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LIPSCHITZ CONTINUOUS AND COMPACT

COMPOSITION OPERATOR ACTING BETWEEN SOME

WEIGHTED GENERAL HYPERBOLIC-TYPE CLASSES

A. Kamal, A. El-Sayed Ahmed, and T. I. Yassen

Abstract. In this paper, we study Lipschitz continuous, the bound-
edness and compactness of the composition operator Cφ acting be-
tween the general hyperbolic Bloch type-classes B∗p,log,α and general

hyperbolic Besov-type classes F ∗
p,log(p, q, s). Moreover, these classes

are shown to be complete metric spaces with respect to the corre-
sponding metrics.

1. Introduction

Let φ be an analytic self-map of the open unit disk D = {z ∈ C :
|z| < 1} in the complex plane C. Let H(D) denote the classes of analytic
functions in the unit disc D. Let B(D) be a subset of H(D) denote the
classes of all the hyperbolic function classes in D, such that |f(z)| < 1.
A function f ∈ B(D) belongs to α-Bloch space Bα, 0 < α <∞ if

‖f‖Bα = sup
z∈D

(1− |z|)α|f ′(z)| <∞.

The little α-Bloch space Bα,0 consisting of all f ∈ Bα such that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.
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If (X, d) is a metric space, we denote the open and closed balls with
center x and radius r > 0 by

B(x, r) := {y ∈ X : d(y, x) < r} and B̄(x, r) := {y ∈ X : d(x, y) ≤ r},
respectively.
Hyperbolic function classes are usually defined by using either the hyper-

bolic derivative f ∗(z) = |f ′(z)|
1−|f(z)|2 of f ∈ B(D), or the hyperbolic distance

ρ(f(z), 0) := 1
2

log
(
1+|f(z)|
1−|f(z)|

)
between f(z) and zero.

2. Preliminaries and basic concepts

The hyperbolic B∗α (see [3]) is defined as the set of f ∈ B(D) for which

B∗α = {f : f analytic in D and sup
z∈D

(1− |z|2)αf ∗(z) <∞}.

The little hyperbolic Bloch space B∗α,0 is a subspace of B∗α consisting of
all f ∈ B∗α such that

lim
|z|→1−

(1− |z|2)αf ∗(z) = 0.

Quite recently, the author in [3] gave the following definitions for (p, α)-
Bloch spaces Bp,α and Bp,α,0 for f ∈ H(D)

‖f‖Bp,α =
p

2
sup
z∈D
|f(z)|

p
2
−1|f ′(z)|(1− |z|2)α <∞,

and

lim
|z|→1
|f(z)|

p
2
−1|f ′(z)|(1− |z|2)α = 0,

where 2 ≤ p <∞ and 0 < α < 1.
Also in [3], the first author introduced the following generalized hyper-
bolic derivative:

f ∗p (z) =
p

2

|f(z)| p2−1|f ′(z)|
1− |f(z)|p

, f(z) ∈ H(D),

when p = 2 we obtain the usual hyperbolic derivative as defined above.
A function f ∈ B(D) is said to belong to the generalized (p, α) hyperbolic
Bloch-type class B∗p,α if

‖f‖B∗p,α = sup
z∈D

(1− |z|2)αf ∗p (z) <∞,
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the little generalized (p, α) hyperbolic Bloch-type class B∗p,α,0 consists of
all f ∈ B∗p,α such that

lim
|z|→1

(1− |z|2)αf ∗p (z) = 0.

Remark 2.1. It should be remarked that, the Schwarz-Pick lemma
implies B∗p,α ≡ B(D) for all 1 ≤ α <∞ with ‖f‖B∗p,α ≤ 1, hence the class
B∗p,α is of interest only when 0 < α < 1.

Denote by

g(z, a) = log

∣∣∣∣1− āzz − a

∣∣∣∣ = log
1

|ϕa(z)|
the Green’s function of D with logarithmic singularity at a ∈ D.

