

It will be seen in the next section that coh-(X, σ; q) is indeed hereditary and
Ext-finite.
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4. Valued canonical algebras associated with weight permutations

In this section we point out that a weight permutation σ of a weighted
projective line X induces a Frobenius morphism F on the canonical algebra
Λ = Λ(p,λ) associated with X. We then prove that the Frobenius twist func-
tors on Db(coh-X) and Db(mod-Λ) are compatible. As a result, the category
coh-(X, σ; q) is derived equivalent to the fixed point algebra ΛF .

Let X = (P1
k ,p,λ) be a weighted projective line with p = (p1, . . . , pt), λ =

(λ1, . . . , λt), λ1 = ∞, λ2 = 0. The canonical algebra Λ = Λ(p,λ) associated
with X is by definition the finite dimensional algebra given by the quiver Q =
Q(p,λ)

~x1

X11

��

2~x1
X12oo · · ·X13oo (p1 − 1)~x1

X1(p1−1)
oo

~x2X21

vv

...

2~x2
X22oo · · ·X23oo (p2 − 1)~x2

X2(p2−1)
oo

~0 ~c

X1p1

cc

X2p2jj

Xtpt

xx

~xt

Xt1

bb

2~xt
Xt2oo · · ·Xt3oo (pt − 1)~xt

Xt(pt−1)
oo

with the defining relations

(3) Xpi
i = Xp2

2 − λiX
p1

1 , i = 3, . . . , t,

where X
pj
j := Xj1 · · ·Xjpj for j = 1, . . . , t. In other words,

Λ = kQ/〈Xpi
i − (Xp2

2 − λiX
p1

1 ) | 3 ≤ i ≤ t〉.
Lemma 4.1 ([9, Prop. 4.1]). The object T =

⊕
0≤~x≤~cO(~x) is the canoni-

cal tilting sheaf in coh-X such that its endomorphism algebra (End coh-X(T ))op

is isomorphic to Λ = Λ(p,λ). In particular, there is a derived equivalence
Db(coh-X) ∼= Db(mod-Λ).

Let σ be a permutation of weights of X. On the one hand, by Proposition
3.4, we can identify T [1] with T . Then the correspondence f 7→ f [1] induces a
Frobenius morphism FT on (End coh-X(T ))op.

On the other hand, σ induces an automorphism of Q, still denoted by σ,
given by

σ(~0) = ~0, σ(~c) = ~c, σ(ki~xi) = ki~xσ(i), σ(Xiji) = Xσ(i)ji ,

where 1 ≤ i ≤ t, 1 ≤ ki ≤ pi − 1, 1 ≤ ji ≤ pi. It is clear that σ permutes the
relations in (3), and thus, induces a Frobenius morphism

(4) F = FΛ,σ;q : Λ −→ Λ,
∑
s

asps 7−→
∑
s

aqsσ(ps),

where the ps are paths in Q, σ(ps) = σ(ρn) . . . σ(ρ1) if ps = ρn . . . ρ1 with

ρi ∈ Q1, and ps, σ(ps) denote their residue classes in Λ, respectively. By the
construction, we have the following result.
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Lemma 4.2. The Frobenius morphisms FT and FΛ,σ;q are compatible with the
canonical isomorphism (End coh-X(T ))op ∼= Λ.

Furthermore, the F -fixed point algebra

ΛF = {a ∈ Λ | F (a) = a}

is an Fq-algebra, called the valued canonical algebra associated with weight
permutation σ.

Since Λ is a finite dimensional k-algebra, we have by Section 2 the Frobenius
(twist) functor

( )[1] = ( )
[1]
mod-Λ : mod-Λ −→ mod-Λ.

Furthermore, the Frobenius twist functor can be lifted step by step to the chain
complex level, homotopy level and finally to the derived category level:

( )[1] = ( )
[1]

Db(mod-Λ)
: Db(mod-Λ) −→ Db(mod-Λ).

Moreover, ( )
[1]

Db(mod-Λ)
is an equivalence of triangulated categories.

In view of the lemmas above, we identify (End coh-X(T ))op with Λ = Λ(p,λ).
Then the functor

Hom coh-X(T,−) : coh-X −→ mod-Λ

induces an equivalence addT
∼−→ proj Λ and admits a left adjoint

−⊗Λ T : mod-Λ −→ coh-X.

Given a Λ-module M with a projective resolution

P1 = Hom Λ(T, T0) −→ P0 = Hom Λ(T, T1) −→M −→ 0,

M ⊗Λ T is by definition the cokernel of the corresponding morphism T1 → T0

in addT .

Lemma 4.3 ([10]). Let X = (P1
k,p,λ) be a weighted projective line, T =⊕

0≤~x≤~cO(~x), and Λ = Λ(p,λ) = (End coh-X(T ))op. Then the derived functor

−⊗L
Λ T : Db(mod-Λ)

∼−→ Kb(projΛ) −→ Db(coh-X)

is an equivalence of triangulated categories which takes a complex P of projec-
tive Λ-modules to P ⊗Λ T , and its right adjoint RHom coh-X(T,−) is a quasi-
inverse.

