MULTIPLIERS OF WEIGHTED BLOCH SPACES AND BESOV SPACES

Gye Tak Yang* and Ki Seong Choi**

Abstract

Let $M(X)$ be the space of all pointwise multipliers of Banach space X. We will show that, for each $\alpha>1, M\left(\mathfrak{B}_{\alpha}\right)=$ $M\left(\mathfrak{B}_{\alpha, 0}\right)=H^{\infty}(B)$. We will also show that, for each $0<\alpha<1$, $M\left(\mathfrak{B}_{\alpha}\right)$ and $M\left(\mathfrak{B}_{\alpha, 0}\right)$ are Banach algebras. It is established that certain inclusion relationships exist between the weighted Bloch spaces and holomorphic Besov spaces.

1. Introduction

Throughout this paper, C^{n} will be the Cartesian product of n copies of complex plane C. For $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in C^{n}, the inner product is defined by $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}$ and the norm by $\|z\|^{2}=\langle z, z\rangle$.

Let B be the open unit ball in the complex space C^{n}. For $z \in B, \xi \in$ C^{n}, set

$$
b_{B}^{2}(z, \xi)=\frac{n+1}{\left(1-\|z\|^{2}\right)^{2}}\left[\left(1-\|z\|^{2}\right)\|\xi\|^{2}+|\langle z, \xi\rangle|^{2}\right]
$$

If $\gamma:[0,1] \rightarrow B$ is a continuously differentiable curve, the Bergman length of γ is defined by

$$
|\gamma|_{B}=\int_{0}^{1} b_{B}\left(\gamma(t), \gamma^{\prime}(t)\right) d t
$$

For $z, w \in B$, we define

$$
\beta(z, w)=\inf \left\{|\gamma|_{B}: \gamma(0)=z, \gamma(1)=w\right\}
$$

[^0]where the infimum is taken over all continuously differentiable curves from z to w. Here, β is called the Bergman metric on B.

If $f \in H(B), H(B)$ is the set of holomorphic functions on B, then the quantity $Q f$ is defined by

$$
Q f(z)=\sup _{\|\xi\|=1} \frac{|\langle\nabla f(z), \xi\rangle|}{b_{B}(z, \xi)}, \quad z \in B, \quad \xi \in C^{n}
$$

where $\nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}, \cdots, \frac{\partial f}{\partial z_{n}}\right)$ is the holomorphic gradient of f. The quantity $Q f$ is invariant under the group $\operatorname{Aut}(B)$ of holomorphic automorphisms of B. Namely, $Q(f \circ \varphi)=(Q f) \circ \varphi$ for all $\varphi \in \operatorname{Aut}(B)$. A holomorphic function $f: B \rightarrow C$ is called a Bloch function if

$$
\sup _{z \in B} Q f(z)<\infty
$$

As for as we know, the theory of Bloch functions on bounded homogeneous domains were the first studied in [4]. In [10], Timoney showed that the linear space of all holomorphic functions $f: B \rightarrow C$ with

$$
\sup _{z \in B}\left(1-\|z\|^{2}\right)\|\nabla f(z)\|<\infty
$$

is equivalent to the space \mathfrak{B} of Bloch functions on B. The little Bloch space \mathfrak{B}_{0} is the subspace of \mathfrak{B} consisting of those functions $f: B \rightarrow C$ with

$$
\lim _{\|z\| \rightarrow 1}\left(1-\|z\|^{2}\right)\|\nabla f(z)\|=0
$$

For each $\alpha>0$, the weighted Bloch space of B, denoted by \mathfrak{B}_{α}, consists of all holomorphic functions $f: B \rightarrow C$ with

$$
\sup _{z \in B}\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\|<\infty
$$

The corresponding little Bloch space $\mathfrak{B}_{\alpha, 0}$ is defined by the functions f in \mathfrak{B}_{α} such that

$$
\lim _{\|z\| \rightarrow 1}\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\|=0
$$

Clearly, both \mathfrak{B}_{α} and $\mathfrak{B}_{\alpha, 0}$ are increasing function spaces of $\alpha>0$. In particular, $\mathfrak{B}_{1}=\mathfrak{B}$ and $\mathfrak{B}_{1,0}=\mathfrak{B}_{0}$.