Now, we give the following definitions of the generalized hyperbolic
Bloch-type classes B∗p,log,α and the generalized hyperbolic Besov-type
classes F ∗p,log(p, q, s) :

Definition 2.1. Let 2 ≤ p, α <∞, the generalized hyperbolic Bloch-
type classes B∗p,log,α consisting of all f ∈ B(D) such that

‖f‖B∗p,log,α = sup
z∈D

f ∗p (z)(1− |z|2)α
(

log
2

1− |z|2

)
<∞,

the little generalized (p, log, α) hyperbolic Bloch-type classes B∗p,log,α,0
consists of all f ∈ B∗p,log,α such that

lim
|z|→1

f ∗p (z)(1− |z|2)α
(

log
2

1− |z|2

)
= 0.

Definition 2.2. Let 2 ≤ p < ∞, 0 < s < ∞ and −2 < q < ∞,
the hyperbolic class F ∗p,log(p, q, s) consists of all functions f ∈ B(D) for
which

‖f‖pF ∗p,log(p,q,s) = sup
a∈D

∫
D

(f ∗p (z))p(1−|z|2)qgs(z, a)

(
log

2

1− |z|2

)p
dA(z) <∞.

Moreover, we say that f ∈ F ∗p,log(p, q, s) belongs to the class
F ∗p,log,0(p, q, s) if

lim
|a|→1

∫
D

(f ∗p (z))p(1− |z|2)qgs(z, a)

(
log

2

1− |z|2

)p
dA(z) = 0.
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Note that the hyperbolic classes are not linear spaces, since they con-
sist of functions that are self-maps of D. Thus, the result in this paper
is a generalization of the recent results of Pérez-González, Rättyä and
Taskinen [9]. The study of composition operator Cφ acting on spaces
of analytic functions has engaged many analysts for many years (see
e.g. [1, 2, 4–8,12]).

Recall that a linear operator T : X → Y is said to be bounded if there
exists a constant C > 0 such that ‖T (f)‖Y ≤ C‖f‖X for all maps f ∈ X.
By elementary functional analysis, it is well-known that a linear operator
between normed spaces is bounded if and only if it is continuous, and
the boundedness is trivially also equivalent to the Lipschitz-continuity.
Moreover, T : X → Y is said to be compact if it takes bounded sets in
X to sets in Y which have compact closure. For Banach spaces X and
Y contained in B(D) or H(D), T : X → Y is compact if and only if for
each bounded sequence (xn) ∈ X, the sequence (Txn) ∈ Y contains a
subsequence converging to a function f ∈ Y.

Two quantities A and B are said to be equivalent if there exist two
finite positive constants C1 and C2 such that C1B ≤ A ≤ C2B, written
as A ≈ B. Throughout this paper, the letter C denotes different positive
constants which are not necessarily the same from line to line.
Now, we introduce the following definitions:

Definition 2.3. A composition operator Cφ : B∗p,log,α → F ∗p,log(p, q, s)
is said to be bounded, if there is a positive constant C such that
‖Cφf‖F ∗p,log(p,q,s) ≤ C‖f‖B∗p,log,α ∀ f ∈ B

∗
p,log,α.

Definition 2.4. A composition operator Cφ : B∗p,log,α → F ∗p,log(p, q, s)
is said to be compact, if it maps any ball in B∗p,log,α onto a pre-compact
set in F ∗p log(p, q, s).

The following lemma follows by standard arguments similar to the
result in (see [11]). Hence we omit the proof.

Lemma 2.1. Assume φ is a holomorphic mapping from D into itself
and let 2 ≤ p < ∞, 0 < α < 1, 0 < s < ∞, and −2 < q < ∞. Then
the composition operator Cφ : B∗p,log,α → F ∗p,log(p, q, s) is compact if and
only if for any bounded sequence (fn)n∈N ∈ B∗p,log,α which converges to
zero uniformly on compact subsets of D as n→∞ we have

lim
n→∞

‖Cφfn‖F ∗p,log(p,q,s) = 0.
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Theorem 2.1. Let 0 < p, s <∞, −2 < q <∞, 0 < r < 1, α = q+2
p

and q + s > −1. If

(f ∗(a))p ≤ 1

πr2

∫
D(0,r)

(
|f ′(ϕa(w))|

1− |f(ϕa(w))|2

)p
dA(w).

