ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES

Lahcen Bouchikhi and Abdellah El Kinani

Abstract

We consider the weighted spaces $\ell^{p}(\mathbb{S}, \varphi)$ and $\ell^{p}(\mathbb{S}, \psi)$ for $1<p<+\infty$, where φ and ψ are weights on $\mathbb{S}(=\mathbb{N}$ or $\mathbb{Z})$. We obtain a sufficient condition for $\ell^{p}(\mathbb{S}, \psi)$ to be multiplier weighted-space of $\ell^{p}(\mathbb{S}, \varphi)$ and $\ell^{p}(\mathbb{S}, \psi)$. Our condition characterizes the last multiplier weightedspace in the case where $\mathbb{S}=\mathbb{Z}$. As a consequence, in the particular case where $\psi=\varphi$, the weighted space $\ell^{p}(\mathbb{Z}, \psi)$ is a convolutive algebra.

1. Preliminaries and introduction

Let $\mathbb{S}(\mathbb{S}=\mathbb{N}$ or $\mathbb{S}=\mathbb{Z})$ and $p \in] 1,+\infty[$. We say that ω is a weight on \mathbb{S} if $\omega: \mathbb{S} \longrightarrow[1,+\infty[$, is a map satisfying:

$$
\sum_{n \in \mathbb{S}} \omega(n)^{\frac{1}{1-p}}<+\infty
$$

We consider the weighted space:

$$
\ell^{p}(\mathbb{S}, \omega)=\left\{(a(n))_{n \in \mathbb{S}} \in \mathbb{C}^{\mathbb{S}}: \sum_{n \in \mathbb{S}}|a(n)|^{p} \omega(n)<+\infty\right\}
$$

Endowed with the norm $|\cdot|_{p, \omega}$ defined by:

$$
|a|_{p, \omega}=\left(\sum_{n \in \mathbb{S}}|a(n)|^{p} \omega(n)\right)^{\frac{1}{p}} \text { for every }(a(n))_{n \in \mathbb{S}} \in \ell^{p}(\mathbb{S}, \omega)
$$

the space $\ell^{p}(\mathbb{S}, \omega)$ becomes a Banach subspace of $\ell^{p}(\mathbb{S})$. We say that the weight ω is m-convolutive if a positive constant $\gamma=\gamma(\omega)$ exists such that:

$$
\omega^{\frac{1}{1-p}} * \omega^{\frac{1}{1-p}} \leq \gamma \omega^{\frac{1}{1-p}}
$$

where $*$ denotes the convolution product. If $a=(a(n))_{n \in \mathbb{S}} \in \ell^{p}(\mathbb{S}, \omega)$, we define the complex function $\mathcal{F}(a)$ by

$$
\mathcal{F}(a)(t)=\sum_{n \in \mathbb{S}} a(n) e^{i n t} \text { for every } t \in \mathbb{R}
$$

Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020.
2010 Mathematics Subject Classification. 46J10, 46H30.
Key words and phrases. Weight function, m-convolutive, weighted algebra, multiplier weighted space, commutative Banach algebra with unit.
$\mathcal{F}(a)$ is called the Fourier transform of a. If ω is an m-convolutive weight, then the space $\left(\ell^{p}(\mathbb{S}, \omega),|\cdot|_{p, \omega}\right)$ is a convolutive Banach algebra with unit ([2] and [4]). The converse is true in the case where $\mathbb{S}=\mathbb{Z}$ ([3] and [5]). For the sequence spaces $\ell^{p}(\mathbb{S}, \varphi)$ and $\ell^{p}(\mathbb{S}, \psi)$, the set $\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi)$ defined by:

$$
\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi)=\left\{b=\left(b_{n}\right)_{n \in \mathbb{S}} \in \mathbb{C}^{\mathbb{S}}: a * b \in \ell^{p}(\mathbb{S}, \psi), \forall a=\left(a_{n}\right)_{n \in \mathbb{S}} \in \ell^{p}(\mathbb{S}, \varphi)\right\}
$$ is called the multiplier weighted-space of $\ell^{p}(\mathbb{S}, \varphi)$ and $\ell^{p}(\mathbb{S}, \psi)$.

In this paper, we study the multiplier weighted-space $\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi)$. We prove that if the weights φ and ψ satisfy property:

$$
\begin{equation*}
\varphi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}} \leq \gamma \psi^{\frac{1}{1-p}} \tag{1}
\end{equation*}
$$

for some constant $\gamma>0$, then $\ell^{p}(\mathbb{S}, \psi)=\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi)$. The converse is true in the case where $\mathbb{S}=\mathbb{Z}$. As a consequence, the weighted space $\ell^{p}(\mathbb{Z}, \psi)$ is an algebra if and only if ψ is an m-convolutive weight on \mathbb{Z}, i.e., $\varphi=\psi$ in (1).

2. Link between $\ell^{p}(\mathbb{S}, \psi)$ and $\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi)$

We first prove that the property (1) results in $\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi)=\ell^{p}(\mathbb{S}, \psi)$.
Theorem 2.1. Let $p \in] 1,+\infty[$. If φ and ψ are two weights on \mathbb{S} satisfying property (1), then we have:

1) $\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi)=\ell^{p}(\mathbb{S}, \psi)$.
2) $|a * b|_{p, \psi} \leq \gamma^{\frac{p-1}{p}}|a|_{p, \varphi}|b|_{p, \psi}$ for every $a \in \ell^{p}(\mathbb{S}, \varphi)$ and $b \in \ell^{p}(\mathbb{S}, \psi)$.

