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SOME INEQUALITIES OF WEIGHTED SHIFTS ASSOCIATED

BY DIRECTED TREES WITH ONE BRANCHING POINT

Bo Geon Kim and Minjung Seo

Abstract. Let H be an infinite dimensional complex Hilbert space, and

let B(H) be the algebra of all bounded linear operators on H. Recall that

an operator T ∈ B(H) has property B(n) if |Tn| ≥ |T |n, n ≥ 2, which
generalizes the class A-operator. We characterize the property B(n) of

weighted shifts Sλ over (η, κ)-type directed trees which appeared in the

study of subnormality of weighted shifts over directed trees recently. In
addition, we discuss the property B(n) of weighted shifts Sλ over (2, 1)-

type directed trees with nonzero weights are being distinct with respect to

n ≥ 2. And we give some properties of weighted shifts Sλ over (2, 1)-type
directed trees with property B(2).

1. Introduction

Let H be an infinite dimensional complex Hilbert space, and let B(H) be
the algebra of all bounded linear operators on H. An operator T ∈ B(H) is
said to be normal if T ∗T = TT ∗. And T ∈ B(H) is said to be hyponormal if
T ∗T ≥ TT ∗. An operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p ≥
(TT ∗)p, p ∈ (0,∞). As well, T is said to be∞-hyponormal if it is p-hyponormal
for all p > 0 ([16]). According to the Lőwner-Heinz inequality([19],[8]), every
q-hyponormal operator is p-hyponormal for p ≤ q. An operator T is said to be
class A-operator if

∣∣T 2
∣∣ ≥ |T |2 , where |T | = (T ∗T )1/2 (cf. [3]). The structure of

class A-operators are developed well recently (cf. [17],[9],[18],[2],[12]). It is well-
known that “normal ⇒ p-hyponormal ⇒ class A-operator”. Recall that, for
positive integer n ≥ 2, an operator T ∈ B(H) has property B(n) if |Tn| ≥ |T |n
(cf. [15]). The notion of property B(n) will be applied to the gap theory of
Hilbert space operators (cf. [14], [13], [1]).

On the other hand, since Mohar’s study about connections between opera-
tors and graph theory, several operator theoriests have studied such notions.
In [6] Fujii-Sasaoka-Watatani defined adjacency operators associated to infinite
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directed graphs and discussed some relations between graphs and bounded ad-
jacency operators (cf. [4],[5],[7]). On the other hand, Jablonski-Jung-Stochel
([10]) introduced and investigated classes of weighted shifts on directed trees
which generalize the classical weighted shifts. These operators provided some
interesting examples and counter examples concerning moment sequences and
subnormal operators (cf. [11]). The structure of such operators has been devel-
oped well for recent several years. Basically, the goal of this paper is to give a
connection between directed trees and bounded Hilbert space operators.

The organization of this paper is as follows. In Section 2, we recall some
terminology and notation concerning directed graphs and weighted shifts on
directed trees. In particular, we recall (η, κ)-type directed tree which will be
used mainly throughout this paper. In Section 3, we characterize weighted shifts
Sλ over (η, κ)-type directed trees with property B(n). And also, we discuss the
classes of weighted shifts Sλ over (2, 1)-type directed trees with property B(n)
are being distinct with respect to n ≥ 2. Finally, in section 4, we introduce
properties of weighted shifts Sλ over (2, 1)-type directed trees with property
B(2).

We denote N[R, R0, R+, or Z+, resp.] by the set of positive integers[real num-
bers, nonnegative real numbers, positive real numbers, or nonnegative integers,
resp.] throughout this paper.

2. Preliminaries

In this section, we recall some definitions on graph theory which will be used
in this paper. First of all, we look at some basic notions of the graph theory. A
pair G = (V,E) is a directed graph if V is a nonempty set and E is a subset of
V × V \ {(v, v) | v ∈ V }. We denote by

Ẽ = {{u, v} ⊆ V | (u, v) ∈ E or (v, u) ∈ E}.

An element of V is called a vertex of G, a member of E is called an edge of G,

and a member of Ẽ is called an undirected edge. A directed graph G is said to
be connected if for any two distinct vertices u and v of G, there exists a finite

sequence v1, · · · , vn of vertices of G(n ≥ 2) such that u = v1, {vj , vj+1} ∈ Ẽ for
all j = 1, · · · , n − 1, and vn = v. Such a sequence will be called an undirected
path joining u and v. For u ∈ V , put

Chi(u) = {v ∈ V | (u, v) ∈ E}.