Then the following are equivalent:
(A) f ∈ B∗p,α, log,
(B) f ∈ F ∗p, log(p, q, s),

(C) sup
a∈D

(
log

2

1− |a|2

)p∫
D

(f ∗p (z))p(1−|z|2)αp−2(1−|ϕa(z)|2)sdA(z) <∞,

(D) sup
a∈D

(
log

2

1− |a|2

)p∫
D

(f ∗p (z))p(1−|z|2)αp−2gs(z, a)dA(z) <∞.

Proof. The proof is similar to the main results in [10].
Now, we can find a natural metric on the generalized hyperbolic (p, log, α)-
Bloch class B∗p,log,α and the class F ∗p,log(p, q, s).
Let 2 ≤ p <∞, 0 < s <∞,−2 < q <∞, and 0 < α < 1.
First, we can find a natural metric in B∗p,log,α by defining

d(f, g;B∗p,log,α) := dB∗p,log,α(f, g) + ‖f − g‖Bp,log,α + |f(0)− g(0)|
p
2 ,

dB∗p,log,α(f, g) :

= sup
a∈D

∣∣∣∣f ′(z)|f(z)| p2−1

1− |f(z)|p
− g′(z)|g(z)| p2−1

1− |g(z)|p

∣∣∣∣(1− |z|2)α(log
2

1− |z|2

)
.

For f, g ∈ F ∗p,log(p, q, s), define their distance by

d(f, g;F ∗p,log(p, q, s)) := dF ∗p,log(p,q,s)(f, g)+‖f−g‖Fp,log(p,q,s)+|f(0)−g(0)|,

where

dF ∗p,log(p,q,s)(f, g) :

=

(
sup
z∈D

(
log

2

1− |a|2

)p∫
D
|f ∗p (z)− g∗p(z)|p(1− |z|2)qgs(z, a)dA(z)

) 1
p

.

Now we prove the following results.
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Proposition 2.1. The class B∗p,log,α equipped with the metric d(., .;B∗p,log,α)
is a complete metric space. Moreover, B∗p,log,α,0 is a closed (and therefore
complete) subspace of B∗p,log,α.

Proof. For f, g, h ∈ B∗p,log,α. Then

• d(f, g;B∗p,log,α) ≥ 0,
• d(f, f ;B∗p,log,α) = 0,
• d(f, g;B∗p,log,α) = 0 implies f = g.
• d(f, g;B∗p,log,α) = d(g, f ;B∗p,log,α),
• d(f, h;B∗p,log,α) ≤ d(f, g;B∗p,log,α) + d(g, h;B∗p,log,α).

Hence, d is metric on B∗p,log,α.
For the completeness proof, let (fn)∞n=1 be a Cauchy sequence in the

metric space (B∗p,log,α, d), that is, for any ε > 0 there is an N = N(ε) ∈ N
such that d(fn, fm) < ε, for all n,m > N. Since fn ∈ B(D) such that fn
converges to f uniformly on compact subsets of D. Let m > N and

f ∗m,p(z) =
p

2

|fm(z)| p2−1|f ′m(z)|
1− |fm(z)|p

.

Then the uniform convergence yields∣∣f ∗p (z)− f ∗m,p(z)
∣∣(1− |z|2)α(log

2

1− |z|2

)
= lim

n→∞

∣∣f ∗n,p(z)− f ∗m,p(z)
∣∣(1− |z|2)α(log

2

1− |z|2

)
≤ lim

n→∞
d(fn, fm;B∗p,log,α) ≤ ε. (1)

This yields

‖f‖B∗p,log,α ≤ ε+ ‖fm‖B∗p,log,α .

Thus f ∈ B∗p,log,α as desired. Moreover, (1) and the completeness of the
(p, log, α)-Bloch-space imply that (fn)∞n=1 converges to f with respect to
the metric d. The second part of the assertion follows by (1).

