JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **22**, No. 4, December 2009

MULTIPLIERS OF WEIGHTED BLOCH SPACES AND BESOV SPACES

Gye Tak Yang* and Ki Seong Choi**

ABSTRACT. Let M(X) be the space of all pointwise multipliers of Banach space X. We will show that, for each $\alpha > 1$, $M(\mathfrak{B}_{\alpha}) = M(\mathfrak{B}_{\alpha,0}) = H^{\infty}(B)$. We will also show that, for each $0 < \alpha < 1$, $M(\mathfrak{B}_{\alpha})$ and $M(\mathfrak{B}_{\alpha,0})$ are Banach algebras. It is established that certain inclusion relationships exist between the weighted Bloch spaces and holomorphic Besov spaces.

1. Introduction

Throughout this paper, C^n will be the Cartesian product of n copies of complex plane C. For $z = (z_1, z_2, \ldots, z_n)$ and $w = (w_1, w_2, \ldots, w_n)$ in C^n , the inner product is defined by $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w_j}$ and the norm by $||z||^2 = \langle z, z \rangle$.

Let B be the open unit ball in the complex space C^n . For $z \in B, \xi \in C^n$, set

$$b_B{}^2(z,\xi) = \frac{n+1}{(1-||z||^2)^2} [(1-||z||^2)||\xi||^2 + |\langle z,\xi\rangle|^2].$$

If $\gamma : [0,1] \to B$ is a continuously differentiable curve, the Bergman length of γ is defined by

$$|\gamma|_B = \int_0^1 b_B(\gamma(t), \gamma'(t)) dt.$$

For $z, w \in B$, we define

$$\beta(z,w) = \inf\{|\gamma|_B : \gamma(0) = z, \gamma(1) = w\}$$

Received August 10, 2009; Accepted November 06, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 32H25, 32E25; Secondary 30C40.

Key words and phrases: Bergman metric, weighted Bloch space, Besov space, multiplier.

Correspondence should be addressed to Ki Seong Choi, ksc@konyang.ac.kr.

where the infimum is taken over all continuously differentiable curves from z to w. Here, β is called the Bergman metric on B.

If $f \in H(B)$, H(B) is the set of holomorphic functions on B, then the quantity Qf is defined by

$$Qf(z) = \sup_{\|\xi\|=1} \frac{|\langle \nabla f(z), \xi \rangle|}{b_B(z,\xi)}, \quad z \in B, \quad \xi \in C^n$$

where $\nabla f(z) = (\frac{\partial f}{\partial z_1}, \cdots, \frac{\partial f}{\partial z_n})$ is the holomorphic gradient of f. The quantity Qf is invariant under the group Aut(B) of holomorphic automorphisms of B. Namely, $Q(f \circ \varphi) = (Qf) \circ \varphi$ for all $\varphi \in Aut(B)$. A holomorphic function $f: B \to C$ is called a Bloch function if

$$\sup_{z\in B}Qf(z)<\infty\;.$$

As for as we know, the theory of Bloch functions on bounded homogeneous domains were the first studied in [4]. In [10], Timoney showed that the linear space of all holomorphic functions $f: B \to C$ with

$$\sup_{z \in B} (1 - ||z||^2) ||\nabla f(z)|| < \infty$$

is equivalent to the space \mathfrak{B} of Bloch functions on B. The little Bloch space \mathfrak{B}_0 is the subspace of \mathfrak{B} consisting of those functions $f: B \to C$ with

$$\lim_{\|z\| \to 1} (1 - \| z \|^2) \| \nabla f(z) \| = 0.$$

For each $\alpha > 0$, the weighted Bloch space of B, denoted by \mathfrak{B}_{α} , consists of all holomorphic functions $f: B \to C$ with

$$\sup_{z\in B}(1-\parallel z\parallel^2)^\alpha\parallel \nabla f(z)\parallel < \ \infty \ .$$

The corresponding little Bloch space $\mathfrak{B}_{\alpha,0}$ is defined by the functions f in \mathfrak{B}_{α} such that

$$\lim_{\|z\| \to 1} (1 - \| z \|^2)^{\alpha} \| \nabla f(z) \| = 0.$$

Clearly, both \mathfrak{B}_{α} and $\mathfrak{B}_{\alpha,0}$ are increasing function spaces of $\alpha > 0$. In particular, $\mathfrak{B}_1 = \mathfrak{B}$ and $\mathfrak{B}_{1,0} = \mathfrak{B}_0$.