An element of Chi(u) is called a child of u. If, for a given vertex u ∈ V , there
exists a unique vertex v ∈ V such that (v, u) ∈ E, then we say that u has a
parent v and write par(u) for v. A vertex v of G is called a root of G, or briefly
v ∈ Root(G), if there is no vertex u of G such that (u, v) is an edge of G. If
Root(G) is a one-element set, then its unique element is denoted by root(G),
or simply by root if this causes no ambiguity. We write V ◦ = V \Root(G). A
finite sequence {uj}nj=1 (n ≥ 2) of distinct vertices is said to be a circuit of G
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if (uj , uj+1) ∈ E for all j = 1, · · · , n− 1, and (un, u1) ∈ E. A directed graph T
is a directed tree if it satisfies the following conditions

(i) T is connected,

(ii) T has no circuits,

(iii) each vertex v ∈ V ◦ has a parent.

From now on, T = (V,E) is assumed to be a directed tree. Denote by `2(V ) the
Hilbert space of all square summable complex functions on V with the standard
inner product

〈f, g〉 =
∑
u∈V

f(u)g(u), f, g ∈ `2(V ).

For u ∈ V , we define eu ∈ `2(V ) by

eu(v) =

{
1 if u = v,
0 otherwise.

Then the set {eu}u∈V is an orthonormal basis of `2(V ). For λ = {λv}v∈V ◦ ⊂ C,
we define the operator Sλ on `2(V ) by

D(Sλ) = {f ∈ `2(V ) :
∑
u∈V

 ∑
v∈Chi(u)

|λv|2
 |f(u)|2 <∞},

Sλf = ΛT f, f ∈ D(Sλ),

where ΛT is the mapping defined on functions f : V → C by

(ΛT f)(v) =

{
λv · f(par(v)) if v ∈ V ◦,
0 if v = root.

Then the operator Sλ is called a weighted shift on the directed tree T with
weights {λv}v∈V ◦ . In particular, if Sλ ∈ B(`2(V )), then

Sλeu =
∑

v∈Chi(u)

λvev (2.1)

(cf. [10, Proposition 3.1.3]) and

S∗λeu =

{
λuepar(u) if u ∈ V ◦,
0 if u is root,

(2.2)

which is used frequently in this paper (cf. [10, Proposition 3.4.1]).
We discuss weighted shifts associated the following models as a central role in

this paper. This model is closely related to the subnormality of weighted shifts
on directed trees (cf. [10]).

Definition 1. ([10]) Given η, κ ∈ Z+ ∪ {∞} with η ≥ 2, we define the directed
tree Tη,κ = (Vη,κ, Eη,κ) by

Vη,κ = {−k : k ∈ Jκ} ∪ {0} ∪ {(i, j) : i ∈ Jη, j ∈ N},
Eη,κ = Eκ ∪ {(0, (i, 1)) : i ∈ Jη} ∪ {((i, j), (i, j + 1)) : i ∈ Jη, j ∈ N},
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where Eκ = {(−k,−k+1) : k ∈ Jκ} and Jι = {k ∈ N : k ≤ ι} for ι ∈ Z+∪{∞}.
Then the directed tree Tη,κ is called an (η, κ)-type directed tree.

If κ < ∞, then the directed tree Tη,κ has a root and root(Tη,κ) = −κ. In
turn, if κ = ∞, then the directed tree Tη,∞ is rootless. In the case of κ < ∞,
the (η, κ)-type directed tree can be shown in Figure 2.1 below.

- κ+1- κ - 2 - 1 0

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(η,1) (η,2) (η,3) (η,4)

Figure 2.1

For a weight sequence λ = {λk}k∈V ◦
η,κ
⊂ C, weighted shifts Sλ associated

by Tη,κ are the main model of this paper. And we mention that all operators
discussed in the remaining sections of this paper are bounded.

3. A Characterization of property B(n) and related distinction

We firstly characterize weighted shifts with property B(n) over (η, κ)-type
directed tree Tη,κ.