Proof. It's clear that $\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi) \subset \ell^{p}(\mathbb{S}, \psi)$. Conversely let $b=(b(n))_{n \in \mathbb{S}} \in$ $\ell^{p}(\mathbb{S}, \psi)$. We put $T_{b}(a)=a * b$ for every $a=(a(n))_{n \in \mathbb{S}} \in \ell^{p}(S, \varphi)$ and,

$$
\begin{aligned}
c(m) & =\sum_{n \in \mathbb{S}} a(m-n) b(n) \\
& =\sum_{n \in \mathbb{S}} a(m-n) b(n)\left(\frac{\psi(n)^{\frac{1}{p}} \varphi(m-n)^{\frac{1}{p}}}{\psi(n)^{\frac{1}{p}} \varphi(m-n)^{\frac{1}{p}}}\right) \text { for every } m \in \mathbb{S} .
\end{aligned}
$$

Using Hölder's inequality we obtain, for every $m \in \mathbb{S}$,

$$
|c(m)| \leq\left[\sum_{n \in \mathbb{S}}|a(m-n)|^{p} \varphi(m-n)|b(n)|^{p} \psi(n)\right]^{\frac{1}{p}} W^{\frac{-1}{p}}(m)
$$

where $W=\left(\varphi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}}\right)^{1-p}$. Therefore, for every $m \in \mathbb{S}$,

$$
|c(m)|^{p} W(m) \leq \sum_{n \in \mathbb{S}}|a(m-n)|^{p} \varphi(m-n)|b(n)|^{p} \psi(n)
$$

Since $\gamma^{1-p} \psi \leq W$, the inequality (1) implies that:

$$
\gamma^{1-p} \sum_{m \in \mathbb{S}}|c(m)|^{p} \psi(m) \leq \sum_{m \in \mathbb{S}}\left(\sum_{n \in \mathbb{S}}|a(m-n)|^{p} \varphi(m-n)|b(n)|^{p} \psi(n)\right)
$$

$$
\leq|a|_{p, \varphi}|b|_{p, \psi}
$$

i.e.,

$$
T_{b}(a) \in \ell^{p}(\mathbb{Z}, \psi) \text { for every } a \in \ell^{p}(\mathbb{S}, \varphi)
$$

Hence

$$
\ell^{p}(\mathbb{S}, \psi) \subset \mathcal{M}^{p}(\mathbb{S}, \varphi, \psi) \text { and }|a * b|_{p, \psi} \leq \gamma^{\frac{p-1}{p}}|a|_{p, \varphi}|b|_{p, \psi}
$$

for every $(a, b) \in \ell^{p}(\mathbb{S}, \varphi) \times \ell^{p}(\mathbb{S}, \psi)$. As a result:

$$
\ell^{p}(\mathbb{S}, \psi)=\mathcal{M}^{p}(\mathbb{S}, \varphi, \psi) \text { and }|a * b|_{p, \psi} \leq \gamma^{\frac{p-1}{p}}|a|_{p, \varphi}|b|_{p, \psi}
$$

for every $(a, b) \in \ell^{p}(\mathbb{S}, \varphi) \times \ell^{p}(\mathbb{S}, \psi)$.
Remark 2.2. Replacing in Theorem 2.1 $|\cdot|_{p, \varphi}$ by $\gamma^{\frac{p-1}{p}}|\cdot|_{p, \varphi}$ and $|\cdot|_{p, \psi}$ by $\gamma^{\frac{p-1}{p}}|\cdot|_{p, \psi}$, we can suppose, without loss of generality, that:

$$
|a * b|_{p, \psi} \leq|a|_{p, \varphi}|b|_{p, \psi} \text { for every } a \in \ell^{p}(\mathbb{S}, \varphi) \text { and } b \in \ell^{p}(\mathbb{S}, \psi)
$$

If $\psi=\varphi$, the property (1) becomes:

$$
\psi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}} \leq \gamma \psi^{\frac{1}{1-p}}
$$

Therefore ψ is an m-convolutive weight and $\ell^{p}(\mathbb{S}, \psi)=\mathcal{M}^{p}(\mathbb{S}, \psi, \psi)$, i.e., $\left(\ell^{p}(\mathbb{S}, \psi),|\cdot|_{p, \psi}\right)$, endowed with convolution product, is a commutative Banach algebra with unit. Thus, we have the following result:

Corollary 2.3 ([3] and [5]). Let $p \in] 1,+\infty[$. If ω is an m-convolutive weight on \mathbb{S}, then $\left(\ell^{p}(\mathbb{S}, \omega),|\cdot|_{p, \omega}\right)$ is a commutative Banach algebra with unit.

Now we examine the converse of Theorem 2.1 in the case where $\mathbb{S}=\mathbb{Z}$. The proof will be based on several results.