Theorem 4.4. There are canonical natural isomorphisms

( )
[1]

Db(mod-Λ)
◦RHom coh-X(T,−) ∼= RHom coh-X(T,−) ◦ ( )

[1]

Db(coh-X)
,

( )
[1]

Db(coh-X)
◦ (−⊗L

Λ T ) ∼= (−⊗L
Λ T ) ◦ ( )

[1]

Db(mod-Λ)
.
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Proof. By Proposition 3.4, T [1] ∼= T with isomorphism φ = φT . Thus, for each
X ∈ coh-X, there is a canonical k-vector space isomorphism

Hom coh-X(T,X)[1] ∼= Hom coh-X(T [1], X [1]) ∼= Hom coh-X(T,X [1]),

f ⊗f 1 7−→ f [1] 7−→ f [1]φ−1.

This is also a Λ-module isomorphism. Indeed, the action of Λ is explicitly given
by

θ · (f ⊗f 1) = (fF−1(θ))⊗f 1,

θ · f [1] = f [1]φ−1θφ,

θ · (f [1]φ−1) = f [1]φ−1θ,

where θ ∈ Λ, and F is the Frobenius morphism on Λ given by F (θ) = φθ[1]φ−1.
Moreover, there are natural isomorphisms

Hom coh-X(T,−)[1] ∼= Hom coh-X(T [1],−[1]) ∼= Hom coh-X(T,−[1]),

since, for any X,Y ∈ coh-X and every homomorphism ξ : X → Y , there is a
commutative diagram

Hom coh-X(T,X)[1] ∼ //

Hom coh-X(T,ξ)[1]

��

Hom coh-X(T [1], X [1])
∼ //

Hom coh-X(T [1],ξ[1])

��

Hom coh-X(T,X [1])

Hom coh-X(T,ξ[1])

��

Hom coh-X(T, Y )[1] ∼ // Hom coh-X(T [1], Y [1])
∼ // Hom coh-X(T, Y [1])

where

Hom coh-X(T, ξ)[1](f ⊗f 1) = ξf ⊗f 1,

Hom coh-X(T [1], ξ[1])(f [1]) = ξ[1]f [1],

Hom coh-X(T, ξ[1])(f [1]φ−1) = ξ[1]f [1]φ−1.

In other words, we have the commutative diagram (up to a natural isomor-
phism):

coh-X
Hom coh-X(T,−)

//

( )[1]

��

mod-Λ

( )[1]

��

coh-X
Hom coh-X(T,−)

// mod-Λ

Taking their derived functors give the first required natural isomorphism.
By the uniqueness of left adjoint functor, we obtain a natural isomorphism

(−⊗Λ T )[1] ∼= −[1] ⊗Λ T.

That is, we have the commutative diagram (up to a natural isomorphism):

mod-Λ
−⊗ΛT //

( )[1]

��

coh-X

( )[1]

��

mod-Λ
−⊗ΛT // coh-X
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This gives the second required natural isomorphism. �

This theorem together with Theorem 2.4 implies that

(5) (Db(coh-X))F ∼= (Db(mod-Λ))F ∼= Db(mod-ΛF ).

Recall from the previous section the Fq-category coh-(X, σ; q) associated with
(X, σ). Then the embedding coh-X ↪→ Db(coh-X) induces an embedding

coh-(X, σ; q) ↪→ (Db(coh-X))F ∼= (Db(mod-Λ))F .

Hence, we can apply the method in [6, Thm. 5.6] to construct indecomposable
objects in (Db(coh-X))F .

Proposition 4.5. There exists a triangle equivalence

G : Db(coh-(X, σ; q)) −→ (Db(coh-X))F .

Proof. Since coh-X is a hereditary abelian category, it follows that for each
M∈ Db(coh-X), there is an isomorphism

M∼=
∐
n∈Z

Σ−nHn(M),

where Σ denotes the shift functor, see, e.g., [2, Lem. 2.2.1]. In particular, each
indecomposable object in Db(coh-X) has the form M [n] for some indecompos-
able object M ∈ coh-X and n ∈ Z. Therefore, each indecomposable object
in (Db(coh-X))F has the form Y [n], where Y is an indecomposable object in
coh-(X, σ; q).

Consider the standard bounded t-structure (D60,D>0) on Db(coh-X), where
D60 (resp., D>0) is the full subcategory of Db(coh-X) consisting of M such
that Hi(M) = 0 for all i > 0 (resp., i < 0). Then the corresponding heart
is D60 ∩ D>0 = coh-X. Clearly, both D60 and D>0 are closed under tak-
ing the Frobenius twist. This gives two subcategories (D60)F and (D>0)F of
(Db(coh-X))F . It is routine to check that ((D60)F , (D>0)F ) defines a bounded
t-structure of (Db(coh-X))F . Moreover, its corresponding heart is

coh-(X, σ; q) = (D60)F ∩ (D>0)F .