Theorem 3.1. Let Tη,κ = (Vη,κ, Eη,κ) be an (η, κ)-type directed tree, and let
λ = {λk}k∈V ◦

η,κ
⊂ C. Suppose Sλ ∈ B(`2(Vη,κ)) is an associated weighted shift

over Tη,κ. Then the following assertions hold.
(i) If n > κ, then Sλ is a weighted shift with property B(n) if and only if the

following conditions are satisfied:

k+1∏
j=0

|λj |2
 η∑
i=1

n−|k|∏
j=1

|λ(i,j)|2
 ≥ |λk+1|2n, −κ ≤ k ≤ −1, (3.1)

j+n∏
k=j+2

|λ(i,k)| ≥ |λ(i,j+1)|n−1, 1 ≤ i ≤ η, j ∈ N, (3.2)

and
η∑
i=1

(

n∏
j=1

|λ(i,j)|2) ≥ (

η∑
i=1

|λ(i,1)|2)n. (3.3)
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(ii) If n ≤ κ, then Sλ is a weighted shift with property B(n) if and only if
the following conditions are satisfied:

k+n∏
i=k+2

|λi| ≥ |λk+1|n−1, −κ ≤ k ≤ −n, (3.4)

k+1∏
j=0

|λj |2
 η∑
i=1

n−|k|∏
j=1

|λ(i,j)|2
 ≥ |λk+1|2n, −n+ 1 ≤ k ≤ −1, (3.5)

j+n∏
k=j+2

|λ(i,k)| ≥ |λ(i,j+1)|n−1, 1 ≤ i ≤ η, j ∈ N, (3.6)

and
η∑
i=1

(

n∏
j=1

|λ(i,j)|2) ≥ (

η∑
i=1

|λ(i,1)|2)n. (3.7)

Proof. By simple computation with (2.1), we have

Snλek =


(
∏j+n
k=j+1 λ(i,k))e(i,j+n) if k = (i, j), 1 ≤ i ≤ η, j ∈ N,∑η
i=1(

∏n
j=1 λ(i,j))e(i,n) if k = 0,∏0

j=k+1 λj(
∑η
i=1(

∏n−|k|
j=1 λ(i,j))e(i,n−|k|)) if k = −κ, · · · ,−1, n > |k|,

(
∏k+n
i=k+1 λi)ek+n if k = −κ, · · · ,−1, n ≤ |k|.

By simple computation with (2.2), we may obtain that
(S∗λ)n(Snλek)

=


(
∏j+n
k=j+1 |λ(i,k)|2)e(i,j) if k = (i, j), 1 ≤ i ≤ η, j ∈ N,

(
∑η
i=1(

∏n
j=1 |λ(i,j)|2))e0 if k = 0,

(
∏0
i=k+1 |λi|2)(

∑η
i=1(

∏n−|k|
j=1 |λ(i,j)|2))ek if k = −κ, · · · ,−1, n > |k|,

(
∏k+n
i=k+1 |λi|2)ek if k = −κ, · · · ,−1, n ≤ |k|.

(3.8)

Recall that |Snλ |ek = ((Snλ )∗Snλ )
1
2 ek and |Sλ|nek = ‖Sλek‖nek for k ∈ Vη,κ (see

[10, Proposition 3.4.3(iii)]). Since ‖Sλek‖2 =
∑

u∈Chi(k)

|λu|2,

‖Sλek‖2 =

 |λ(i,j+1)|2 if k = (i, j), 1 ≤ i ≤ η, j ∈ N,∑η
i=1 |λ(i,1)|2 if k = 0,

|λk+1|2 if k = −κ, · · · ,−1.

Thus

|Sλ|nek =

 |λ(i,j+1)|ne(i,j) if k = (i, j), 1 ≤ i ≤ η, j ∈ N,
(
∑η
i=1 |λ(i,1)|2)

n
2 e0 if k = 0,

|λk+1|nek if k = −κ, · · · ,−1.
(3.9)
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Since (Snλ )∗Snλ is positive self-adjoint, by (3.8), it follows from [10, Lemma

2.2.1(iii)] that |Snλ |ek = t
1
2

k ek, where

t
1
2

k =


∏j+n
k=j+1 |λ(i,k)| if k = (i, j), 1 ≤ i ≤ η, j ∈ N,

(
∑η
i=1(

∏n
j=1 |λ(i,j)|2))

1
2 if k = 0,

((
∏0
i=k+1 |λi|2)(

∑η
i=1(

∏n−|k|
j=1 |λ(i,j)|2)))

1
2 if k = −κ, · · · ,−1, n > |k|,∏k+n

i=k+1 |λi| if k = −κ, · · · ,−1, n ≤ |k|.
(3.10)

So, by (3.9) and (3.10), we have that Sλ is a weighted shift with property B(n)
if and only if (3.1)-(3.7) are satisfied. Hence the proof is complete. �

The following corollay is the special case of Theorem 3.1 with η = 2, κ = 1,
which is frequently used in the remaining sections.

