Browse > Article
http://dx.doi.org/10.4134/JKMS.j200048

WEIGHTED PROJECTIVE LINES WITH WEIGHT PERMUTATION  

Han, Lina (Yau Mathematical Sciences Center Tsinghua University)
Wang, Xintian (College of Science China University of Mining and Technology (Beijing))
Publication Information
Journal of the Korean Mathematical Society / v.58, no.1, 2021 , pp. 219-236 More about this Journal
Abstract
Let �� be a weighted projective line defined over the algebraic closure $k={\bar{\mathbb{F}}}_q$ of the finite field ��q and σ be a weight permutation of ��. By folding the category coh-�� of coherent sheaves on �� in terms of the Frobenius twist functor induced by σ, we obtain an ��q-category, denoted by coh-(��, σ; q). We then prove that coh-(��, σ; q) is derived equivalent to the valued canonical algebra associated with (��, σ).
Keywords
Weighted projective line; weight permutation; Frobenius twist functor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Keller and D. Vossieck, Sous les categories derivees, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), no. 6, 225-228.
2 I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295-366. https://doi.org/10.1090/S0894-0347-02-00387-9   DOI
3 C. M. Ringel, The canonical algebras, in Topics in algebra, Part 1 (Warsaw, 1988), 407-432, Banach Center Publ., 26, Part 1, PWN, Warsaw, 1990.
4 J.-P. Serre, Faisceaux algebriques coherents, Ann. of Math. (2) 61 (1955), 197-278. https://doi.org/10.2307/1969915   DOI
5 B. Deng and J. Du, Folding derived categories with Frobenius functors, J. Pure Appl. Algebra 208 (2007), no. 3, 1023-1050. https://doi.org/10.1016/j.jpaa.2006.05.001   DOI
6 X.-W. Chen, Z. Han, and Y. Zhou, Derived equivalences via HRS-tilting, Adv. Math. 354 (2019), 106749. 26 pp. https://doi.org/10.1016/j.aim.2019.106749   DOI
7 X.-W. Chen and H. Krause, Introduction to coherent sheaves over weighted projective lines, arXiv: 0911.4473.
8 Z. Chen and Y. Lin, A realization of elliptic Lie algebras of type F(2,2)4 by the Ringel-Hall approach, J. Algebra 350 (2012), 108-131. https://doi.org/10.1016/j.jalgebra.2011.10.008   DOI
9 X.-W. Chen and C. M. Ringel, Hereditary triangulated categories, J. Noncommut. Geom. 12 (2018), no. 4, 1425-1444. https://doi.org/10.4171/JNCG/311   DOI
10 B. Deng and J. Du, Frobenius morphisms and representations of algebras, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3591-3622. https://doi.org/10.1090/S0002-9947-06-03812-8   DOI
11 B. Deng, J. Du, B. Parshall, and J. Wang, Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs, 150, American Mathematical Society, Providence, RI, 2008. https://doi.org/10.1090/surv/150   DOI
12 A. D. Elagin, On equivariant triangulated categories, arXiv:1403.7027v2, 2015.
13 W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), 265-297, Lecture Notes in Math., 1273, Springer, Berlin, 2006. https://doi.org/10.1007/BFb0078849   DOI
14 D. Happel, I. Reiten, and S. O. Smalo, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88 pp. https://doi.org/10.1090/memo/0575   DOI
15 D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399-443. https://doi.org/10.2307/1999116   DOI