Let $p \in] 1,+\infty[, \varphi$ and ψ be two weight maps on \mathbb{Z}. We put:

$$
W=\left(\varphi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}}\right)^{1-p}
$$

and assume that:

$$
\ell^{p}(\mathbb{Z}, \psi)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, \psi)
$$

It is clear that W and $W^{\frac{1}{1-p}}$ are weight maps on \mathbb{Z}. Let $a \in \ell^{p}(\mathbb{Z}, \varphi)$ and $b \in \ell^{p}(\mathbb{Z}, \psi)$. Since $\ell^{p}(\mathbb{Z}, \psi)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, \psi)$, we have $a * b \in \ell^{p}(\mathbb{Z}, \psi)$ and
$a * b(m)=\sum_{n \in \mathbb{Z}} a(n) \varphi^{\frac{1}{p}}(n) b(m-n) \psi^{\frac{1}{p}}(m-n) \frac{1}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m-n)}$ for every $m \in \mathbb{Z}$.
Using Hölder's inequality, one has:

$$
a * b \in \ell^{p}(\mathbb{Z}, W) \text { and }|a * b|_{p, W} \leq|a|_{p, \varphi}|b|_{p, \psi}
$$

Thus, each element $b \in \ell^{p}(\mathbb{Z}, \psi)$ define a continuous linear map T_{b}, of $\ell^{p}(\mathbb{Z}, \varphi)$ in $\ell^{p}(\mathbb{Z}, W)$, by:

$$
T_{b}(a)=a * b \text { for every } a \in \ell^{p}(\mathbb{Z}, \varphi)
$$

For $c=(c(n, m))_{(n, m) \in \mathbb{Z}^{2}} \in \ell^{p}\left(\mathbb{Z}^{2}\right)$, let:

$$
L(c)=\left(\sum_{n \in \mathbb{Z}} \frac{c(n, m-n)}{[\varphi(n) \psi(m-n)]^{\frac{1}{p}}}\right)_{m \in \mathbb{Z}}
$$

If $a \in \ell^{p}(\mathbb{Z}, \varphi)$ and $b \in \ell^{p}(\mathbb{Z}, \psi)$, a simple calculation shows that:

$$
c=\left(a(n) b(m)[\varphi(n) \psi(m)]^{\frac{1}{p}}\right)_{(n, m) \in \mathbb{Z}^{2}} \in \ell^{p}\left(\mathbb{Z}^{2}\right) \quad \text { and } \quad L(c)=a * b .
$$

The properties of the map L will be useful later.
Proposition 2.4. Let $p \in] 1,+\infty[, \varphi$ and ψ be two weight maps on \mathbb{Z}. We suppose that

$$
\ell^{p}(\mathbb{Z}, \psi)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, \psi)
$$

Then

1) L is a continuous linear map from $\ell^{p}\left(\mathbb{Z}^{2}\right)$ into $\ell^{p}(\mathbb{Z}, W)$.
2) For $c \in \ell^{p}\left(\mathbb{Z}^{2}\right)$,

$$
|L(c)|_{p, W} \leq|c|_{p}
$$

Proof. 1) First, we introduce the transpose S of L, given by:

$$
S(x)=\left(x(n+m) \varphi^{\frac{-1}{p}}(n) \psi^{\frac{-1}{p}}(m)\right)_{(n, m) \in \mathbb{Z}^{2}} \quad \text { for every } x \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)
$$

where $q=\frac{p-1}{p}$. It is clear that S is linear. Let prove that it is an isometric map of $\ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)$ into $\ell^{q}\left(\mathbb{Z}^{2}\right)$. Let $x \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)$. Then, for every $n, m \in \mathbb{Z}$, we can write:

$$
\left|x(n+m) \varphi^{\frac{-1}{p}}(n) \psi^{\frac{-1}{p}}(m)\right|^{q}=|x(n+m)|^{q} \varphi^{\frac{1}{1-p}}(n) \psi^{\frac{1}{1-p}}(m) .
$$

Thus

$$
\begin{aligned}
|S(x)|_{q}^{q} & =\sum_{m \in \mathbb{Z}}\left[\sum_{n \in \mathbb{Z}}|x(n+m)|^{q} \varphi^{\frac{1}{1-p}}(n) \psi^{\frac{1}{1-p}}(m)\right] \\
& =\sum_{k \in \mathbb{Z}}\left[\sum_{n \in \mathbb{Z}}|x(k)|^{q} \varphi^{\frac{1}{1-p}}(n) \psi^{\frac{1}{1-p}}(k-n)\right] \\
& =\sum_{k \in \mathbb{Z}}|x(k)|^{q} W^{\frac{1}{1-p}}(k)=|x|_{q, W^{\frac{1}{1-p}}}^{q} .
\end{aligned}
$$

This yields,

$$
|S(x)|_{q}=|x|_{q, W^{\frac{1}{1-p}}} \text { for every } x \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right) .
$$

It follows that $L={ }^{t} S$. Since the spaces $\ell^{p}\left(\mathbb{Z}^{2}\right)$ and $\ell^{p}(\mathbb{Z}, W)$ are reflexive, the result follows from [1].
2) Let $c=(c(n, m))_{(n, m) \in \mathbb{Z}^{2}} \in \ell^{p}\left(\mathbb{Z}^{2}\right)$. Then, for every $m \in \mathbb{Z}$,

$$
|L(c)(m)|^{p}=\left|\sum_{n \in \mathbb{Z}} \frac{c(n, m-n)}{[\varphi(n) \psi(m-n)]^{\frac{1}{p}}}\right|^{p} \leq\left(\sum_{n \in \mathbb{Z}}|c(n, m-n)|^{p}\right) \frac{1}{W(m)},
$$

i.e.,

$$
|L(c)(m)|^{p} W(m) \leq \sum_{n \in \mathbb{Z}}|c(n, m-n)|^{p} \quad \text { for every } m \in \mathbb{Z}
$$

Hence,

$$
\sum_{m \in \mathbb{Z}}|L(c)(m)|^{p} W(m) \leq \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}|c(n, m-n)|^{p}=|c|_{p}^{p}
$$

Thus,

$$
|L(c)|_{p, W} \leq|c|_{p}
$$

In the following, we assume that $p \in] 1,+\infty\left[, q=\frac{p-1}{p}, \varphi\right.$ and ψ are two weight maps on \mathbb{Z}, satisfying:

1) $\ell^{p}(\mathbb{Z}, \psi)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, \psi)$.
2) There exists a constant $M>0$ such that:

$$
|a * b|_{p, \psi} \leq M|a|_{p, \varphi}|b|_{p, \psi} \text { for every }(a, b) \in \ell^{p}(\mathbb{Z}, \varphi) \times \ell^{p}(\mathbb{Z}, \psi)
$$

By the same argument in Remark 2.2, we can assume without loss of generality that:

$$
\begin{equation*}
|a * b|_{p, \psi} \leq|a|_{p, \varphi}|b|_{p, \psi} \text { for every }(a, b) \in \ell^{p}(\mathbb{Z}, \varphi) \times \ell^{p}(\mathbb{Z}, \psi) \tag{2}
\end{equation*}
$$

We first prove that $\ell^{p}(\mathbb{Z}, W)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, W)$, where $W=\left[\varphi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}}\right]^{1-p}$. The following lemmas will be needed:

Lemma 2.5. Let $x \in \ell^{p}(\mathbb{Z}, \varphi)$ and $c=(c(n, m))_{(n, m) \in \mathbb{Z}^{2}} \in \ell^{p}\left(\mathbb{Z}^{2}\right)$. If

$$
d(n, m)=\sum_{k \in \mathbb{Z}} \frac{c(n, k) x(m-k)}{\psi^{\frac{1}{p}}(k)} \psi^{\frac{1}{p}}(m) \text { for every }(n, m) \in \mathbb{Z}^{2}
$$

then $d \in \ell^{p}\left(\mathbb{Z}^{2}\right)$ and $|d|_{p} \leq|c|_{p}|x|_{p, \varphi}$.
Proof. Observe first that, for every $n \in \mathbb{Z}$, we have:

$$
\left(|c(n, k)| \psi^{\frac{-1}{p}}(k)\right)_{k \in \mathbb{Z}} \in \ell^{p}(\mathbb{Z}, \psi)
$$

Since $x \in \ell^{p}(\mathbb{Z}, \varphi)$, then

$$
d(n, m)=\left[\left(\left(|c(n, k)| \psi^{\frac{-1}{p}}(k)\right)_{k \in \mathbb{Z}}\right) * x\right](m) \psi^{\frac{1}{p}}(m) \text { for every } m \in \mathbb{Z}
$$

Using (2),

$$
\sum_{m \in \mathbb{Z}}|d(n, m)|^{p} \leq|x|_{p, \varphi}^{p} \sum_{k \in \mathbb{Z}}|c(n, k)|^{p}
$$

and

$$
\sum_{n \in \mathbb{Z}}\left(\sum_{m \in \mathbb{Z}}|d(n, m)|^{p}\right) \leq|c|_{p}^{p}|x|_{p, \varphi}^{p}
$$

Thus

$$
d \in \ell^{p}\left(\mathbb{Z}^{2}\right) \quad \text { and } \quad|d|_{p} \leq|c|_{p}|x|_{p, \varphi}
$$

Lemma 2.6. Let $x \in \ell^{p}(\mathbb{Z}, \varphi)$ and $y \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)$. Then

$$
\widetilde{x} * y \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right) \quad \text { and } \quad|\widetilde{x} * y|_{q, W^{\frac{1}{1-p}}} \leq|x|_{p, \varphi}|y|_{q, W^{\frac{1}{1-p}}}
$$

where $\widetilde{x}(n)=x(-n)$ for every $n \in \mathbb{Z}$.
Proof. We first prove that $S(\widetilde{x} * y)$ define a continuous linear form on $\ell^{p}\left(\mathbb{Z}^{2}\right)$. Indeed, for every $c=(c(n, m))_{(n, m) \in \mathbb{Z}^{2}} \in \ell^{p}\left(\mathbb{Z}^{2}\right)$, if

$$
A=\left|\sum_{n, m \in \mathbb{Z}}(\widetilde{x} * y)(n+m) \frac{c(n, m)}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m)}\right|,
$$

then,

$$
\begin{aligned}
A & \leq \sum_{n, m \in \mathbb{Z}}(|\widetilde{x}| *|y|)(n+m) \frac{|c(n, m)|}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m)} \\
& \leq \sum_{n, m \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}}|\widetilde{x}|(n+m-k)|y|(k)\right) \frac{|c(n, m)|}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m)} .
\end{aligned}
$$

Using the fact that $\widetilde{x}(n)=x(-n)$ for every $n \in \mathbb{Z}$, and the change of variable $k=j+n$, we obtain:

$$
\begin{aligned}
A & \leq \sum_{n, m \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}}|x|(j-m)|y|(j+n)\right) \frac{|c(n, m)|}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m)} \\
& \leq \sum_{n, j \in \mathbb{Z}} \frac{|y(j+n)|}{\psi^{\frac{1}{p}}(j) \varphi^{\frac{1}{p}}(n)}\left(\sum_{m \in \mathbb{Z}}|x|(j-m) \frac{|c(n, m)|}{\psi^{\frac{1}{p}}(m)}\right) \psi^{\frac{1}{p}}(j) \\
& \leq \sum_{n, j \in \mathbb{Z}}|S(y)(n, j)|\left(\sum_{m \in \mathbb{Z}}|x|(j-m) \frac{|c(n, m)|}{\psi^{\frac{1}{p}}(m)} \psi^{\frac{1}{p}}(j)\right) .
\end{aligned}
$$