Let us define a norm on \mathfrak{B}_{α} as follows;

$$
\|f\|_{\alpha}=|f(0)|+\sup \left\{\left(1-\|w\|^{2}\right)^{\alpha}\|\nabla f(w)\|: w \in B\right\} .
$$

It was proved in [8] that the space \mathfrak{B}_{α} is a Banach space with respect to the above norm for each $\alpha>0$. It was also proved in [8] that the
weighted little Bloch space $\mathfrak{B}_{\alpha, 0}$ is the closure of the set of polynomials in the norm topology of \mathfrak{B}_{α} for each $\alpha \geq 1$.

Let X be a Banach space of all holomorphic functions on B. We say that an holomorphic function f is a pointwise multiplier of X if $f g \in X$ for all $g \in X$. Let $M(X)$ be the space of all pointwise multipliers of Banach space X and $H^{\infty}(B)$ be the space of all bounded holomorphic functions in B.

In [12], the authors found the very important properties associated with $M(\mathfrak{B})$ and $M\left(\mathfrak{B}_{0}\right)($ See Theorem 2.1). In $\S 2$, we will prove that, for each $\alpha>1, M\left(\mathfrak{B}_{\alpha}\right)=M\left(\mathfrak{B}_{\alpha, 0}\right)=H^{\infty}(B)$. We will also prove that, for each $0<\alpha<1, M\left(\mathfrak{B}_{\alpha}\right)=\mathfrak{B}_{\alpha}$ and $M\left(\mathfrak{B}_{\alpha, 0}\right)=\mathfrak{B}_{\alpha, 0}$.

Let ν be the Lebesgue measure in C^{n} normalized by $\nu(B)=1$. Let p and s be given with $0<p<\infty$ and $p, s \in R$ where R is a set of real numbers. The holomorphic Besov p-spaces $\mathbb{B}_{p}^{s}(B)$ with weight s is defined by the space of all holomorphic functions f on the unit ball B such that

$$
\|f\|_{p, s}=\left\{\int_{B}(Q f)^{p}(z)\left(1-\|z\|^{2}\right)^{s} d \lambda(z)\right\}^{\frac{1}{p}}<\infty
$$

Here $d \lambda(z)=\left(1-\|z\|^{2}\right)^{-n-1} d \nu(z)$ is an invariant volume measure with respect to the Bergman metric on B. In particular, if $s=0$, the spaces $\mathbb{B}_{p}=\mathbb{B}_{p}^{0}$ are invariant under the action of $\operatorname{Aut}(B)$. If $p=\infty$, then the corresponding space is the Bloch space of holomorphic functions on the unit ball $B($ See $[6,7])$.

In $\S 3$, certain inclusion relationships between the weighted Bloch spaces and holomorphic Besov spaces are established.

2. Multipliers in \mathfrak{B}_{α} and $\mathfrak{B}_{\alpha, 0}$.

Theorem 2.1. Suppose $f \in H(B)$, then the following conditions are equivalent.
(1) $f B M O \subset B M O$.
(2) $f \mathfrak{B} \subset \mathfrak{B}$.
(3) $f \mathfrak{B}_{0} \subset \mathfrak{B}_{0}$.
(4) $f \in H^{\infty}$ and $\left(1-\|z\|^{2}\right)\|\nabla f(z)\| \log \left(\frac{1}{1-\|z\|^{2}}\right)$ is bounded in B.

Proof. See Theorem 11 in [12].

From the Theorem 2.1, we can see that $M(\mathfrak{B})$ and $M\left(\mathfrak{B}_{0}\right)$ are all equivalent to the following set, $\left\{f \in H^{\infty}(B):\left(1-\|z\|^{2}\right)\|\nabla f(z)\| \log \left(\frac{1}{1-\|z\|^{2}}\right)\right.$ is bounded in $\left.B\right\}$.

