DOI QR코드

DOI QR Code

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong (Department of Information Security Konyang University)
  • Received : 2013.02.14
  • Accepted : 2013.04.04
  • Published : 2013.05.15

Abstract

For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.

Keywords

References

  1. S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. https://doi.org/10.1215/S0012-7094-86-05320-2
  2. N. Arcozzi, R.Rochberg and E. Sawyer, Carleson measures for analytic Besov spaces, Rev. Mat. Iberoamericana 18 (2002), 443-510.
  3. K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces ${\ss}_q$, J. Korean Math. Soc. 39 (2002), no. 2, 277-287. https://doi.org/10.4134/JKMS.2002.39.2.277
  4. K. S. Choi, Little Hankel operators on Weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479. https://doi.org/10.4134/CKMS.2003.18.3.469
  5. K. S. Choi, Notes On the Bergman Projection type operators in $\mathbb{C}^n$, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74. https://doi.org/10.4134/CKMS.2006.21.1.065
  6. K. S. Choi, Notes on Carleson Measures on bounded symmetric domain, Commun. Korean Math. Soc. 22 (2007), no. 1, 65-74. https://doi.org/10.4134/CKMS.2007.22.1.065
  7. K. T. Hahn and K. S. Choi, Weighted Bloch spaces in $\mathbb{C}^n$, J. Korean Math. Soc. 35 (1998), no. 2, 171-189.
  8. T. M. Flett, The dual of an inequality of Hardy and Littlewood and some realted inequlities, J. Math. Anal. Appl. 38 (1972), 746-765. https://doi.org/10.1016/0022-247X(72)90081-9
  9. D. Girela and J. A. Pelaez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal. 241 (2006), 334-358. https://doi.org/10.1016/j.jfa.2006.04.025
  10. D. Girela, M. Pavlovic and J. A. Pelaez, Spaces of analytic functions of Hardy Bloch-type, J. Anal. Math. 100 (2006), 53-81. https://doi.org/10.1007/BF02916755
  11. Z. H. Hu and S. S. Wang, Composition operators on Bloch-type spaces, PROC. Roy. Soc. Edinburgh Sect. A. 135 (2005), 1229-1239. https://doi.org/10.1017/S0308210500004340
  12. Z. Wu, Carleson measures and multipliers for Dirichlet spaes, J. Funct. Anal 169 (1999), 148-163. https://doi.org/10.1006/jfan.1999.3490
  13. K. H. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.