As S is a linear map from $\ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)$ into $\ell^{q}\left(\mathbb{Z}^{2}\right)$ and $d \in \ell^{p}\left(\mathbb{Z}^{2}\right)$, by Lemma 2.5, $S(y) \in \ell^{q}\left(\mathbb{Z}^{2}\right)$. Then, using Hölder's inequality:

$$
\begin{aligned}
A=\left|\sum_{n, m \in \mathbb{Z}}(\widetilde{x} * y)(n+m) \frac{c(n, m)}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m)}\right| & \leq \sum_{n, j \in \mathbb{Z}}|S(y)(n, j)| \mid d(n, j \mid \\
& \leq|S(y)|_{q}|d|_{p} \leq|S(y)|_{q}|x|_{p, \varphi}|c|_{p}
\end{aligned}
$$

Since $|S(y)|_{q}=|y|_{q, W^{\frac{1}{1-p}}}$, we obtain:

$$
A=\left|\sum_{n, m \in \mathbb{Z}}(\widetilde{x} * y)(n+m) \frac{c(n, m)}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m)}\right| \leq|y|_{q, W^{\frac{1}{1-p}}}|x|_{p, \varphi}|c|_{p} .
$$

As $\ell^{q}\left(\mathbb{Z}^{2}\right)$ is the dual space of $\ell^{p}\left(\mathbb{Z}^{2}\right)$, we have $S(\widetilde{x} * y) \in \ell^{q}\left(\mathbb{Z}^{2}\right)$ and

$$
\begin{aligned}
|S(\widetilde{x} * y)|_{q} & =\sup _{|c|_{p} \leq 1}\left|\sum_{n, m \in \mathbb{Z}}(\widetilde{x} * y)(n+m) \frac{c(n, m)}{\varphi^{\frac{1}{p}}(n) \psi^{\frac{1}{p}}(m)}\right| \\
& \leq \sup _{|c|_{p} \leq 1}|y|_{q, W^{\frac{1}{1-p}}}|x|_{p, \varphi}|c|_{p} \\
& \leq|y|_{q, W^{\frac{1}{1-p}}}|x|_{p, \varphi} .
\end{aligned}
$$

Finally, $\widetilde{x} * y \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)$. Indeed:

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}}|(\widetilde{x} * y)(k)|^{q} W^{\frac{1}{1-p}}(k) & =\sum_{k \in \mathbb{Z}}|(\widetilde{x} * y)(k)|^{q}\left(\varphi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}}\right)(k) \\
& =\sum_{k \in \mathbb{Z}}|(\widetilde{x} * y)(k)|^{q}\left(\sum_{m \in \mathbb{Z}} \varphi^{\frac{1}{1-p}}(k-m) \psi^{\frac{1}{1-p}}(m)\right) \\
& =\sum_{k, m \in \mathbb{Z}}|(\widetilde{x} * y)(k)|^{q} \varphi^{\frac{1}{1-p}}(k-m) \psi^{\frac{1}{1-p}}(m) \\
& =\sum_{n, m \in \mathbb{Z}}|(\widetilde{x} * y)(n+m)|^{q} \varphi^{\frac{1}{1-p}}(n) \psi^{\frac{1}{1-p}}(m) \\
& =|S(\widetilde{x} * y)|_{q}^{q}<+\infty .
\end{aligned}
$$

Thus

$$
\widetilde{x} * y \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right) \text { and }|\widetilde{x} * y|_{q, W^{\frac{1}{1-p}}}=|S(\widetilde{x} * y)|_{q} \leq|x|_{p, \varphi}|y|_{q, W^{\frac{1}{1-p}}}
$$

Proposition 2.7. Assume that $p \in] 1,+\infty\left[, q=\frac{p-1}{p}, \varphi\right.$ and ψ are two weight maps on \mathbb{Z}, satisfying:

1) $\ell^{p}(\mathbb{Z}, \psi)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, \psi)$, and
2) $|a * b|_{p, \psi} \leq|a|_{p, \varphi}|b|_{p, \psi}$ for every $(a, b) \in \ell^{p}(\mathbb{Z}, \varphi) \times \ell^{p}(\mathbb{Z}, \psi)$.

Then $\ell^{p}(\mathbb{Z}, W)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, W)$ and

$$
|a * b|_{p, W} \leq|a|_{p, \varphi}|b|_{p, W} \quad \text { for every }(a, b) \in \ell^{p}(\mathbb{Z}, \varphi) \times \ell^{p}(\mathbb{Z}, W) .
$$

Proof. It's clear that $\mathcal{M}^{p}(\mathbb{Z}, \varphi, W) \subset \ell^{p}(\mathbb{Z}, W)$. Conversely, let $b \in \ell^{p}(\mathbb{Z}, W)$ and $T_{b}(a)=a * b$ for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$. We will show that $T_{b}(a) \in \ell^{p}(\mathbb{Z}, W)$ for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$ and $|a * b|_{p, W} \leq|a|_{p, \varphi}|b|_{p, W}$. For $y \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)$, we
have $\breve{a} * y \in \ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)$ by Lemma 2.6, where $\widetilde{a}(n)=a(-n)$ for every $n \in \mathbb{Z}$.
Therefore,

$$
\left|\sum_{m \in \mathbb{Z}}(\breve{a} * y)(m) b(m)\right|<+\infty
$$

Moreover,

$$
\begin{aligned}
\left|\sum_{m \in \mathbb{Z}}(\breve{a} * y)(m) b(m)\right| & =\left|\sum_{m \in \mathbb{Z}}\left(\sum_{n \in \mathbb{Z}} a(n-m) y(n)\right) b(m)\right| \\
& =\left|\sum_{n, m \in \mathbb{Z}} a(n-m) b(m) y(n)\right| \\
& =\left|\sum_{n \in \mathbb{Z}}(a * b)(n) y(n)\right|
\end{aligned}
$$