Proposition 2.2. The class F ∗p,log(p, q, s) equipped with the metric
d(., .;F ∗p,log(p, q, s)) is a complete metric space. Moreover, F ∗p,log,0(p, q, s)
is a closed (and therefore complete) subspace of F ∗p,log(p, q, s).

Proof. For f, g, h ∈ F ∗p,log(p, q, s). Then

• d(f, g;F ∗p,log(p, q, s)) ≥ 0,
• d(f, f ;F ∗p,log(p, q, s)) = 0,
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• d(f, g;F ∗p,log(p, q, s)) = 0 implies f = g.
• d(f, g;F ∗p,log(p, q, s)) = d(g, f ;F ∗p,log(p, q, s)),
• d(f, h;F ∗p,log(p, q, s)) ≤ d(f, g;F ∗p,log(p, q, s)) + d(g, h;F ∗p,log(p, q, s)).

Hence, d is metric on F ∗p,log(p, q, s).

For the completeness proof, let (fn)∞n=0 be a Cauchy sequence in the
metric space F ∗p,log(p, q, s), that is, for any ε > 0 there is an N = N(ε) ∈
N such that d(fn, fm) < ε, for all n,m > N. Since fn ∈ B(D) such that
fn converges to f uniformly on compact subsets of D. Let m > N and
0 < r < 1. Let

f ∗m,p(z) =
p

2

|fm(z)| p2−1|f ′m(z)|
1− |fm(z)|p

.

Then Fatou’s lemma yields∫
D(0,r)

(
f ∗p (z)− f ∗m,p(z)

)
(1− |z|2)qgs(z, a)dA(z)

=

∫
D(0,r)

lim
n→∞

∣∣∣∣f ∗n,p(z)− f ∗m,p(z)

∣∣∣∣p(1− |z|2)qgs(z, a)dA(z)

≤ lim
n→∞

∫
D

∣∣∣∣f ∗n,p(z)− f ∗m,p(z)

∣∣∣∣p(1− |z|2)qgs(z, a)dA(z) ≤ εp.

By letting r → 1−, it follows from the above inequality
and (a+ b)p ≤ 2p(ap + bp) that∫

D
(f ∗(z))p(1− |z|2)qgs(z, a)dA(z)

≤ 2pεp + 2p
∫
D
(f ∗m,p(z))p(1− |z|2)qgs(z, a)dA(z). (2)

This yields

‖f‖pF ∗p,log(p,q,s) ≤ 2pεp + 2p‖fm‖pF ∗p,log(p,q,s),

and thus f ∈ F ∗p,log(p, q, s). We also find that fn → f with respect to
the metric of F ∗p,log(p, q, s). The second part of the assertion follows by
(2).
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3. Lipschitz continuous and boundedness of Cφ

For 0 < α < 1, 2 ≤ p <∞. Let f, g ∈ B∗p,log,α. Then, we will suppose
that

(f ∗p (z) + g∗p(z)) ≥ C

(1− |z|2)α
(
log 2

1−|z|2
) > 0, (3)

for some constant C and for each z ∈ D.

Let 0 < α < 1, 0 < s < ∞, and −2 < q < ∞. We define the fol-
lowing notation:

ψφ(α, p, q, s; a) = `p(a)

∫
D

|φ′(z)|p(1− |z|2)q

(1− |φ(z)|p)pα
(
log 2

1−|φ(z)|2
)p gs(z, a)dA(z),

where `p(a) =
(
log 2

1−|a|2
)p
.

Now, we give the following result.

Theorem 3.1. Assume φ is a holomorphic mapping from D into itself
and let 0 < α < 1, 2 ≤ p < ∞, 0 ≤ s < ∞,−2 < q < ∞. Suppose that
(3) is satisfied. Then the following statements are equivalent:
(i) Cφ : B∗p,log,α → F ∗p,log(p, q, s) is bounded;
(ii) Cφ : B∗p,log,α → F ∗p,log(p, q, s) is Lipschitz continuous;
(iii) sup

a∈D
ψφ(α, p, q, s; a) <∞.