By [12, 3.2] and [4, Sect. 3], there exists a triangle functor

G : Db(coh-(X, σ; q)) −→ (Db(coh-X))F

satisfying G|coh-(X,σ;q) = idcoh-(X,σ;q), called the realization functor. Since each

indecomposable object in (Db(coh-X))F has the form Y [n] with Y an indecom-
posable object in coh-(X, σ; q) and n ∈ Z, G is full. Applying [1, Thm. B] gives
that G is an equivalence. �

By the above proposition and (5), we obtain our main theorem.

Theorem 4.6. There is a derived equivalence

Db(coh-(X, σ; q)) ∼= Db(mod-ΛF ).
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Corollary 4.7. The category coh-(X, σ; q) is a hereditary and Ext-finite Fq-
category. Moreover, it has Serre duality.

Proof. By Proposition 4.5, for any two objects M,N ∈ coh-(X, σ; q),

Ext icoh-(X,σ;q)(M,N) = HomDb(coh-(X,σ;q))(M,ΣiN)

= Hom (Db(coh-X))F (M,ΣiN)

⊆ HomDb(coh-X)(M,ΣiN)

= Ext icoh-X(M,N).

Therefore, the heredity and Ext-finiteness of coh-(X, σ; q) follow from those of
coh-X.

In view of Remark 3.5, coh-(X, σ; q) has Auslander–Reiten sequences. Since
coh-(X, σ; q) has neither non-zero projective nor non-zero injective objects, we
have by [13, Thm. I.3.3] that coh-(X, σ; q) has Serre duality. �

Remark 4.8. Indeed, the derived equivalence in the main theorem is induced
by a tilting object in coh-(X, σ; q). More precisely, let T be the tilting object
in coh-X given in Lemma 4.1. Then φ : T [1]∼=T and thus, T = (T, φ) ∈
coh-(X, σ; q). Applying Proposition 4.5 shows that T is a tilting object in
coh-(X, σ; q) and (End coh-(X,σ;q)(T ))op ∼= ΛF . By [10, Thm. 4.6], T gives rise
to a derived equivalence

Db(coh-(X, σ; q)) ∼= Db(mod-ΛF ).

Example 4.9. Let X be the weighted projective line of type (2, 2, 3), and λ =
(∞, 0,−1), with weight permutation σ = (12). Then S = k[X1, X2, X3]/(X3

3 −
X2

2 −X2
1 ), the Frobenius morphism on S is defined by

F : S −→ S,
∑

cn1,n2,n3
xn1

1 xn2
2 xn3

3 7−→
∑

cqn1,n2,n3
xn1

2 xn2
1 xn3

3 ,

and the group homomorphism σL on L is given by

σL : L −→ L, l1~x1 + l2~x2 + l3~x3 + l~c 7−→ l1~x2 + l2~x1 + l3~x3 + l~c.

This induces the Frobenius functor ( )[1] : coh-X → coh-X. By Proposition
3.4, we have

O(l1~x1 + l2~x2 + l3~x3 + l~c)[1] ∼= O(l1~x2 + l2~x1 + l3~x3 + l~c),

(S1,0)[1] ∼= S2,0, (S1,1)[1] ∼= S2,1, (S2,0)[1] ∼= S1,0, (S2,1)[1] ∼= S1,1,

(S3,0)[1] ∼= S3,0, (S3,1)[1] ∼= S3,1, (S3,2)[1] ∼= S3,2,

(Sλ)[1] = S1/λq , ∀λ ∈ Hk.
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Moreover, the associated canonical algebra Λ is given by the path algebra of
the quiver Q

~x1

~0 ~x2 ~c

~x3 2~x3

X11

uu

X12
jj

X21oo
X22oo

X31

ee

X32

oo
X33
xx

modulo the ideal I = 〈X3
3 − X2

2 − X2
1 〉. The weight permutation σ = (12)

induces an automorphism σ of Q given by

σ(~0) = ~0, σ(~c) = ~c, σ(~x1) = ~x2, σ(~x2) = ~x1,

σ(~x3) = ~x3, σ(2~x3) = 2~x3,

σ(X11) = X21, σ(X12) = X22, σ(X21) = X11, σ(X22) = X12,

σ(X31) = X31, σ(X32) = X32, σ(X33) = X33.

Then the valued quiver Γ = Γ(Q, σ) associated with (Q, σ) has the form

a

b c

d e

α

tt

β
jj

γff

ρ
oo

η

xx

The valuation is given by (da, db, dc, dd, de) = (2, 1, 1, 1, 1), and (mα,mβ ,mγ ,
mρ,mη) = (2, 2, 1, 1, 1). Moreover, ΛF = T (Q)/IF , where T (Q) is the tensor
algebra of the associated modulated quiver Q = QQ,σ;q (see [7, Sect. 3.5] for
notations).

Finally, applying the theorem above gives the derived equivalence

Db(coh-(X, σ; q)) ∼= Db(mod-ΛF ).
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