Let us define a norm on \mathfrak{B}_{α} as follows;

$$|| f ||_{\alpha} = |f(0)| + \sup\{(1 - || w ||^2)^{\alpha} || \nabla f(w) || : w \in B\}.$$

It was proved in [8] that the space \mathfrak{B}_{α} is a Banach space with respect to the above norm for each $\alpha > 0$. It was also proved in [8] that the

weighted little Bloch space $\mathfrak{B}_{\alpha,0}$ is the closure of the set of polynomials in the norm topology of \mathfrak{B}_{α} for each $\alpha \geq 1$.

Let X be a Banach space of all holomorphic functions on B. We say that an holomorphic function f is a pointwise multiplier of X if $fg \in X$ for all $g \in X$. Let M(X) be the space of all pointwise multipliers of Banach space X and $H^{\infty}(B)$ be the space of all bounded holomorphic functions in B.

In [12], the authors found the very important properties associated with $M(\mathfrak{B})$ and $M(\mathfrak{B}_0)$ (See Theorem 2.1). In §2, we will prove that, for each $\alpha > 1$, $M(\mathfrak{B}_{\alpha}) = M(\mathfrak{B}_{\alpha,0}) = H^{\infty}(B)$. We will also prove that, for each $0 < \alpha < 1$, $M(\mathfrak{B}_{\alpha}) = \mathfrak{B}_{\alpha}$ and $M(\mathfrak{B}_{\alpha,0}) = \mathfrak{B}_{\alpha,0}$.

Let ν be the Lebesgue measure in C^n normalized by $\nu(B) = 1$. Let p and s be given with $0 and <math>p, s \in R$ where R is a set of real numbers. The holomorphic Besov p-spaces $\mathbb{B}_p^s(B)$ with weight s is defined by the space of all holomorphic functions f on the unit ball B such that

$$\| f \|_{p,s} = \left\{ \int_{B} (Qf)^{p}(z)(1-\| z \|^{2})^{s} d\lambda(z) \right\}^{\frac{1}{p}} < \infty.$$

Here $d\lambda(z) = (1 - ||z||^2)^{-n-1}d\nu(z)$ is an invariant volume measure with respect to the Bergman metric on *B*. In particular, if s = 0, the spaces $\mathbb{B}_p = \mathbb{B}_p^0$ are invariant under the action of Aut(B). If $p = \infty$, then the corresponding space is the Bloch space of holomorphic functions on the unit ball B(See [6, 7]).

In §3, certain inclusion relationships between the weighted Bloch spaces and holomorphic Besov spaces are established.

2. Multipliers in \mathfrak{B}_{α} and $\mathfrak{B}_{\alpha,0}$.

THEOREM 2.1. Suppose $f \in H(B)$, then the following conditions are equivalent.

 $\begin{aligned} &(1)fBMO \subset BMO.\\ &(2)f\mathfrak{B} \subset \mathfrak{B}.\\ &(3)f\mathfrak{B}_0 \subset \mathfrak{B}_0.\\ &(4)f \in H^{\infty} \text{ and } (1- \parallel z \parallel^2) \parallel \nabla f(z) \parallel \log\left(\frac{1}{1- \parallel z \parallel^2}\right) \text{ is bounded in } B.\\ &Proof. \text{ See Theorem 11 in [12].} \qquad \Box \end{aligned}$

From the Theorem 2.1, we can see that $M(\mathfrak{B})$ and $M(\mathfrak{B}_0)$ are all equivalent to the following set,

$$\{f \in H^{\infty}(B) : (1 - ||z||^2) ||\nabla f(z)|| \log\left(\frac{1}{1 - ||z||^2}\right) \text{ is bounded in } B\}.$$

THEOREM 2.2. If $f \in \mathfrak{B}_{\alpha}, \alpha > 0$, then

$$|f(z)| \leq |f(0)| + || f ||_{\alpha} (1 - || z ||^2)^{-\alpha}.$$

Proof. See Lemma 1 in [8].