Proof. To prove (i)⇔ (iii), first assume that (iii) holds and that
f ∈ B∗p,log,α, then, we obtain

sup
a∈D

(
log

2

1− |a|2
)p∫

D
((fp ◦ φ)∗(z))p(1− |z|2)qgs(z, a)dA(z)

= sup
a∈D

(
log

2

1− |a|2
)p∫

D
(f ∗p (φ(z)))p|φ′(z)|p(1− |z|2)qgs(z, a)dA(z)

≤ ‖f‖pB∗p,log,α sup
a∈D

ψφ(α, p, q, s; a) <∞.

Hence, it follows that (i) holds.
Conversely, assuming that (i) holds, then there exists a constant C such
that

‖Cφf‖F ∗p,log(p,q,s) ≤ C‖f‖B∗p,log,α .
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For giving f ∈ B∗p,log,α, the function ft(z) = f(tz), where 0 < t < 1,
belongs to B∗p,log,α with the property ‖ft‖B∗p,log,α ≤ ‖f‖B∗p,log,α . Let f, g be

the functions from (3), we have

f ∗p (z) + g∗p(z) ≥ C

(1− |z|2)α
(
log 2

1−|a|2
) > 0

for all z ∈ D, then

|φ′(z)|
(1− |φ(z)|2)α

(
log 2

1−|a|2
) ≤ (fp ◦ φ)∗(z) + (gp ◦ φ)∗(z),

thus,

`p(a)

∫
D

|tφ′(z)|p

(1− |tφ(z)p|)pα
(
log 2

1−|φ(z)|2
)p (1− |z|2)qgs(z, a)dA(z)

≤ `p(a)

∫
D

((
(fp ◦ φ)∗(z)

)p
+
(
(gp ◦ φ)∗(z)

)p)
(1− |z|2)qgs(z, a)dA(z)

≤ C(‖Cφf‖pF ∗p,log(p,q,s) + ‖Cφg‖pF ∗p,log(p,q,s))

≤ C‖Cφ‖p(‖f‖pB∗p,log,α + ‖g‖pB∗p,log,α),

so (iii) is satisfied.
To prove (ii)⇔ (iii), assume first that Cφ : B∗p,log,α → F ∗p,log(p, q, s)

is Lipschitz continuous, that is, there exists a positive constant C such
that

d(f ◦ φ, g ◦ φ;F ∗p,log(p, q, s)) ≤ Cd(f, g;B∗p,log,α), for all f, g ∈ B∗p,log,α.
Taking g = 0, we get

‖f◦φ‖F ∗p,log(p,q,s) ≤ C
(
‖f‖B∗p,log,α+‖f‖Bp,log,α+|f(0)|

p
2

)
, for all f ∈ B∗p,log,α.

(4)
The assertion (iii) for α = 1, follows by choosing f(z) = z in (4).
If 0 < α < 1 and

(
log 2

1−|z|2
)
≈
(
log 2

1−|a|2
)

then

|f(z)|
p
2 ≤ 2

p

∣∣∣∣∫ z

0

|f(s)|
p
2
−1f ′(s)ds+ |f(0)

p
2

∣∣∣∣
≤ 2

p

[
‖f‖Bp,log,α

1(
log 2

1−|a|2
) ∫ |z|

0

ds

(1− s2)α
+ |f(0)|

p
2

]
≤ C
‖f‖Bp,log,α

1− α
+

2

p
|f(0)|

p
2
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this yields∣∣f(φ(0))− g(φ(0))
∣∣ p2 ≤ C

‖f − g‖Bp,log,α
(1− α)

+
2

p
|f(0)− g(0)|

p
2

Moreover, from (3), for f, g ∈ B∗p,log,α, we deduce that(
|f ∗p (z)|+ |g∗p(z)|

)
(1− |z|2)α

(
log

2

1− |z|2
)
≥ C > 0, for all z ∈ D.