Corollary 3.2. Let T2,1 = (V2,1, E2,1) be an (2, 1)-type directed tree, and let
λ = {λk}k∈V ◦

2,1
⊂ C. Suppose Sλ ∈ B(`2(V2,1)) is an associated weighted shift

over T2,1 (see Figure 3.1).

- 1 0

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

Figure 3.1

Then Sλ is a weighted shift with property B(n) if and only if the following
conditions are satisfied:

2∑
i=1

(

n−1∏
j=1

|λ(i,j)|2) ≥ |λ0|2n−2,

2∑
i=1

(

n∏
j=1

|λ(i,j)|2) ≥ (|λ(1,1)|2 + |λ(2,1)|2)n (3.11)

j+n∏
k=j+2

|λ(i,k)| ≥ |λ(i,j+1)|n−1, i = 1, 2, j ∈ N.

We now discuss the classes of weighted shifts with propertyB(n) over directed
trees are being distinct with respect to n ≥ 2. Recall that, for a weighted shift
Wα with weight sequence α = {αn}n∈Z+

⊂ R0, if we denote

Bn = {Wα : Wα has property B(n)}, n ≥ 2,

then it follows from [15, Theorem 2.4] that Bn are distinct one from another.
Let T = (Z+, E), where E = {(n, n+ 1) : n ∈ Z+}. Then the classical weighted
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shift Wα is unitarily equivalent to the associated weighted shift Sλ with λ =
{αn}n∈Z+

over T (cf. [10, Theorem 3.2.1]).
Let T2,1 = (V2,1, E2,1) be the (2, 1)-type directed tree. If we consider a weight

sequence λ = {λk}k∈V ◦
2,1

with

λ(1,j) = 0 or λ(2,j) = 0, j ∈ N, (3.12)

then the weighted shift Sλ associated by T2,1 is equivalent to a classical weighted
shift Wα. We consider weighted shifts Sλ associated by T2,1 with weight se-
quence λ = {λk}k∈V ◦

2,1
without (3.12) to consider more generally in the remain-

ing part of this paper.
Let B(n, η, κ) be the set of all bounded weighted shifts with property B(n)

over Tη,κ and λ = {λk}k∈V ◦
2,1
⊂ C \ {0}. In particular, we denote

EB(n, η, κ) = {Sλ ∈ B(`2(Vη,κ)) : |Snλ | = |Sλ|n and λ = {λk}k∈V ◦
2,1
⊂ C \ {0}}.

Obviously, EB(n, η, κ) ⊂ B(n, η, κ). First we consider the classes B(n, 2, 1) are
being distinct one from another with respect to n ≥ 2.

Theorem 3.3. Under the same notation as above, we have that B(m, 2, 1)
6= B(n, 2, 1) if and only if m 6= n.

Proof. Since the sufficiency is obvious, we only consider the necessity. So, sup-
pose m 6= n. Without loss of generality, we assume m < n. We will claim
that there exists Sλ belongs to EB(n, 2, 1) but not in EB(m, 2, 1). Define
λ = {λk}k∈V ◦

2,1
⊂ C by

λk =

 αi if k = (i, 1) for i = 1, 2,
λ0 if k = 0,
βi if k = (i, j) for i = 1, 2 and j ≥ 2,

where λ0, α1, α2, β1, β2 ∈ C \ {0} with |α1|2 + |α2|2 = 1. Then obviously Sλ ∈
B(`2(V2,1)). Observe from [11, Proposition 5.2] that (S∗λ)nSnλ = (S∗λSλ)n, i.e.,
|Snλ |2 = |Sλ|2n, if and only if

‖Sλek‖n = ‖Snλek‖, k ∈ V2,1.

By a direct computation, we have that (S∗λ)nSnλ = (S∗λSλ)n if and only if

(|α1β
n−2
1 |2 + |α2β

n−2
2 |2)

1
2 = |λ0|n−1 and |α1β

n−1
1 |2 + |α2β

n−1
2 |2 = 1.

Set

f(x) =
log( log(2−x)

− log x )

log( x
2−x )

, x ∈ (0, 2).

Then lim
x→0+

f(x) = 0. Thus there exists γn ∈ (0, 1) such that (n− 1)f(γn) ≤ 1.