By M_{ϕ} , we denote the operator of multiplication by ϕ , that is, $M_{\phi}f = \phi f(f \in \mathfrak{B}_{\alpha})$. The set of all multipliers of \mathfrak{B}_{α} will be denoted by $M(\mathfrak{B}_{\alpha})$. An application of the closed graph theorem shows that M_{ϕ} is a bounded linear transformation on \mathfrak{B}_{α} . Hence it has a finite norm $|| M_{\phi} ||$. Since $1 \in \mathfrak{B}_{\alpha}$, we have $\phi \in \mathfrak{B}_{\alpha}$ and so ϕ is analytic in B.

The following result shows that multipliers of \mathfrak{B}_{α} and $\mathfrak{B}_{\alpha,0}$ are bounded functions.

LEMMA 2.3. We let $H^{\infty}(B)$ denote the space of bounded holomorphic functions in B. If $f \in M(\mathfrak{B}_{\alpha})$ or $f \in M(\mathfrak{B}_{\alpha,0})$, then $f \in H^{\infty}(B)$.

Proof. Fix a point $z \in B$. By the Theorem 2.2, the function e_z with $e_z(f) = f(z)$ for $f \in \mathfrak{B}_{\alpha}$ is continuous. By the Riesz representation theorem, there exists $h_z \in \mathfrak{B}_{\alpha}$ such that $e_z(f) = f(z) = \langle f, h_z \rangle$. This implies that

$$|f(z)g(z)| = |\langle M_f g, h_z \rangle| \leq || M_f || || g ||_{\mathfrak{B}_{\alpha}} || h_z ||_{\mathfrak{B}_{\alpha}}$$

for $g \in \mathfrak{B}_{\alpha}$. Taking the supremum of the above inequality, we get

$$|f(z)| \sup\{|g(z)| : ||g||_{\mathfrak{B}_{\alpha}=1}\} \leq ||M_f|| ||h_z||_{\mathfrak{B}_{\alpha}}.$$

This implies that $|f(z)| \leq ||M_f||$.

THEOREM 2.4. Let $0 < \alpha \leq 2$. Let λ be any real number satisfying the following properties:

 $\begin{array}{l} (1) \ 0 \leq \lambda \leq \alpha \ \mbox{if } 0 < \alpha < 1; \\ (2) \ 0 < \lambda < 1 \ \mbox{if } \alpha = 1; \\ (3) \ \alpha - 1 \leq \lambda \leq 1 \ \mbox{if } 1 < \alpha \leq 2. \\ \mbox{Then an analytic function } f \ \mbox{on } B \ \mbox{is in } \mathfrak{B}_{\alpha} \ \mbox{if and only if} \\ \sup_{z,w \in B, z \neq w} (1 - |z|^2)^{\lambda} (1 - |w|^2)^{\alpha - \lambda} \frac{|f(z) - f(w)|}{|z - w|} < \infty. \end{array}$

Proof. See Theorem 2 in [11].

LEMMA 2.5. If $f \in L^1_{\mu_{\alpha}}(B) \cap H(B), \alpha > -1$, then

$$f(z) = c_{\alpha} \int_{B} \frac{(1 - ||w||^{2})^{\alpha}}{(1 - \langle z, w \rangle)^{n + \alpha + 1}} f(w) d\nu(w).$$

Proof. See Theorem 2 in [8].

THEOREM 2.6. For $z \in B$, c is real, t > -1, define

$$I_{c,t}(z) = \int_B \frac{(1 - \|w\|^2)^t}{|1 - \langle z, w \rangle|^{n+1+c+t}} d\nu(w), \quad z \in B.$$

Then,

(i)
$$I_{c,t}(z)$$
 is bounded in B if $c < 0$;
(ii) $I_{0,t}(z) \sim -\log(1 - ||z||^2)$ as $||z|| \to 1^-$;
(iii) $I_{c,t}(z) \sim (1 - ||z||^2)^{-c}$ as $||z|| \to 1^-$ if $c > 0$.