Thus

$$
a * b \in\left(\ell^{q}\left(\mathbb{Z}, W^{\frac{1}{1-p}}\right)\right)^{\prime}=\ell^{p}(\mathbb{Z}, W)
$$

Furthermore, by Hölder's inequality and Lemma 2.6, we obtain:

$$
\begin{aligned}
\left|\sum_{n \in \mathbb{Z}}(a * b)(n) y(n)\right| & =\left|\sum_{m \in \mathbb{Z}}(\breve{a} * y)(m) b(m)\right| \\
& \leq|\breve{a} * y|_{q, W^{\frac{1}{1-p}}}|b|_{p, W} \\
& \leq|a|_{p, \varphi}|y|_{q, W^{\frac{1}{1-p}}}|b|_{p, W}
\end{aligned}
$$

Consequently:

$$
T_{b}(a) \in \ell^{p}(\mathbb{Z}, W) \text { and } \quad|a * b|_{p, W} \leq|a|_{p, \varphi}|b|_{p, W}
$$

Let $b \in \ell^{p}(\mathbb{Z}, \psi)$. Since $\ell^{p}(\mathbb{Z}, \psi)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, \psi)$, one has $a * b \in \ell^{p}(\mathbb{Z}, \psi)$ for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$. Using Hölder's inequality, we obtain:

$$
|a * b(m)|^{p} W(m) \leq \sum_{n \in \mathbb{Z}}|a(n)|^{p} \varphi(n)|b(m-n)|^{p} \psi(m-n) \text { for every } m \in \mathbb{Z}
$$

this yields, $a * b \in \ell^{p}(\mathbb{Z}, W)$ and $T_{b}: \ell^{p}(\mathbb{Z}, \varphi) \rightarrow \ell^{p}(\mathbb{Z}, W), a \mapsto a * b$ is a continuous map satisfying:

$$
\left|T_{b}(a)\right|_{p, W} \leq|a|_{p, \varphi}|b|_{p, \psi}
$$

Now, we consider the map T defined by:

$$
T: \ell^{p}(\mathbb{Z}, \psi) \rightarrow \mathcal{L}_{c}\left[\ell^{p}(\mathbb{Z}, \varphi), \ell^{p}(\mathbb{Z}, W)\right]: b \mapsto T_{b}
$$

where $\mathcal{L}_{c}\left[\ell^{p}(\mathbb{Z}, \varphi), \ell^{p}(\mathbb{Z}, W)\right]$ is the space of all continuous linear maps of $\ell^{p}(\mathbb{Z}, \varphi)$ into $\ell^{p}(\mathbb{Z}, W)$. We have the following result:

Proposition 2.8. T is a one-to-one continuous linear map and its inverse is also continuous for the operator-norm.

Proof. Observe first that $\ell^{p}(\mathbb{Z}, W)$ is a Banach space. Thus $\mathcal{L}_{c}\left[\ell^{p}(\mathbb{Z}, \varphi), \ell^{p}(\mathbb{Z}, W)\right]$ is also a Banach space. And we have:

$$
\left\|T_{b}\right\|=\sup _{|a|_{p, \varphi} \leq 1}\left|T_{b}(a)\right|_{p, W} \leq|b|_{p, \psi} \text { for every } b \in \ell^{p}(\mathbb{Z}, \psi)
$$

Hence T is continuous. Moreover, $T_{b}=0$ if and only if $a * b=0$ for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$. Applying the last relation with $a=\left(\delta_{0, n}\right)_{n \in \mathbb{Z}}$, where $\delta_{0, n}=0$ or 1 according to whether $n \neq 0$ or $n=0$, we obtain:

$$
b_{n}=\sum_{m \in \mathbb{Z}} \delta_{0, n-m} b_{m}=0 \text { for every } n \in \mathbb{Z}
$$

so $b=0$. Thus T is one-to-one. Thereby T is a continuous map from $\ell^{p}(\mathbb{Z}, \psi)$ into $T\left(\ell^{p}(\mathbb{Z}, \psi)\right)$. It remains to show that:

$$
T^{-1}: T\left(\ell^{p}(\mathbb{Z}, \psi)\right) \rightarrow \ell^{p}(\mathbb{Z}, \psi): T_{b} \mapsto b
$$

is also continuous. To proceed, we show that $T\left(\ell^{p}(\mathbb{Z}, \psi)\right)$ is closed in the space $\mathcal{L}_{c}\left[\ell^{p}(\mathbb{Z}, \varphi), \ell^{p}(\mathbb{Z}, W)\right]$ and conclude by Banach theorem. Indeed, let $\left(b^{(k)}\right)_{k \geq 0} \subset \ell^{p}(\mathbb{Z}, \psi)$ be a sequence such that $\left(T\left(b^{(k)}\right)\right)_{k \geq 0}$ converges to u in

$$
\mathcal{L}_{c}\left[\ell^{p}(\mathbb{Z}, \varphi), \ell^{p}(\mathbb{Z}, W)\right] .
$$