Put

g(x) = γ
x
n−1
n + (2− γn)

x
n−1 .
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Then g is strictly increasing on [1,∞); see [11, Example 5.5]. Now consider

α1 = α2 = (
1

2
)

1
2 , β1 = γ

1
2(n−1)
n , β2 = (2− γn)

1
2(n−1) ,

λ0 = [
1

2
(γ

n−2
n−1
n + (2− γn)

n−2
n−1 )]

1
2(n−1) . (3.13)

Then

(|α1β
n−2
1 |2 + |α2β

n−2
2 |2)

1
2 = (

1

2
γ
n−2
n−1
n +

1

2
(2− γn)

n−2
n−1 )

1
2 = |λ0|n−1

and

|α1β
n−1
1 |2 + |α2β

n−1
2 |2 =

1

2
γn +

1

2
(2− γn) = 1.

Thus |Snλ |2 = |Sλ|2n. So, |Snλ | = |Sλ|n. Therefore, Sλ ∈ EB(n, 2, 1). But

|α1β
m−1
1 |2 + |α2β

m−1
2 |2 =

1

2
(γ

m−1
n−1
n + (2− γn)

m−1
n−1 )

=
1

2
g(m− 1) <

1

2
g(n− 1)

= 1.

Thus Sλ 6∈ EB(m, 2, 1). So, we have Sλ ∈ B(`2(V2,1)) such that Sλ ∈ EB(n, 2, 1),
but Sλ 6∈ EB(m, 2, 1). Since EB(n, 2, 1) ⊂ B(n, 2, 1), Sλ ∈ B(n, 2, 1). Note that

2∑
i=1

(

m∏
j=1

|λ(i,j)|2) = |α1|2|β1|2(m−1) + |α2|2|β2|2(m−1)

=
1

2
(γ

m−1
n−1
n + (2− γn)

m−1
n−1 )

=
1

2
g(m− 1)

<
1

2
g(n− 1) = 1

and also 1 = (|λ(1,1)|2 + |λ(2,1)|2)m. Thus, by (3.11) in Corollary 3.2, Sλ 6∈
B(m, 2, 1). Hence B(m, 2, 1) 6= B(n, 2, 1). �

Remark 1. Let Tη,κ be an arbitrary (η, κ)-type directed tree. Choose a subtree
T2,1 of Tη,κ. We define λ = {λk}k∈V ◦

η,κ
such that weights of T2,1 are as in (3.13)

and other weights are 0. For any m,n ≥ 2 such that m < n, the weighted shift
Sλ associated by Tη,κ has property B(n) but not property B(m). Of course, if
we apply the result of [15, Theorem 2.4] with this idea, we can obtain the same
conclusion easily. But, in the case of weight sequence λ = {λk}k∈V ◦

η,κ
⊂ C\{0},

we guess the computations are so complicated. We leave them to the interesting
readers.
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4. Some Properties

In this section, we discuss some properties about weighted shifts with prop-
erty B(n) over (2, 1)-type directed trees.

Theorem 4.1. Let T2,1 = (V2,1, E2,1) be the (2, 1)-type directed tree as in Figure
4.1, and let λ = {λk}k∈V ◦

2,1
⊂ C \ {0}.

- 1 0

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

Figure 4.1

If Sλ ∈ B(`2(V2,1)) is a weighted shift with property B(2), then the following
conditions hold:

(i) the sequence {|λ(i,j)|}∞j=2 is increasing for i = 1, 2,
(ii) |λ(1,1)| 6= |λ(1,2)| or |λ(2,1)| 6= |λ(2,2)|.

Proof. By Corollary 3.2, Sλ is a weighted shift with property B(2) if and only
if

|λ(1,1)|2 + |λ(2,1)|2 ≥ |λ0|2, (4.1)

|λ(1,1)|2|λ(1,2)|2 + |λ(2,1)|2|λ(2,2)|2 ≥ (|λ(1,1)|2 + |λ(2,1)|2)2, (4.2)

and

|λ(i,j+1)| ≤ |λ(i,j+2)|, i = 1, 2, j ∈ N. (4.3)

The inequality of (4.3) proves (i) obviously. To show (ii), we suppose that
|λ(1,1)| = |λ(1,2)| and |λ(2,1)| = |λ(2,2)|. Then, by direct computations, we
obtain

|λ(1,1)|2|λ(1,2)|2 + |λ(2,1)|2|λ(2,2)|2 = |λ(1,1)|4 + |λ(2,1)|4

< |λ(1,1)|4 + 2|λ(1,1)|2|λ(2,1)|2 + |λ(2,1)|4

= (|λ(1,1)|2 + |λ(2,1)|2)2,

which is contradict to (4.2), so the condition (ii) holds. Hence the proof is
complete. �

We now discuss some flatness properties of weighted shifts with property
B(2) over (2, 1)-type directed trees.