Theorem 2.2. If $f \in \mathfrak{B}_{\alpha}, \alpha>0$, then

$$
|f(z)| \leq|f(0)|+\|f\|_{\alpha}\left(1-\|z\|^{2}\right)^{-\alpha} .
$$

Proof. See Lemma 1 in [8].
By M_{ϕ}, we denote the operator of multiplication by ϕ, that is, $M_{\phi} f=$ $\phi f\left(f \in \mathfrak{B}_{\alpha}\right)$. The set of all multipliers of \mathfrak{B}_{α} will be denoted by $M\left(\mathfrak{B}_{\alpha}\right)$. An application of the closed graph theorem shows that M_{ϕ} is a bounded linear transformation on \mathfrak{B}_{α}. Hence it has a finite norm $\left\|M_{\phi}\right\|$. Since $1 \in \mathfrak{B}_{\alpha}$, we have $\phi \in \mathfrak{B}_{\alpha}$ and so ϕ is analytic in B.

The following result shows that multipliers of \mathfrak{B}_{α} and $\mathfrak{B}_{\alpha, 0}$ are bounded functions.

Lemma 2.3. We let $H^{\infty}(B)$ denote the space of bounded holomorphic functions in B. If $f \in M\left(\mathfrak{B}_{\alpha}\right)$ or $f \in M\left(\mathfrak{B}_{\alpha, 0}\right)$, then $f \in H^{\infty}(B)$.

Proof. Fix a point $z \in B$. By the Theorem 2.2, the function e_{z} with $e_{z}(f)=f(z)$ for $f \in \mathfrak{B}_{\alpha}$ is continuous. By the Riesz representation theorem, there exists $h_{z} \in \mathfrak{B}_{\alpha}$ such that $e_{z}(f)=f(z)=\left\langle f, h_{z}\right\rangle$. This implies that

$$
|f(z) g(z)|=\left|\left\langle M_{f} g, h_{z}\right\rangle\right| \leq\left\|M_{f}\right\|\|g\|_{\mathfrak{B}_{\alpha}}\left\|h_{z}\right\|_{\mathfrak{B}_{\alpha}}
$$

for $g \in \mathfrak{B}_{\alpha}$. Taking the supremum of the above inequality, we get

$$
|f(z)| \sup \left\{|g(z)|:\|g\|_{\mathfrak{B}_{\alpha}=1}\right\} \leq\left\|M_{f}\right\|\left\|h_{z}\right\|_{\mathfrak{B}_{\alpha}} .
$$

This implies that $|f(z)| \leq\left\|M_{f}\right\|$.
Theorem 2.4. Let $0<\alpha \leq 2$. Let λ be any real number satisfying the following properties:
(1) $0 \leq \lambda \leq \alpha$ if $0<\alpha<1$;
(2) $0<\lambda<1$ if $\alpha=1$;
(3) $\alpha-1 \leq \lambda \leq 1$ if $1<\alpha \leq 2$.

Then an analytic function f on B is in \mathfrak{B}_{α} if and only if

$$
\sup _{z, w \in B, z \neq w}\left(1-|z|^{2}\right)^{\lambda}\left(1-|w|^{2}\right)^{\alpha-\lambda} \frac{|f(z)-f(w)|}{|z-w|}<\infty .
$$

Proof. See Theorem 2 in [11].

Lemma 2.5. If $f \in L_{\mu_{\alpha}}^{1}(B) \cap H(B), \alpha>-1$, then

$$
f(z)=c_{\alpha} \int_{B} \frac{\left(1-\|w\|^{2}\right)^{\alpha}}{(1-\langle z, w\rangle)^{n+\alpha+1}} f(w) d \nu(w)
$$

Proof. See Theorem 2 in [8].
Theorem 2.6. For $z \in B, c$ is real, $t>-1$, define

$$
I_{c, t}(z)=\int_{B} \frac{\left(1-\|w\|^{2}\right)^{t}}{|1-\langle z, w\rangle|^{n+1+c+t}} d \nu(w), \quad z \in B
$$

Then,
(i) $I_{c, t}(z)$ is bounded in B if $c<0$;
(ii) $I_{0, t}(z) \sim-\log \left(1-\|z\|^{2}\right)$ as $\|z\| \rightarrow 1^{-}$;
(iii) $I_{c, t}(z) \sim\left(1-\|z\|^{2}\right)^{-c}$ as $\|z\| \rightarrow 1^{-}$if $c>0$.

Proof. See Proposition 1.4.10 of [9].
Theorem 2.7. Suppose $1<\alpha \leq 2$. Then f is in \mathfrak{B}_{α} if and only if f is holomorphic and $\left(1-\|z\|^{2}\right)^{\alpha-1}|f(z)|$ is bounded on B.