Therefore,

‖f‖B∗p,log,α + ‖g‖B∗p,log,α + ‖f‖Bp,log,α + ‖g‖Bp,log,α + |f(0)|
p
2 + |g(0)|

p
2

≥ C

∫
D

|φ′(z)|p(1− |z|2)q

(1− |φ(z)p|)pα
(
log 2

1−|z|2
)p gs(z, a)dA(z),

for which the assertion (iii) follows .
Assume now that (iii) is satisfied, we have

d(f ◦ φ, g ◦ φ;F ∗p,log(p, q, s)) = dF ∗p,log(p,q,s)(f ◦ φ, g ◦ φ)

+‖f ◦ φ− g ◦ φ‖FP,log(p,q,s) +
∣∣f(φ(0))− g(φ(0))

p
2

∣∣
≤ dB∗p,log,α(f, g)

(
sup
a∈D

∫
D

|φ′(z)|p(1− |z|2)q

(1− (φ(z))p)p,α
(
log 2

1−|z|2
)p gs(z, a)dA(z)

) 1
p

+‖f − g‖Bp,log,α
(

sup
a∈D

∫
D

|φ′(z)|p(1− |z|2)q

(1− (φ(z))p)p,α
(
log 2

1−|z|2
)p gs(z, a)dA(z)

) 1
p

+
‖f − g‖Bp,log,α

1− α
+ |f(0)− g(0)|

p
2 ≤ C d(f, g;B∗p,log,α).

Thus Cφ : B∗p,log,α → Fp,log(p, q, s) is Lipschitz continuous and the proof
is established.

Remark 3.1. We know that a composition operator Cφ : B∗p,log,α →
F ∗p,log(p, q, s) is said to be bounded if there is a positive constant C such
that ‖Cφf‖F ∗p,log(p,q,s) ≤ C‖f‖B∗p,log,α , for all f ∈ B∗p,log,α. Theorem 3.1

shows that Cφ : B∗p,log,α → F ∗p,log(p, q, s) is bounded if and only if it is
Lipschitz continuous, that is, if there exists a positive constant C such
that d(f ◦φ, g◦φ;F ∗p,log(p, q, s)) ≤ Cd(f, g;B∗p,log,α), for all f, g ∈ B∗p,log,α.

By elementary functional analysis, a linear operator between normed
spaces is bounded if and only if it is continuous, since the boundedness
is trivially also equivalent to the Lipschitz-continuity. Our result for
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composition operator in hyperbolic spaces is the correct and natural
generalization of the linear operator theory.

4. Compactness of Cφ : B∗p,log,α → F ∗p,log(p, q, s)

Recall that a composition operator Cφ : B∗p,log,α → F ∗p,log(p, q, s) is said
to be compact, if it maps any ball in B∗p,log,α onto a pre-compact set in
F ∗p,log(p, q, s).
Now, we give the following important results.

Proposition 4.1. Assume φ is a holomorphic mapping from D into
itself. Let 2 ≤ p < ∞, −2 < q < ∞, 0 < α < 1 and 0 ≤ s < ∞.
If Cφ : B∗p,log,α → Fp,log(p, q, s) is compact, it maps closed balls onto
compact sets.

Proof. If B ⊂ B∗p,log,α is a closed ball and g ∈ F ∗p,log(p, q, s) belongs
to the closure of Cφ(B), we can find a sequence (fn)∞n=1 ⊂ B such that
fn ◦ φ converges to g ∈ F ∗p,log(p, q, s) as n→∞. But (fn)∞n=1 is a normal
family, hence it has a subsequence (fnj)

∞
j=1 converging uniformly on the

compact subsets of D to an analytic function f. As in earlier arguments
of Proposition 2.1, we get a positive estimate which shows that f must
belong to the closed ball B. On the other hand, also the sequence (fnj ◦
φ)∞j=1 converges uniformly on compact subsets to an analytic function,
which is g ∈ F ∗p,log(p, q, s). We get g = f ◦ φ, i.e. g belongs to Cφ(B).
Thus, this set is closed and also compact.

Compactness of composition operator acting between B∗p,log,α and
F ∗p,log(p, q, s) classes can be characterized in the following result.

Theorem 4.1. Assume φ is a holomorphic mapping from D into itself.
Let 2 ≤ p < ∞, −2 < q < ∞, 0 < α < 1 and 0 ≤ s < ∞. Then the
following statements are equivalent:
(i) Cφ : B∗p,log,α → F ∗p,log(p, q, s) is compact.