Proof. See Proposition 1.4.10 of [9].

THEOREM 2.7. Suppose $1 < \alpha \leq 2$. Then f is in \mathfrak{B}_{α} if and only if f is holomorphic and $(1 - ||z||^2)^{\alpha-1} |f(z)|$ is bounded on B.

Proof. By Theorem 2.4,

$$\sup_{z,w \in B, z \neq w} (1 - |z|^2)^{\lambda} (1 - |w|^2)^{\alpha - \lambda} \frac{|f(z) - f(w)|}{|z - w|} < M$$

for some constant M. For $\lambda = 1$ and z = 0,

$$\sup_{w \in B, w \neq 0} (1 - |w|^2)^{\alpha - 1} \frac{|f(0) - f(w)|}{|w|} < M.$$

This implies that $\sup_{w \in B_n, w \neq 0} (1 - |w|^2)^{\alpha - 1} |f(0) - f(w)| < M$. Conversely, if $(1 - ||z||^2)^{\alpha - 1} |f(z)| \le M$ for some constant M > 0, then

$$f(z) = c_{\alpha-1} \int_B \frac{(1 - \|w\|^2)^{\alpha-1}}{(1 - \langle z, w \rangle)^{n+\alpha}} f(w) d\nu(w)$$

by Lemma 2.6. Differentiating under the integral sign, we obtain

$$\begin{split} &\frac{\partial f}{\partial z_j}(z) = c_{\alpha-1} \\ &\int_B \frac{(n+\alpha)(1-\langle z,w\rangle)^{n+\alpha-1}(-\bar{w}_j)(1-\parallel w\parallel^2)^{\alpha-1}f(w)}{(1-\langle z,w\rangle)^{2(n+\alpha)}}d\nu(w) \end{split}$$

for $j = 1, 2, \dots, n$. This shows that

$$\|\nabla f(z)\| \le c_{\alpha-1}(n+\alpha)M \int_B \frac{1}{|1-\langle z,w\rangle|^{n+\alpha+1}} d\nu(w).$$

731

By Theorem 2.7, there exists a constant C > 0 such that

$$\|\nabla f(z)\| \leq CM(1 - \|z\|^2)^{-\alpha}$$

for all $z \in B$. This clearly shows that f is in \mathfrak{B}_{α} .

Recall that $H^{\infty}(B)$ is the space of bounded holomorphic functions in B.

THEOREM 2.8. If $\alpha > 1$, then $M(\mathfrak{B}_{\alpha}) = M(\mathfrak{B}_{\alpha,0}) = H^{\infty}(B)$.

Proof. Suppose that $f \in M(\mathfrak{B}_{\alpha})$ and $g \in \mathfrak{B}_{\alpha,0}$.

$$\lim_{z \to 1^{-}} (1 - ||z||^2)^{\alpha - 1} |f(z)g(z)|$$

$$\leq C \lim_{z \to 1^{-}} (1 - ||z||^2)^{\alpha - 1} |g(z)|$$

for some constant C by the Lemma 2.3. Since g is in $\mathfrak{B}_{\alpha,0}$,

$$\lim_{z \to 1^{-}} (1 - \| z \|^2)^{\alpha - 1} |g(z)| = 0.$$

This shows that $f \in M(\mathfrak{B}_{\alpha,0})$.

If f is in $M(\mathfrak{B}_{\alpha,0})$, f is bounded function by the Lemma 2.3. If g is in \mathfrak{B}_{α} , then $(1 - || z ||^2)^{\alpha-1} |g(z)|$ is bounded on B by Theorem 2.7. This shows that

$$\sup\{(1 - || z ||^2)^{\alpha - 1} | f(z)g(z)| : z \in B\}$$

$$\leq \sup\{(1 - || z ||^2)^{\alpha - 1} | g(z)| : z \in B\} || f ||_{\infty}$$

$$\leq C$$

for some constant C. This shows that $fg \in \mathfrak{B}_{\alpha}$ and $f \in M(\mathfrak{B}_{\alpha})$. It is clear that $H^{\infty}(B) \subset M(\mathfrak{B}_{\alpha,0})$. This shows that if $\alpha > 1$, then