Proof. By Theorem 2.4,

$$
\sup _{z, w \in B, z \neq w}\left(1-|z|^{2}\right)^{\lambda}\left(1-|w|^{2}\right)^{\alpha-\lambda} \frac{|f(z)-f(w)|}{|z-w|}<M
$$

for some constant M. For $\lambda=1$ and $z=0$,

$$
\sup _{w \in B, w \neq 0}\left(1-|w|^{2}\right)^{\alpha-1} \frac{|f(0)-f(w)|}{|w|}<M
$$

This implies that $\sup _{w \in B_{n}, w \neq 0}\left(1-|w|^{2}\right)^{\alpha-1}|f(0)-f(w)|<M$.
Conversely, if $\left(1-\|z\|^{2}\right)^{\alpha-1}|f(z)| \leq M$ for some constant $M>0$, then

$$
f(z)=c_{\alpha-1} \int_{B} \frac{\left(1-\|w\|^{2}\right)^{\alpha-1}}{(1-\langle z, w\rangle)^{n+\alpha}} f(w) d \nu(w)
$$

by Lemma 2.6. Differentiating under the integral sign, we obtain

$$
\begin{aligned}
& \frac{\partial f}{\partial z_{j}}(z)=c_{\alpha-1} \\
& \int_{B} \frac{(n+\alpha)(1-\langle z, w\rangle)^{n+\alpha-1}\left(-\bar{w}_{j}\right)\left(1-\|w\|^{2}\right)^{\alpha-1} f(w)}{(1-\langle z, w\rangle)^{2(n+\alpha)}} d \nu(w)
\end{aligned}
$$

for $j=1,2, \cdots, n$. This shows that

$$
\|\nabla f(z)\| \leq c_{\alpha-1}(n+\alpha) M \int_{B} \frac{1}{|1-\langle z, w\rangle|^{n+\alpha+1}} d \nu(w)
$$

By Theorem 2.7, there exists a constant $C>0$ such that

$$
\|\nabla f(z)\| \leq C M\left(1-\|z\|^{2}\right)^{-\alpha}
$$

for all $z \in B$. This clearly shows that f is in \mathfrak{B}_{α}.
Recall that $H^{\infty}(B)$ is the space of bounded holomorphic functions in B.

Theorem 2.8. If $\alpha>1$, then $M\left(\mathfrak{B}_{\alpha}\right)=M\left(\mathfrak{B}_{\alpha, 0}\right)=H^{\infty}(B)$.
Proof. Suppose that $f \in M\left(\mathfrak{B}_{\alpha}\right)$ and $g \in \mathfrak{B}_{\alpha, 0}$.

$$
\begin{aligned}
& \lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha-1}|f(z) g(z)| \\
& \leq C \lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha-1}|g(z)|
\end{aligned}
$$

for some constant C by the Lemma 2.3. Since g is in $\mathfrak{B}_{\alpha, 0}$,

$$
\lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha-1}|g(z)|=0
$$

This shows that $f \in M\left(\mathfrak{B}_{\alpha, 0}\right)$.
If f is in $M\left(\mathfrak{B}_{\alpha, 0}\right), f$ is bounded function by the Lemma 2.3. If g is in \mathfrak{B}_{α}, then $\left(1-\|z\|^{2}\right)^{\alpha-1}|g(z)|$ is bounded on B by Theorem 2.7. This shows that

$$
\begin{aligned}
& \sup \left\{\left(1-\|z\|^{2}\right)^{\alpha-1}|f(z) g(z)|: z \in B\right\} \\
& \leq \sup \left\{\left(1-\|z\|^{2}\right)^{\alpha-1}|g(z)|: z \in B\right\}\|f\|_{\infty} \\
& \leq C
\end{aligned}
$$

for some constant C . This shows that $f g \in \mathfrak{B}_{\alpha}$ and $f \in M\left(\mathfrak{B}_{\alpha}\right)$. It is clear that $H^{\infty}(B) \subset M\left(\mathfrak{B}_{\alpha, 0}\right)$. This shows that if $\alpha>1$, then

$$
M\left(\mathfrak{B}_{\alpha}\right)=M\left(\mathfrak{B}_{\alpha, 0}\right)=H^{\infty}(B) .
$$

Theorem 2.9. Let $0<\alpha<1$. Let f be analytic on B. Then f is in \mathfrak{B}_{α} if and only if

$$
\sup _{z, w \in B, z \neq w}\left(1-|z|^{2}\right)^{\alpha} \frac{|f(z)-f(w)|}{|z-w|}<\infty .
$$

Proof. See Corollary 3 in [11].
Theorem 2.10. For $\alpha \in(0,1)$ and $f \in \mathfrak{B}_{\alpha}, f$ is bounded.