(ii) lim
r→1−

sup
a∈D

ψφ(α, p, q, s; a) = 0.

Proof. We first assume that (ii) holds. Let B := B̄(g, δ) ⊂ B∗p,log,α,
g ∈ B∗p,log,α and δ > 0, be a closed ball, and let (fn)∞n=1 ⊂ B be any
sequence. We show that its image has a convergent subsequence in
F ∗p,log(p, q, s), which proves the compactness of Cφ by definition.
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Again, (fn)∞n=1 ⊂ B(D) is normal, hence, there is a subsequence
(fnj)

∞
j=1 which converges uniformly on the compact subsets of D to an

analytic function f. By Cauchy formula for the derivative of an analytic
function, also the sequence (f ′nj)

∞
j=1 converges uniformly on the compact

subsets of D to f ′. It follows that also the sequences (fnj ◦ φ)∞j=1 and
(f ′nj ◦ φ)∞j=1 converge uniformly on the compact subsets of D to f ◦ φ
and f ′ ◦ φ, respectively. Moreover, f ∈ B ⊂ B∗p,log,α since for any fixed
R, 0 < R < 1, the uniform convergence yield

sup
|z|≤R

∣∣∣∣f ′(z)|f(z)|
p
2
−1

1− |f(z)|p
− g′(z)|g(z)|

p
2
−1

1− |g(z)|p

∣∣∣∣(1− |z|2)α(log
2

1− |z|2

)
+ sup
|z|≤R

|f ′(z)− g′(z)||f(z)− g(z)|
p
2
−1(1− |z|2)α

(
log

2

1− |z|2

)
+|f(0)− g(0)|

p
2
−1

= lim
j→∞

sup
|z|≤R

∣∣∣∣f ′nj (z)|fnj (z)|
p
2
−1

1− |fnj (z)|p
− g′(z)|g(z)|

p
2
−1

1− |g(z)|p

∣∣∣∣(1− |z|2)α(log
2

1− |z|2

)
+ lim
j→∞

(
sup
|z|≤R

|f ′nj (z)− g
′(z)||fnj (z)− g(z)|

p
2
−1(1− |z|2)α

(
log

2

1− |z|2

)
+|fnj (0)− g(0)|

p
2
−1)< δ.

Hence, d(f, g;B∗p,log,α) ≤ δ.

Let ε > 0. Since (ii) is satisfied, we may fix r, 0 < r < 1, such that

sup
a∈D

∫
|φ(z)|>r

|φ′(z)|p

(1− |φ(z)|p)pα
(
log 2

1−|φ(z)|2
)p (1− |z|2)qgs(z, a)dA(z) ≤ ε.

By the uniform convergence, we may fix N1 ∈ N such that

|fnj ◦ φ(0)− f ◦ φ(0)| ≤ ε, for all j ≥ N1. (5)

The condition (ii) is known to imply the compactness of
Cφ : Bp,log,α → Fp,log(p, q, s), hence possibly to passing once more to a
subsequence and adjusting the notations, we may assume that

‖fnj ◦ φ− f ◦ φ‖Fp,log(p,q,s) ≤ ε, for all j ≥ N2; N2 ∈ N. (6)
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Since (fnj)
∞
j=1 ⊂ B and f ∈ B, it follows that

sup
a∈D

`p(a)

∫
|φ(z)|>r

[
(fp,nj ◦ φ)∗(z)− (gp ◦ φ)∗(z)

]p
(1− |z|2)q gs(z, a) dA(z)

≤ p

2
sup
a∈D

`p(a)

∫
|φ(z)|>r

 L(fnj , g, φ)(1− |z|2)q gs(z, a) dA(z)

≤ dB∗p,log,α(fnj , g) sup
a∈D

`p(a)

∫
|φ(z)|>r

|φ′(z)|p(1− |z|2)q

(1− |φ(z)|p)αp
(
log 2

1−|z|2
)p gs(z, a) dA(z),

where

 L(fnj , g, φ) =∣∣∣∣((fnj ◦ φ)′(z))|((fnj ◦ φ)(z)))| p2−1

1− |(fnj ◦ φ)(z)|p
−

(g ◦ φ)′(z)|((gnj ◦ φ)(z)))| p2−1

1− |(g ◦ φ)(z)|p

∣∣∣∣p
hence,

sup
a∈D

`p(a)

∫
|φ(z)|>r

[
(fp,nj◦φ)∗(z)−(gp◦φ)∗(z)

]p
(1−|z|2)q gs(z, a) dA(z) ≤ Cε.

