• 제목/요약/키워드: weighted Besov space

검색결과 8건 처리시간 0.017초

MULTIPLIERS OF WEIGHTED BLOCH SPACES AND BESOV SPACES

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.727-737
    • /
    • 2009
  • Let M(X) be the space of all pointwise multipliers of Banach space X. We will show that, for each $\alpha>1$, $M(\mathfrak{B}_\alpha)=M(\mathfrak{B}_{\alpha,0})=H^\infty{(B)}$. We will also show that, for each $0<{\alpha}<1$, $M(\mathfrak{B}_\alpha)$ and $M(\mathfrak{B}_{\alpha,0})$ are Banach algebras. It is established that certain inclusion relationships exist between the weighted Bloch spaces and holomorphic Besov spaces.

  • PDF

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.393-402
    • /
    • 2013
  • For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.

THE NAVIER-STOKES EQUATIONS WITH INITIAL VALUES IN BESOV SPACES OF TYPE B-1+3/qq,

  • Farwig, Reinhard;Giga, Yoshikazu;Hsu, Pen-Yuan
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1483-1504
    • /
    • 2017
  • We consider weak solutions of the instationary Navier-Stokes system in a smooth bounded domain ${\Omega}{\subset}{\mathbb{R}}^3$ with initial value $u_0{\in}L^2_{\sigma}({\Omega})$. It is known that a weak solution is a local strong solution in the sense of Serrin if $u_0$ satisfies the optimal initial value condition $u_0{\in}B^{-1+3/q}_{q,s_q}$ with Serrin exponents $s_q$ > 2, q > 3 such that ${\frac{2}{s_q}}+{\frac{3}{q}}=1$. This result has recently been generalized by the authors to weighted Serrin conditions such that u is contained in the weighted Serrin class ${{\int}_0^T}({\tau}^{\alpha}{\parallel}u({\tau}){\parallel}_q)^s$ $d{\tau}$ < ${\infty}$ with ${\frac{2}{s}}+{\frac{3}{q}}=1-2{\alpha}$, 0 < ${\alpha}$ < ${\frac{1}{2}}$. This regularity is guaranteed if and only if $u_0$ is contained in the Besov space $B^{-1+3/q}_{q,s}$. In this article we consider the limit case of initial values in the Besov space $B^{-1+3/q}_{q,{\infty}}$ and in its subspace ${{\circ}\atop{B}}^{-1+3/q}_{q,{\infty}}$ based on the continuous interpolation functor. Special emphasis is put on questions of uniqueness within the class of weak solutions.

BOUNDED LINEAR FUNCTIONAL ON L1a(B) RELATED WITH $\mathcal{B}_q$q

  • Choi, Ki Seong
    • 충청수학회지
    • /
    • 제14권2호
    • /
    • pp.37-46
    • /
    • 2001
  • In this paper, weighted Bloch spaces $\mathcal{B}_q$ are considered on the open unit ball in $\mathbb{C}^n$. In this paper, we will show that every Bloch function in $B_q$ induces a bounded linear functional on $L^1_a(\mathcal{B})$.

  • PDF

LIPSCHITZ TYPE INEQUALITY IN WEIGHTED BLOCH SPACE Bq

  • Park, Ki-Seong
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.277-287
    • /
    • 2002
  • Let B be the open unit ball with center 0 in the complex space $C^n$. For each q>0, B$_{q}$ consists of holomorphic functions f : B longrightarrow C which satisfy sup z $\in$ B $(1-\parallel z \parallel^2)^q\parallel\nabla f(z)\parallel < \infty$ In this paper, we will show that functions in weighted Bloch spaces $B_{q}$ (0 < q < 1) satifies the following Lipschitz type result for Bergman metric $\beta$: |f(z)-f($\omega$)|< $C\beta$(z, $\omega$) for some constant C.

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.523-534
    • /
    • 2010
  • In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

LIPSCHITZ CONTINUOUS AND COMPACT COMPOSITION OPERATOR ACTING BETWEEN SOME WEIGHTED GENERAL HYPERBOLIC-TYPE CLASSES

  • Kamal, A.;El-Sayed Ahmed, A.;Yassen, T.I.
    • Korean Journal of Mathematics
    • /
    • 제24권4호
    • /
    • pp.647-662
    • /
    • 2016
  • In this paper, we study Lipschitz continuous, the boundedness and compactness of the composition operator $C_{\phi}$ acting between the general hyperbolic Bloch type-classes ${\mathcal{B}}^{\ast}_{p,{\log},{\alpha}}$ and general hyperbolic Besov-type classes $F^{\ast}_{p,{\log}}(p,q,s)$. Moreover, these classes are shown to be complete metric spaces with respect to the corresponding metrics.