Proof. By Theorem 2.9, there is a constant M such that $\frac{|f(w)-f(0)|}{|w|}<$ M for every $w \neq 0$ in B, i.e., $|f(w)| \leq M+|f(0)|$ for all $w \in B$. This shows that f is bounded on B.

Theorem 2.11. If $0<\alpha<1$, then

$$
M\left(\mathfrak{B}_{\alpha}\right)=\mathfrak{B}_{\alpha}, \quad M\left(\mathfrak{B}_{\alpha, 0}\right)=\mathfrak{B}_{\alpha, 0} .
$$

Proof. Since $f \in \mathfrak{B}_{\alpha}(0<\alpha<1)$, then f is bounded in B by Theorem 2.10. For g in \mathfrak{B}_{α},

$$
\begin{aligned}
& \left(1-\|z\|^{2}\right)^{\alpha}\|\nabla(f g)(z)\| \\
& \leq\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\||g(z)|+\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla g(z)\||f(z)| \\
& \leq M\left(\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\|+\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla g(z)\|\right)
\end{aligned}
$$

for some constant M. Since f and g are in \mathfrak{B}_{α},

$$
\sup \left\{\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla(f g)(z)\| z \in B\right\}<+\infty
$$

This shows that if $f \in \mathfrak{B}_{\alpha}$, then $f g \in \mathfrak{B}_{\alpha}$ for all $g \in \mathfrak{B}_{\alpha}$. This shows that $M\left(\mathfrak{B}_{\alpha}\right)=\mathfrak{B}_{\alpha}$.

Suppose that $f \in \mathfrak{B}_{\alpha, 0}$, If $g \in \mathfrak{B}_{\alpha, 0}$, then

$$
\begin{aligned}
& \lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\|=0, \\
& \lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla g(z)\|=0
\end{aligned}
$$

This shows that

$$
\begin{aligned}
& \lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla(f g)(z)\| \\
& \leq M\left(\lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\|+\lim _{z \rightarrow 1^{-}}\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla g(z)\|\right) \\
& =0
\end{aligned}
$$

for some constant M. This shows that if $f \in \mathfrak{B}_{\alpha, 0}$, then $f g \in \mathfrak{B}_{\alpha, 0}$ for all $g \in \mathfrak{B}_{\alpha, 0}$. This shows that $M\left(\mathfrak{B}_{\alpha, 0}\right)=\mathfrak{B}_{\alpha, 0}$ if $0<\alpha<1$.

3. Relationships between the spaces \mathfrak{B}_{α} and \mathbb{B}_{p}^{S}.

Let a be in B and P_{a} be the orthogonal projection of C^{n} onto the subspace generated by a, which is given by $P_{0}=0$, and

$$
P_{a} z=\frac{\langle z, a\rangle}{\langle a, a\rangle} a, \quad \text { if } \quad a \neq 0 .
$$

Let $Q_{a}=I-P_{a}$. Define φ_{a} on B by

$$
\varphi_{a}(z)=\frac{a-P_{a} z-\sqrt{1-|a|^{2}} Q_{a} z}{1-\langle z, a\rangle}
$$

Theorem 3.1. φ_{a} belongs to $\operatorname{Aut}(B)$ and satisfies
(1) $\varphi_{a}(0)=a, \varphi_{a}(a)=0 \quad$ and $\varphi_{a}\left(\varphi_{a}(z)\right)=z$,
(2) $1-\left\langle\varphi_{a}(z), \varphi_{a}(w)\right\rangle=\frac{\left(1-\|a\|^{2}\right)(1-\langle z, w\rangle)}{(1-\langle z, a\rangle)(1-\langle a, w\rangle)} \quad(z, w \in \bar{B})$,
(3) $1-\left\|\varphi_{a}(z)\right\|^{2}=\frac{\left(1-\|a\|^{2}\right)\left(1-\|z\|^{2}\right)}{|1-\langle z, a\rangle|^{2}} \quad(a \in B, z \in \bar{B})$.