(7)
On the other hand, by the uniform convergence on the compact disc

D, we can find an N3 ∈ N such that for all j ≥ N3,

 L1(fnj , g, φ) =∣∣∣∣(f ′nj(φ(z))|((fnj ◦ φ)(z)))| p2−1

1− |(fnj ◦ φ)(z)|p
−
g′nj(φ(z))|((gnj ◦ φ)(z))| p2−1

1− |(g ◦ φ)(z)|p

∣∣∣∣≤ ε.

For all z with |φ(z)| ≤ r. Hence, for such j,

sup
a∈D

`p(a)

∫
|φ(z)|≤r

[
(fp,nj ◦ φ)∗(z)− (gp ◦ φ)∗(z)

]p
(1− |z|2)q gs(z, a) dA(z)

≤ sup
a∈D

`p(a)

∫
|φ(z)|≤r

 L1(fnj , g, φ)|φ′(z)|p(1− |z|2)q gs(z, a) dA(z)

≤ ε

(
sup
a∈D

`p(a)

∫
|φ(z)|≤r

|φ′(z)|p(1− |z|2)q

1− (|φ(z)|p)αp
gs(z, a)dA(z)

) 1
p

≤ Cε, (8)

where C is bounded which is obtained from (iii) of Theorem 3.1. Com-
bining (5), (6), (7) and (8) we deduce that fnj → f in F ∗p,log(p, q, s).
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For the converse direction, let fn(z) := 1
2
nα−1zn for all n ∈ N, n ≥ 2.

‖f‖B∗p,log,α =
p

2
sup
a∈D

n
αp
2 |z|αp2 −1(1− |z|2)α

1− 2−pnp(α−1)|z|np

≤ (2p−1 + 1) sup
a∈D

n
αp
2 |z|

αp
2
−1(1− |z|2)α

Then the sequence (fn)∞n=1 belongs to the ball B(0; (2p−1 + 1)) ⊂ B∗p,log,α
(see [3]). We are assuming that Cφ maps the closed ballB(0; (2p−1+1)) ⊂
B∗p,log,α into a compact subset of F ∗p,log(p, q, s), hence, there exists an
unbounded increasing subsequence (nj)

∞
j=1 such that the image sub-

sequence (Cφfnj)
∞
n=1 converges with respect to the norm. Since, both

(fn)∞n=1 and (Cφfnj)
∞
n=1 converge to the zero function uniformly on com-

pact subsets of D, the limit of the latter sequence must be 0. Hence,

lim
j→∞
‖nα−1j φnj‖F ∗p,log(p,q,s) = 0. (9)

Now let rj = 1− 1
nj
. For all numbers a, rj ≤ a < 1, we have the following

estimate
nαj a

nj−1

1− anj
≥ 1

e(1− a)α
. (see [3, 9]) (10)

Using (10) we deduce

‖nα−1j φnj‖F ∗p,log(p,q,s)

≥ p

2
sup
a∈D

`p(a)

∫
|φ(z)|≥rj

∣∣∣∣nαj (φ(z))nj−1|φnj(z)| p2−1|φ′(z)|
1− |φnj(z)|p

∣∣∣∣p
×(1− |z|2)q gs(z, a) dA(z)

≥ Cp

2(2e)p
sup
a∈D

`p(a)

∫
|φ(z)|>rj

|φ′(z)|p

(1− |φ(z)|p)pα
(1− |z|2)qgs(z, a)dA(z). (11)

From (9) and (11), the condition (ii) follows. The proof is therefore
completed
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