Then, for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$, the sequence $\left(T_{b^{(k)}}(a)\right)_{k \geq 0}=\left(b^{(k)} * a\right)_{k \geq 0}$ converges to $u(a)$ in $\ell^{p}(\mathbb{Z}, W)$. So, for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$, the sequence of functions $\left(\mathcal{F}\left(b^{(k)}\right) \mathcal{F}(a)\right)_{k \geq 0}$ converges uniformly to $\mathcal{F}(u(a))$, in the space $\mathcal{C}(\mathbb{R}, \mathbb{C})$. It follows that $\left(\mathcal{F}\left(b^{(k)}\right)\right)_{k \geq 0}$ converges pointwise to a function $h \in \mathcal{C}(\mathbb{R}, \mathbb{C})$. Given Proposition 2.4, for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$, there exists $c_{a} \in \ell^{p}\left(\mathbb{Z}^{2}\right)$ such that:

$$
u(a)=L\left(c_{a}\right)
$$

Since, for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$, we have:

$$
\mathcal{F}(u(a))=\mathcal{F}\left(L\left(c_{a}\right)\right)=\lim _{k \rightarrow \infty} \mathcal{F}\left(a * b^{(k)}\right)=\lim _{k \rightarrow \infty} \mathcal{F}(a) \mathcal{F}\left(b^{(k)}\right)=\mathcal{F}(a) h,
$$

c_{a} is of the form:

$$
c_{a}=a \varphi^{\frac{1}{p}} \otimes d, \text { where } d \in \ell^{p}(\mathbb{Z})
$$

i.e.,

$$
c_{a}=\left(a(n) \varphi^{\frac{1}{p}}(n) d(m)\right)_{(n, m) \in \mathbb{Z}^{2}} \in \ell^{p}(\mathbb{Z}) \otimes \ell^{p}(\mathbb{Z})
$$

By definition of L, we have:

$$
L\left(c_{a}\right)=\left(\sum_{n \in \mathbb{Z}} \frac{a(n) \varphi^{\frac{1}{p}}(n) d(m-n)}{[\varphi(n) \psi(m-n)]^{\frac{1}{p}}}=\sum_{n \in \mathbb{Z}} a(n) \frac{d(m-n)}{\psi(m-n)^{\frac{1}{p}}}\right)_{m \in \mathbb{Z}}
$$

Then, for every $m \in \mathbb{Z}$,
$L\left(c_{a}\right)(m)=\sum_{n \in \mathbb{Z}} \frac{a(n) \varphi^{\frac{1}{p}}(n) d(m-n)}{[\varphi(n) \psi(m-n)]^{\frac{1}{p}}}=\sum_{n \in \mathbb{Z}} a(n) \frac{d(m-n)}{\psi(m-n)^{\frac{1}{p}}}=\left(a * \frac{d}{\psi^{\frac{1}{p}}}\right)(m)$,
i.e.,

$$
L\left(c_{a}\right)=\left(a * \frac{d}{\psi^{\frac{1}{p}}}\right) \text { for every } a \in \ell^{p}(\mathbb{Z}, \varphi)
$$

Hence, for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$,

$$
\mathcal{F}\left(L\left(c_{a}\right)\right)=\mathcal{F}\left(a * \frac{d}{\psi^{\frac{1}{p}}}\right)=\mathcal{F}(a) \mathcal{F}\left(\frac{d}{\psi^{\frac{1}{p}}}\right)=\mathcal{F}(a) h .
$$

Thus, for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$,

$$
h=\mathcal{F}\left(\frac{d}{\psi^{\frac{1}{p}}}\right) \quad \text { and } \quad u(a)=a *\left(\frac{d}{\psi^{\frac{1}{p}}}\right)=T_{d \psi^{\frac{-1}{p}}}(a) .
$$

Consequently:

$$
u=T_{d \psi^{\frac{-1}{p}}} \in T\left(\ell^{p}(\mathbb{Z}, \psi)\right)
$$

This proves that $T\left(\ell^{p}(\mathbb{Z}, \psi)\right)$ is closed in $\mathcal{L}_{c}\left[\ell^{p}(\mathbb{Z}, \varphi), \ell^{p}(\mathbb{Z}, W)\right]$ and the proof is complete.

Now, let's prove the converse of Theorem 2.1 in the case where $\mathbb{S}=\mathbb{Z}$.
Theorem 2.9. Let $p \in] 1,+\infty[, \varphi$ and ψ be two weight maps, on \mathbb{Z}, satisfying:

1) $\ell^{p}(\mathbb{Z}, \psi)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, \psi)$.
2) $|a * b|_{p, \psi} \leq|a|_{p, \varphi}|b|_{p, \psi}$ for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$ and $b \in \ell^{p}(\mathbb{Z}, \psi)$.

Then

$$
\exists \gamma>0: \varphi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}} \leq \gamma \psi^{\frac{1}{1-p}}
$$

Proof. We will first show that the space $\ell^{p}(\mathbb{Z}, \psi) \cap \ell^{p}(\mathbb{Z}, W)$ is dense in $\ell^{p}(\mathbb{Z}, W)$. Indeed, for every $a, b \in \ell^{p}(\mathbb{Z})$, we have:

$$
L\left((a \otimes b)_{(n, m) \in \mathbb{Z}^{2}}\right)=\left(a \varphi^{-\frac{1}{p}}\right) *\left(b \psi^{-\frac{1}{p}}\right)=T_{b \psi^{-\frac{1}{p}}}\left(a \varphi^{-\frac{1}{p}}\right) \in \ell^{p}(\mathbb{Z}, \psi)
$$

Therefore,

$$
L\left(\ell^{p}(\mathbb{Z}) \widehat{\otimes} \ell^{p}(\mathbb{Z})\right) \subset \ell^{p}(\mathbb{Z}, \psi)
$$