Proof. See Theorem 2.2.2 of [9].
Theorem 3.2. Let $1<p<\infty$, and $f \in H(B)$. If s is a real number such that $-n p<s<n$, then there is some constant $M>0$

$$
Q f(z) \leq C\left(1-\|z\|^{2}\right)^{\frac{-s}{p}}\|f\|_{p, s}, \quad z \in B
$$

Proof. Let $f \in H(B), \zeta \in B$, and $t \in[0,1]$. By the mean value theorem,

$$
f(t \zeta)=\int_{B} f \circ \varphi_{t \zeta}(w) d \nu(w)
$$

and

$$
\langle\nabla f(0), \zeta\rangle=\left[\frac{d}{d t} f(t \zeta)\right]_{t=0}=\int_{B} \nabla f(-w)\left[\frac{d}{d t} \varphi_{t \zeta}(w)\right]_{t=0} d \nu(w)
$$

A formal computation shows that

$$
a_{\zeta}(w)=\left[\frac{d}{d t} \varphi_{t \zeta}(w)\right]_{t=0}=\zeta-\langle w, \zeta\rangle w
$$

and a_{ζ} is a bounded holomorphic mapping from B into C^{n} that satisfies $a_{\zeta}(0)=\zeta$. Therefore,

$$
\langle\nabla f(0), \zeta\rangle=\int_{B}\left\langle\nabla f(-w), a_{\zeta}(w)\right\rangle \frac{b_{B}\left(-w, a_{\zeta}(w)\right)}{b_{B}\left(-w, a_{\zeta}(w)\right)} d \nu(w)
$$

which implies

$$
|\langle\nabla f(0), \zeta\rangle| \leq M \int_{B} \frac{Q f(w)}{1-\|w\|^{2}} d \nu(w)
$$

for some constant M. The latter inequality follows from the following inequalities for the Bergman metric:

$$
\frac{\|\xi\|}{\sqrt{1-\|w\|^{2}}} \leq b_{B}(w, \xi) \leq \frac{\|\xi\|}{1-\|w\|^{2}}, w \in B, \xi \in C^{n}
$$

Thus,

$$
Q f(0) \leq C \int_{B} Q f(w)\left(1-\|w\|^{2}\right)^{n} d \lambda(w) .
$$

Note that $Q f$ is invariant, i.e., $Q(f \circ \varphi)=(Q f) \circ \varphi$ for all $\varphi \in \operatorname{Aut}(B)$.
Replacing f by $f \circ \varphi_{z}$ in the above equation, we obtain

$$
Q f(z)=Q\left(f \circ \varphi_{z}\right)(0) \leq C \int_{B} Q\left(f \circ \varphi_{z}\right)(w)\left(1-\|w\|^{2}\right)^{n} d \lambda(w) .
$$

By the change of variables : $\zeta=\varphi_{z}(w)$ or $w=\varphi_{z}(\zeta)$, and by Theorem 3.1,

$$
Q f(z) \leq C\left(1-\|z\|^{2}\right)^{n} \int_{B} Q f(\zeta) \frac{\left(1-\|\zeta\|^{2}\right)^{n-s}}{|1-<z, \zeta>|^{2 n}}\left(1-\|\zeta\|^{2}\right)^{s} d \lambda(\zeta) .
$$

By the Hölder inequality,
$Q f(z) \leq C\left(1-\|z\|^{2}\right)^{n}\|f\|_{p, s}\left[\int_{B} \frac{\left(1-\|\zeta\|^{2}\right)^{q(n-s)}}{|1-<z, \zeta>|^{2 n q}}\left(1-\|\zeta\|^{2}\right)^{s} d \lambda(\zeta)\right]^{\frac{1}{q}}$
where $\frac{1}{p}+\frac{1}{q}=1$. By Theorem 2.6, if $-n p<s<n$, then

$$
Q f(z) \leq C\left(1-\|z\|^{2}\right)^{\frac{-s}{p}}\|f\|_{p, s}
$$

Theorem 3.3. Let $1<p<\infty$ and $-n p<s<n$. For $\alpha \geq 1+\frac{s}{p}$, we have