$$M(\mathfrak{B}_{\alpha}) = M(\mathfrak{B}_{\alpha,0}) = H^{\infty}(B).$$

THEOREM 2.9. Let $0 < \alpha < 1$. Let f be analytic on B. Then f is in \mathfrak{B}_{α} if and only if

$$\sup_{z,w\in B, z\neq w} (1-|z|^2)^{\alpha} \frac{|f(z)-f(w)|}{|z-w|} < \infty.$$

Proof. See Corollary 3 in [11].

THEOREM 2.10. For $\alpha \in (0,1)$ and $f \in \mathfrak{B}_{\alpha}$, f is bounded.

732

Proof. By Theorem 2.9, there is a constant M such that $\frac{|f(w)-f(0)|}{|w|} < M$ for every $w \neq 0$ in B, i.e., $|f(w)| \leq M + |f(0)|$ for all $w \in B$. This shows that f is bounded on B.

THEOREM 2.11. If $0 < \alpha < 1$, then

$$M(\mathfrak{B}_{\alpha}) = \mathfrak{B}_{\alpha}, \quad M(\mathfrak{B}_{\alpha,0}) = \mathfrak{B}_{\alpha,0}.$$

Proof. Since $f \in \mathfrak{B}_{\alpha}(0 < \alpha < 1)$, then f is bounded in B by Theorem 2.10. For g in \mathfrak{B}_{α} ,

$$\begin{aligned} &(1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla(fg)(z) \parallel \\ &\leq (1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla f(z) \parallel |g(z)| + (1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla g(z) \parallel |f(z)| \\ &\leq M((1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla f(z) \parallel + (1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla g(z) \parallel) \end{aligned}$$

for some constant M. Since f and g are in \mathfrak{B}_{α} ,

$$\sup\{(1-\|z\|^2)^{\alpha} \| \nabla(fg)(z) \| z \in B\} < +\infty.$$

This shows that if $f \in \mathfrak{B}_{\alpha}$, then $fg \in \mathfrak{B}_{\alpha}$ for all $g \in \mathfrak{B}_{\alpha}$. This shows that $M(\mathfrak{B}_{\alpha}) = \mathfrak{B}_{\alpha}$.

Suppose that $f \in \mathfrak{B}_{\alpha,0}$, If $g \in \mathfrak{B}_{\alpha,0}$, then

$$\lim_{z \to 1^{-}} (1 - ||z||^2)^{\alpha} ||\nabla f(z)|| = 0,$$
$$\lim_{z \to 1^{-}} (1 - ||z||^2)^{\alpha} ||\nabla g(z)|| = 0.$$

This shows that

$$\begin{split} &\lim_{z \to 1^{-}} (1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla (fg)(z) \parallel \\ &\leq M (\lim_{z \to 1^{-}} (1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla f(z) \parallel + \lim_{z \to 1^{-}} (1 - \parallel z \parallel^2)^{\alpha} \parallel \nabla g(z) \parallel) \\ &= 0 \end{split}$$

for some constant M. This shows that if $f \in \mathfrak{B}_{\alpha,0}$, then $fg \in \mathfrak{B}_{\alpha,0}$ for all $g \in \mathfrak{B}_{\alpha,0}$. This shows that $M(\mathfrak{B}_{\alpha,0}) = \mathfrak{B}_{\alpha,0}$ if $0 < \alpha < 1$.