Since

$$
L\left(\ell^{p}\left(\mathbb{Z}^{2}\right)\right)=\ell^{p}(\mathbb{Z}, W)
$$

and

$$
L\left(\left[\ell^{p}(\mathbb{Z}) \widehat{\otimes} \ell^{p}(\mathbb{Z})\right] \cap \ell^{p}\left(\mathbb{Z}^{2}\right)\right) \subset L\left(\ell^{p}(\mathbb{Z}) \widehat{\otimes} \ell^{p}(\mathbb{Z})\right) \cap L\left(\ell^{p}\left(\mathbb{Z}^{2}\right)\right)
$$

we have:

$$
L\left(\left[\ell^{p}(\mathbb{Z}) \widehat{\otimes} \ell^{p}(\mathbb{Z})\right] \cap \ell^{p}\left(\mathbb{Z}^{2}\right)\right) \subset \ell^{p}(\mathbb{Z}, \psi) \cap \ell^{p}(\mathbb{Z}, W) \subset \ell^{p}(\mathbb{Z}, W)=L\left(\ell^{p}\left(\mathbb{Z}^{2}\right)\right)
$$

We conclude by the continuity of L and the density of $\left[\ell^{p}(\mathbb{Z}) \widehat{\otimes} \ell^{p}(\mathbb{Z})\right] \cap \ell^{p}\left(\mathbb{Z}^{2}\right)$ in $\ell^{p}\left(\mathbb{Z}^{2}\right)$. Now we consider the identity map I defined from $\ell^{p}(\mathbb{Z}, \psi) \cap \ell^{p}(\mathbb{Z}, W)$
(endowed with the norm of $\ell^{p}(\mathbb{Z}, W)$) into $\ell^{p}(\mathbb{Z}, \psi)$. By the continuity of T^{-1}, there exists a constant $K>0$, such that:

$$
|b|_{p, \psi} \leq K \sup _{|a|_{p, \varphi} \leq 1}\left|T_{b}(a)\right|_{p, W} \text { for every } b \in \ell^{p}(\mathbb{Z}, \psi) \cap \ell^{p}(\mathbb{Z}, W)
$$

Moreover, since $\ell^{p}(\mathbb{Z}, W)=\mathcal{M}^{p}(\mathbb{Z}, \varphi, W)$, then for every $a \in \ell^{p}(\mathbb{Z}, \varphi)$ and $b \in \ell^{p}(\mathbb{Z}, W)$, we have:

$$
T_{b}(a) \in \ell^{p}(\mathbb{Z}, W) \text { and } \quad\left|T_{b}(a)\right|_{p, W} \leq|a|_{p, \varphi}|b|_{p, W}
$$

Therefore $|b|_{p, \psi} \leq K|b|_{p, W}$ for every $b \in \ell^{p}(\mathbb{Z}, \psi) \cap \ell^{p}(\mathbb{Z}, W)$. Hence the identity I is continuous on $\ell^{p}(\mathbb{Z}, \psi) \cap \ell^{p}(\mathbb{Z}, W)$ to $\ell^{p}(\mathbb{Z}, \psi)$. Thus I extends to a continuous map on $\ell^{p}(\mathbb{Z}, W)$ and $\ell^{p}(\mathbb{Z}, W) \subset \ell^{p}(\mathbb{Z}, \psi)$. And so, there exists a constant $C>0$ such that:

$$
|b|_{p, \psi} \leq C|b|_{p, W} \text { for every } b \in \ell^{p}(\mathbb{Z}, W)
$$

which implies that $\psi \leq C W$, and

$$
\varphi^{\frac{1}{1-p}} * \psi^{\frac{1}{1-p}} \leq \gamma \psi^{\frac{1}{1-p}}, \text { where } \gamma=C^{\frac{1}{1-p}}
$$

As a consequence, we obtain the following result.
Corollary 2.10 ([3] and [5]). Let $p \in] 1,+\infty[$ and ω be a weight map on \mathbb{Z}. The following assertions are equivalent:

1) ω is an m-convolutive weight.
2) The space $\left(\ell^{p}(\mathbb{Z}, \omega),|\cdot|_{p, \omega}\right)$ is a commutative algebra, for the convolution product.

Acknowledgements. The authors would like to thank the referees for their helpful remarks and valuables corrections.

References

[1] R. E. Edwards, Functional Analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965.
[2] A. El Kinani, A version of Wiener's and Lévy's theorems, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 3, 343-352. https://doi.org/10.1007/s12215-008-0025-4
[3] A. El Kinani and A. Benazzouz, Structure m-convexe dans l'espace à poids $L_{\Omega}^{p}\left(\mathbb{R}^{n}\right)$, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), no. 1, 49-57. http://projecteuclid. org/euclid.bbms/1047309412
[4] A. El Kinani and L. Bouchikhi, Wiener's and Lévy's theorems for some weighted power series, Rend. Circ. Mat. Palermo (2) 63 (2014), no. 2, 301-309. https://doi.org/10. 1007/s12215-014-0159-5
[5] A. El Kinani, A. Roukbi, and A. Benazzouz, Structure d'algèbre de Banach sur l'espace à poids $L_{\omega}^{p}(G)$, Matematiche (Catania) 64 (2009), no. 1, 179-193.

Lahcen Bouchikhi
Université Mohammed V
Eecole Normale Supérieure de Rabat
B.P. 5118, 10105 Rabat, Morocco

Email address: bouchikhi.maths@gmail.com

Abdellah El Kinani
Université Mohammed V
Eecole Normale Supérieure de Rabat
B.P. 5118, 10105 Rabat, Morocco

Email address: abdellah.elkinani@um5.ac.ma

