Browse > Article
http://dx.doi.org/10.4134/JKMS.j160529

THE NAVIER-STOKES EQUATIONS WITH INITIAL VALUES IN BESOV SPACES OF TYPE B-1+3/qq,  

Farwig, Reinhard (Fachbereich Mathematik Technische Universitat Darmstadt)
Giga, Yoshikazu (Graduate School of Mathematical Sciences University of Tokyo)
Hsu, Pen-Yuan (Graduate School of Mathematical Sciences University of Tokyo)
Publication Information
Journal of the Korean Mathematical Society / v.54, no.5, 2017 , pp. 1483-1504 More about this Journal
Abstract
We consider weak solutions of the instationary Navier-Stokes system in a smooth bounded domain ${\Omega}{\subset}{\mathbb{R}}^3$ with initial value $u_0{\in}L^2_{\sigma}({\Omega})$. It is known that a weak solution is a local strong solution in the sense of Serrin if $u_0$ satisfies the optimal initial value condition $u_0{\in}B^{-1+3/q}_{q,s_q}$ with Serrin exponents $s_q$ > 2, q > 3 such that ${\frac{2}{s_q}}+{\frac{3}{q}}=1$. This result has recently been generalized by the authors to weighted Serrin conditions such that u is contained in the weighted Serrin class ${{\int}_0^T}({\tau}^{\alpha}{\parallel}u({\tau}){\parallel}_q)^s$ $d{\tau}$ < ${\infty}$ with ${\frac{2}{s}}+{\frac{3}{q}}=1-2{\alpha}$, 0 < ${\alpha}$ < ${\frac{1}{2}}$. This regularity is guaranteed if and only if $u_0$ is contained in the Besov space $B^{-1+3/q}_{q,s}$. In this article we consider the limit case of initial values in the Besov space $B^{-1+3/q}_{q,{\infty}}$ and in its subspace ${{\circ}\atop{B}}^{-1+3/q}_{q,{\infty}}$ based on the continuous interpolation functor. Special emphasis is put on questions of uniqueness within the class of weak solutions.
Keywords
instationary Navier-Stokes system; initial values; local strong solutions; weighted Serrin condition; limiting type of Besov space; restricted Serrin's uniquenesss theorem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Amann, Linear and Quasilinear Parabolic Equations, Birkhauser Verlag, Basel, 1995.
2 H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), no. 1, 16-98.   DOI
3 H. Amann, Nonhomogeneous Navier-Stokes equations with integrable low-regularity data, Int. Math. Ser., 1-28, Kluwer Academic/Plenum Publishing, New York, 2002.
4 H. Amann, Navier-Stokes equations with nonhomogeneous Dirichlet data, J. Nonlinear Math. Phys. 10 (2003), Suppl. 1, 1-11.
5 R. Farwig, Y. Giga, and P.-Y. Hsu, Initial values for the Navier-Stokes equations in spaces with weights in time, Funkcial. Ekvac. 59 (2016), 199-216.   DOI
6 R. Farwig, Y. Giga, and P.-Y. Hsu, On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces, TU Darmstadt, FB Mathematik, Preprint no. 2710, 2016.
7 R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), no. 4, 607-643.   DOI
8 R. Farwig and H. Sohr, Optimal initial value conditions for the existence of local strong solutions of the Navier-Stokes equations, Math. Ann. 345 (2009), no. 3, 631-642.   DOI
9 R. Farwig, H. Sohr, and W. Varnhorn, On optimal initial value conditions for local strong solutions of the Navier-Stokes equations, Ann. Univ. Ferrara Sez. VII Sci. Mat. 55 (2009), no. 1, 89-110.   DOI
10 R. Farwig and Y. Taniuchi, On the energy equality of Navier-Stokes equations in general unbounded domains, Arch. Math. 95 (2010), no. 5, 447-456.   DOI
11 H. Fujita and T. Kato, On the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 16 (1964), 269-315.   DOI
12 G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, New York, 1998.
13 Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces, Math. Z. 178 (1981), no. 3, 297-329.   DOI
14 Y. Giga and H. Sohr, Abstract $L^q$-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), no. 1, 72-94.   DOI
15 R. Farwig and Y. Giga, Well-chosen weak solutions of the instationary Navier-Stokes system and their uniqueness, Hokkaido Math J., to appear.
16 Y. Giga, Solution for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Di erential Equations 61 (1986), no. 2, 186-212.
17 Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), no. 3, 267-281.   DOI
18 B. H. Haak and P. C. Kunstmann, On Kato's method for Navier-Stokes equations, J. Math. Fluid Mech. 11 (2009), no. 4, 492-535.   DOI
19 J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639-681.   DOI
20 E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1950/1951), 213-231.
21 T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in ${\mathbb{R}}^m$, with applications to weak solutions, Math. Z. 187 (1984), no. 4, 471-480.   DOI
22 A. A. Kiselev and O. A. Ladyzhenskaya, On the existence and uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids, Amer. Math. Soc. Transl. II 24 (1963), 79-106.
23 H. Kozono and M. Yamazaki, Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space $L^{n,{\infty}}1$, Houston J. Math. 21 (1995), no. 4, 755-799.
24 M. H. Ri, P. Zhang, and Z. Zhang, Global well-posedness for Navier-Stokes equations with small initial value in $B^0_{n,{\infty}}({\Omega})$, J. Math. Fluid Mech. 18 (2016), no. 1, 103-131.   DOI
25 J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248.   DOI
26 A. Lunardi, Interpolation Theory, Edizioni Della Normale, Sc. Norm. Super. di Pisa, 2009.
27 T. Miyakawa, On the initial value problem for the Navier-Stokes equations in $L^p$-spaces, Hiroshima Math. J. 11 (1981), no. 1, 9-20.
28 H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhauser Verlag, Basel, 2001.
29 V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8 (1977), 467-529.   DOI
30 E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503-514.
31 R. S. Strichartz, $L^p$ estimates for integral transforms, Trans. Amer. Math. Soc. 136 (1969), 33-50.
32 H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.