3. Relationships between the spaces \mathfrak{B}_{α} and \mathbb{B}_{p}^{s} .

Let a be in B and P_a be the orthogonal projection of C^n onto the subspace generated by a, which is given by $P_0 = 0$, and

$$P_a z = \frac{\langle z, a \rangle}{\langle a, a \rangle} a, \quad if \quad a \neq 0.$$

Let $Q_a = I - P_a$. Define φ_a on B by

$$\varphi_a(z) = \frac{a - P_a z - \sqrt{1 - |a|^2} Q_a z}{1 - \langle z, a \rangle}.$$

THEOREM 3.1. φ_a belongs to Aut(B) and satisfies (1) $\varphi_a(0) = a, \varphi_a(a) = 0$ and $\varphi_a(\varphi_a(z)) = z,$ (2) $1 - \langle \varphi_a(z), \varphi_a(w) \rangle = \frac{(1-||a||^2)(1-\langle z,w \rangle)}{(1-\langle z,a \rangle)(1-\langle a,w \rangle)}$ $(z, w \in \overline{B}),$ (3) $1 - || \varphi_a(z) ||^2 = \frac{(1-||a||^2)(1-||z||^2)}{|1-\langle z,a \rangle|^2}$ $(a \in B, z \in \overline{B}).$

Proof. See Theorem 2.2.2 of [9].

THEOREM 3.2. Let $1 , and <math>f \in H(B)$. If s is a real number such that -np < s < n, then there is some constant M > 0

$$Qf(z) \le C(1 - ||z||^2)^{\frac{-s}{p}} ||f||_{p,s}, \quad z \in B.$$

Proof. Let $f \in H(B), \zeta \in B$, and $t \in [0, 1]$. By the mean value theorem,

$$f(t\zeta) = \int_B f \circ \varphi_{t\zeta}(w) d\nu(w),$$

and

$$\langle \nabla f(0), \zeta \rangle = \left[\frac{d}{dt} f(t\zeta) \right]_{t=0} = \int_B \nabla f(-w) \left[\frac{d}{dt} \varphi_{t\zeta}(w) \right]_{t=0} d\nu(w).$$

A formal computation shows that

$$a_{\zeta}(w) = \left[\frac{d}{dt}\varphi_{t\zeta}(w)\right]_{t=0} = \zeta - \langle w, \zeta \rangle w$$

and a_{ζ} is a bounded holomorphic mapping from B into C^n that satisfies $a_{\zeta}(0) = \zeta$. Therefore,

$$\langle \nabla f(0), \zeta \rangle = \int_{B} \langle \nabla f(-w), a_{\zeta}(w) \rangle \frac{b_{B}(-w, a_{\zeta}(w))}{b_{B}(-w, a_{\zeta}(w))} d\nu(w),$$

which implies

$$|\langle \nabla f(0), \zeta \rangle| \leq M \int_{B} \frac{Qf(w)}{1 - \|w\|^{2}} d\nu(w)$$

for some constant M. The latter inequality follows from the following inequalities for the Bergman metric:

$$\frac{\parallel \xi \parallel}{\sqrt{1 - \parallel w \parallel^2}} \le b_B(w, \xi) \le \frac{\parallel \xi \parallel}{1 - \parallel w \parallel^2}, \ w \in B, \ \xi \in C^n.$$

734

Thus,

$$Qf(0) \le C \int_B Qf(w)(1 - ||w||^2)^n d\lambda(w).$$

Note that Qf is invariant, i.e., $Q(f \circ \varphi) = (Qf) \circ \varphi$ for all $\varphi \in Aut(B)$. Replacing f by $f \circ \varphi_z$ in the above equation, we obtain

$$Qf(z) = Q(f \circ \varphi_z)(0) \le C \int_B Q(f \circ \varphi_z)(w)(1 - ||w||^2)^n d\lambda(w).$$

By the change of variables : $\zeta = \varphi_z(w)$ or $w = \varphi_z(\zeta)$, and by Theorem 3.1,

$$Qf(z) \le C(1 - ||z||^2)^n \int_B Qf(\zeta) \frac{(1 - ||\zeta||^2)^{n-s}}{|1 - \langle z, \zeta \rangle|^{2n}} (1 - ||\zeta||^2)^s d\lambda(\zeta).$$