Theorem 4.2. Let Sλ ∈ B(`2(V2,1)) be an associated weighted shift over (2, 1)-
type directed tree with λ = {λk}k∈V ◦

2,1
⊂ C \ {0}. If Sλ has property B(2), then

we have the following assertions.
(i) If |λ(1,2)| = |λ(2,2)| = y, then y2 ≥ |λ(1,1)|2 + |λ(2,1)|2 ≥ |λ0|2.

(ii) If |λ(1,1)| = |λ(2,1)| = x, then |λ0| ≤
√

2x and |λ(1,2)|2 + |λ(2,2)|2 ≥ 4x2.



704 B. G. KIM AND M. SEO

Proof. (i) Since Sλ has property B(2), applying (4.2) with |λ(1,2)| = |λ(2,2)| = y,
we may obtain

|λ(1,1)|2y2 + |λ(2,1)|2y2 = (|λ(1,1)|2 + |λ(2,1)|2)y2

≥ (|λ(1,1)|2 + |λ(2,1)|2)2.

Thus y2 ≥ |λ(1,1)|2 + |λ(2,1)|2. By using (4.1), we have

y2 ≥ |λ(1,1)|2 + |λ(2,1)|2 ≥ |λ0|2.

(ii) Applying (4.1) with |λ(1,1)| = |λ(2,1)| = x, we have

(x2 + x2)
1
2 = (2x2)

1
2 =
√

2x ≥ |λ0|.

By using (4.2), we also obtain

x2|λ(1,2)|2 + x2|λ(2,2)|2 = x2(|λ(1,2)|2 + |λ(2,2)|2) ≥ 4x4.

Thus |λ(1,2)|2 + |λ(2,2)|2 ≥ 4x2. Hence the proof is complete. �

We consider a completion problem of property B(2) on weighted shift over
directed tree as Figure 4.2.

- 1 0

(1,1)

(2,1)

Figure 4.2

Theorem 4.3. Let T = (V,E) be a directed tree with V = {−1, 0, (1, 1),
(2, 1)} and E is as Figure 4.2. Let the weights of T be given arbitrarily by

λ : λ0 = r, λ(1,1) = x, λ(2,1) = y, r, x, y ∈ C \ {0}.

Then the following assertions are equivalent:

(i) there exist (2, 1)-type directed tree T2,1 extended from T and a weight

sequence λ̂ = {λ̂k}k∈V ◦
2,1

extended from λ, i.e., λ̂ ⊃ {λ0, λ(1,1), λ(2,1)},
such that the associated weighted shift Sλ̂ has property B(2),

(ii) the following conditions hold:
(a) |x|2 + |y|2 ≥ |r|2,

(b) there exist u and v in C such that
√
|x|2|u|2 + |y|2|v|2 ≥ |x|2 + |y|2.

Proof. (i)⇒(ii) Let T2,1 be a (2, 1)-type directed tree extended from T and a

weight sequence λ̂ extended from λ whose associated weighted shift Sλ̂ has
property B(2). Recall that (4.1)-(4.3) are equivalent to the property B(2) of
weighted shift Sλ associated by T2,1. The condition (a) comes from (4.1). Seting

u = λ̂(1,2) and v = λ̂(2,2), by (4.2), we obtain (b).
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(ii)⇒(i) Suppose |x|2 + |y|2 ≥ |r|2 and
√
|x|2|u|2 + |y|2|v|2 ≥ |x|2 + |y|2 for

some u and v in C. Consider a (2,1)-type directed tree T2,1 as in Figure 4.1,

and T is obviously a subtree of T2,1. Define a weight sequence λ̂ = {λ̂k}k∈V ◦
2,1

of T2,1 by

λ̂0 = λ0 = r, λ̂(1,1) = λ(1,1) = x, λ̂(2,1) = λ(2,1) = y,

λ̂(1,j+1) = u, and λ̂(2,j+1) = v, j ∈ N.

Then T2,1 is an extended directed tree from T and λ̂ = {λ̂k}k∈V ◦
2,1

is extended

from λ obviously. Applying the equivalent condition of the property B(2) of
weighted shift Sλ associated by T2,1 in (4.1)-(4.3) again, Sλ̂ has property B(2).
Hence the proof is complete. �
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