$$
\mathbb{B}_{p}^{s} \subseteq \mathfrak{B}_{\alpha}
$$

Proof. Since $Q f(z)$ and $\left(1-\|z\|^{2}\right)\|\nabla f(z)\|$ behave equivalently as $\|z\| \rightarrow 1$ on B (See [10]), we may replace $Q f(z)$ in Theorem 3.2 by $\left(1-\|z\|^{2}\right)\|\nabla f(z)\|$ with a different constant C and we have

$$
\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\| \leq C\left(1-\|z\|^{2}\right)^{\alpha-1-\frac{s}{p}}\|f\|_{p, s}
$$

By choosing $\alpha=1+\frac{s}{p}$, we get

$$
\|f\|_{\alpha}-|f(0)| \leq C\|f\|_{p, s} .
$$

But, since the norm $\left\|\|_{\alpha}\right.$ is non-increasing with $\alpha>0$, we obtain the desired result.

Theorem 3.4. Let $0<p<\infty$ and $s \in R$. For $\alpha<1+\frac{s-n}{p}$,

$$
\mathfrak{B}_{\alpha} \subseteq \mathbb{B}_{p}^{s} .
$$

Proof. From the fact that $Q f(z)$ and $\left(1-\|z\|^{2}\right)\|\nabla f(z)\|$ behave the same within constants as $\|z\| \rightarrow 1$, we may replace $Q f(z)$ by ($1-\|$ $\left.z \|^{2}\right)\|\nabla f(z)\|$ in the definition of $\|f\|_{p, s}$. Namely,

$$
\begin{aligned}
\|f\|_{p, s}^{p} & =\int_{B}(Q f)^{p}(z)\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
& \leq C \int_{B}\left[\left(1-\|z\|^{2}\right)\|\nabla f(z)\|\right]^{p}\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
& \leq C \int_{B}\left[\frac{\left(1-\|z\|^{2}\right)^{\alpha}\|\nabla f(z)\|}{\left(1-\|z\|^{2}\right)^{\alpha-1}}\right]^{p}\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
& \leq C\|f\|_{\alpha}^{p} \int_{B}\left(1-\|z\|^{2}\right)^{-p \alpha+p+s-n-1} d \nu(z) .
\end{aligned}
$$

By Theorem 2.7, if $\alpha<1+\frac{s-n}{p}$, then

$$
\|f\|_{p, s} \leq C\|f\|_{\alpha}
$$

which yields the desired result.

References

[1] C.A. Berger, L.A. Coburn and K.H. Zhu, BMO on the Bergman spaces of the classical domains, Bull. Amer. Math. Soc. 17 (1987), 133-136
[2] D. Bekolle, C.A. Berger, L.A. Coburn and K.H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350
[3] K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces \mathfrak{B}_{q}, J. Korean Math. Soc. 39 (2002), 277-287
[4] K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458
[5] K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in \mathbb{C}^{n}, Manuscripta Math $\mathbf{7 1}$ (1991), 67-81
[6] K. T. Hahn and E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball, J. Math. Analysis and Appl. 175 (1993), 206-221
[7] K. T. Hahn and E. H. Youssfi, Besov Spaces of M-harmonic functions on bounded symmetric domains, Math. Nachr. 163 (1993), 203-216
[8] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^{n}, J. Korean Math. Soc. 35 (1998), 171-189
[9] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer Verlag, New York 1980
[10] R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267
[11] R. Zhao, A characterization of Bloch-type spaces on the unit ball of C^{n}, J. Matht. Anal. Appl. (2001), 1-7
[12] K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50
[13] K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177
*
Department of Information Security Konyang University
Nonsan 320-711, Republic of Korea
E-mail: gtyang@konyang.ac.kr
**
Department of Information Security
Konyang University
Nonsan 320-711, Republic of Korea
E-mail: ksc@konyang.ac.kr

[^0]: Received August 10, 2009; Accepted November 06, 2009.
 2000 Mathematics Subject Classification: Primary 32H25, 32E25; Secondary 30C40.

 Key words and phrases: Bergman metric, weighted Bloch space, Besov space, multiplier.

 Correspondence should be addressed to Ki Seong Choi, ksc@konyang.ac.kr.