By the Hölder inequality,

$$Qf(z) \le C(1 - ||z||^2)^n ||f||_{p,s} \left[\int_B \frac{(1 - ||\zeta||^2)^{q(n-s)}}{|1 - \langle z, \zeta \rangle|^{2nq}} (1 - ||\zeta||^2)^s d\lambda(\zeta) \right]^{\frac{1}{q}}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. By Theorem 2.6, if -np < s < n, then

$$Qf(z) \le C(1 - ||z||^2)^{\frac{-\infty}{p}} ||f||_{p,s}.$$

THEOREM 3.3. Let 1 and <math>-np < s < n. For $\alpha \ge 1 + \frac{s}{p}$, we have

$$\mathbb{B}_p^s \subseteq \mathfrak{B}_{\alpha}.$$

Proof. Since Qf(z) and $(1 - || z ||^2) || \nabla f(z) ||$ behave equivalently as $|| z || \rightarrow 1$ on B(See [10]), we may replace Qf(z) in Theorem 3.2 by $(1 - || z ||^2) || \nabla f(z) ||$ with a different constant C and we have

$$(1 - ||z||^2)^{\alpha} ||\nabla f(z)|| \le C(1 - ||z||^2)^{\alpha - 1 - \frac{s}{p}} ||f||_{p,s}$$

By choosing $\alpha = 1 + \frac{s}{p}$, we get

$$|| f ||_{\alpha} - |f(0)| \le C || f ||_{p,s}.$$

But, since the norm $\| \|_{\alpha}$ is non-increasing with $\alpha > 0$, we obtain the desired result.

THEOREM 3.4. Let $0 and <math>s \in R$. For $\alpha < 1 + \frac{s-n}{p}$,

$$\mathfrak{B}_{lpha}\subseteq\mathbb{B}_{p}^{s}$$
 .

735

Proof. From the fact that Qf(z) and $(1 - ||z||^2) ||\nabla f(z)||$ behave the same within constants as $||z|| \to 1$, we may replace Qf(z) by $(1 - ||z||^2) ||\nabla f(z)||$ in the definition of $||f||_{p,s}$. Namely,

$$\| f \|_{p,s}^{p} = \int_{B} (Qf)^{p}(z)(1 - \| z \|^{2})^{s} d\lambda(z)$$

$$\leq C \int_{B} \left[(1 - \| z \|^{2}) \| \nabla f(z) \| \right]^{p} (1 - \| z \|^{2})^{s} d\lambda(z)$$

$$\leq C \int_{B} \left[\frac{(1 - \| z \|^{2})^{\alpha} \| \nabla f(z) \|}{(1 - \| z \|^{2})^{\alpha - 1}} \right]^{p} (1 - \| z \|^{2})^{s} d\lambda(z)$$

$$\leq C \| f \|_{\alpha}^{p} \int_{B} (1 - \| z \|^{2})^{-p\alpha + p + s - n - 1} d\nu(z).$$

By Theorem 2.7, if $\alpha < 1 + \frac{s-n}{p}$, then

$$\|f\|_{p,s} \leq C \|f\|_{\alpha}$$

which yields the desired result.

References

- C.A. Berger, L.A. Coburn and K.H. Zhu, BMO on the Bergman spaces of the classical domains, Bull. Amer. Math. Soc. 17 (1987), 133-136
- [2] D. Bekolle, C.A. Berger, L.A. Coburn and K.H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350
- [3] K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces \mathfrak{B}_q , J. Korean Math. Soc. **39** (2002), 277-287
- [4] K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458
- [5] K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in \mathbb{C}^n , Manuscripta Math **71** (1991), 67-81
- [6] K. T. Hahn and E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball, J. Math. Analysis and Appl. 175 (1993), 206-221
- [7] K. T. Hahn and E. H. Youssfi, Besov Spaces of M-harmonic functions on bounded symmetric domains, Math. Nachr. 163 (1993), 203-216
- [8] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^n , J. Korean Math. Soc. **35** (1998), 171-189
- [9] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, New York 1980
- [10] R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267
- [11] R. Zhao, A characterization of Bloch-type spaces on the unit ball of Cⁿ, J. Matht. Anal. Appl. (2001), 1-7

- [12] K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50
- [13] K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177

*

Department of Information Security Konyang University Nonsan 320-711, Republic of Korea *E-mail*: gtyang@konyang.ac.kr

**

Department of Information Security Konyang University Nonsan 320-711, Republic of Korea *E-mail*: ksc@konyang.ac.kr