WEIGHTED COMPOSITION OPERATORS ON THE MINIMAL MÖBIUS INVARIANT SPACE

SHÛICHI OHNO

ABSTRACT. We will characterize the boundedness and compactness of weighted composition operators on the minimal Möbius invariant space.

1. Introduction

Here and henceforth, \mathbb{D} will denote the open unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. The set of all conformal automorphisms of \mathbb{D} forms a group, called a Möbius group and denoted by $\mathrm{Aut}(\mathbb{D})$. For any $\lambda \in \mathbb{D}$, let

$$\alpha_{\lambda}(z) = \frac{\lambda - z}{1 - \overline{\lambda}z}$$

be the Möbius transformation of \mathbb{D} . Let X be a linear space of analytic functions on \mathbb{D} . Then X is said to be Möbius invariant if $f \circ \alpha \in X$ for all $f \in X$ and all $\alpha \in \operatorname{Aut}(\mathbb{D})$. A typical example of Möbius invariant spaces is the Besov space. For $1 , let <math>B_p$ be the space of analytic functions f on \mathbb{D} such that

$$\int_{\mathbb{D}} |f'(z)|^p (1-|z|)^{p-2} dA(z) < \infty,$$

where dA is the normalized Lebesgue area measure on \mathbb{D} . Then B_p is the Banach space with the norm

$$||f||_{B_p} = |f(0)| + \left(\int_{\mathbb{D}} |f'(z)|^p (1-|z|)^{p-2} dA(z)\right)^{1/p}.$$

If p = 2, B_2 is the classical Dirichlet space that is minimal as Möbius invariant Hilbert space of analytic functions on \mathbb{D} . The analytic Besov space B_1 is the

Received October 14, 2013; Revised January 7, 2014.

 $^{2010\ \}textit{Mathematics Subject Classification}.\ \text{Primary 47B38; Secondary 30H10}.$

Key words and phrases. weighted composition operator, Besov spaces, the minimal Möbius invariant space.

The author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No.24540190).

1188 S. OHNO

space of all analytic functions f for which

$$f(z) = \sum_{n=1}^{\infty} a_n \alpha_{\lambda_n}(z),$$

for some sequence $\{a_n\} \in \ell^1$ and $\{\lambda_n\}$ in \mathbb{D} . Then the norm $||f||_{B_1}$ is defined by

$$||f||_{B_1} = \inf\{\sum_{n=1}^{\infty} |a_n| : f(z) = \sum_{n=1}^{\infty} a_n \alpha_{\lambda_n}(z)\}.$$

It is known that B_1 is minimal, as it is contained in any Möbius invariant space and that the norm $||f||_{B_1}$ is equivalent to

$$|f(0)| + |f'(0)| + \int_{\mathbb{D}} |f''(z)| dA(z).$$

For the study of Besov spaces one can refer to [1, 2, 12, 13] and references therein.

Let u be a fixed analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Then the weighted composition operator uC_{φ} is defined by

$$(uC_{\varphi})f = u \cdot f \circ \varphi$$

for analytic functions f on \mathbb{D} . In these five decades, there has been much work on weighted composition operators on various spaces of analytic functions on \mathbb{D} . See [6, 8] for an overview of these results.

Composition operators between the Besov spaces have been investigated since Tjani [9] studied. Those operators on the minimal Möbius invariant subspace B_1 also have been studied. For example, see [3, 10]. In particular, Wulan and Xiong [10] proved that the compactness criterion of composition operators on B_p ($1), which is Tjani's result [9], still holds for <math>B_1$. Furthermore, composition operators from the Besov spaces to any analytic function space have been characterized in [11]. Recently it is given the characterization of the weighted composition operators mapping the Besov spaces to the Bloch space in [4, 5]. However properties of each weighted composition operator acting from B_1 to B_1 are left behind. We here carry on studying this problem. That is, we will characterize the boundedness and compactness of weighted composition operators mapping the minimal Möbius invariant space B_1 to B_1 .

2. Boundedness and compactness on B_1

In order to characterize boundedness and compactness on B_1 , we introduce the new generalized integral type operators.

Let u be a fixed analytic function on $\mathbb D$ and φ an analytic self-map of $\mathbb D.$ Then we define

$$C_{\varphi}^{u}f(z) = \int_{0}^{z} (f \circ \varphi)'(\zeta)u(\zeta)d\zeta$$

and

$$D_{\varphi}^{u}f(z) = \int_{0}^{z} (f \circ \varphi)(\zeta)u'(\zeta)d\zeta$$

for analytic functions f on \mathbb{D} .

If $u \equiv 1$, then

$$C^u_{\varphi}f(z) = (f \circ \varphi)(z) - f(\varphi(0)) = C_{\varphi}f(z) - f(\varphi(0))$$
 and $D^n_{\varphi}f \equiv 0$.

If $\varphi(z) \equiv z$, then

$$C_{\varphi}^{u}f(z) = \int_{0}^{z} f'(\zeta)u(\zeta)d\zeta$$

and

$$D_{\varphi}^{u}f(z) = \int_{0}^{z} f(\zeta)u'(\zeta)d\zeta.$$

At first we have the result on the boundedness of uC_{φ} on B_1 .

Proposition 2.1. Let u be a fixed analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Then the following are equivalent.

- (i) uC_{φ} is bounded on B_1 .
- (ii) $\sup_{\lambda \in \mathbb{D}} \|uC_{\varphi}\alpha_{\lambda}\|_{B_1} < \infty.$
- (iii) $\sup_{u=0}^{\lambda \in \mathbb{D}} \| (C_{\varphi}^u + D_{\varphi}^u) \alpha_{\lambda} \|_{B_1} < \infty.$

Proof. The equivalence of (i) and (ii) is trivial. As

$$(uC_{\varphi}\alpha_{\lambda})'' = ((C_{\varphi}^{u} + D_{\varphi}^{u})\alpha_{\lambda})'',$$

we obtain the equivalence of (ii) and (iii).

In the proof of characterization of compact (weighted) composition operators we usually need the so-called "weak convergence theorem", which we can show by the similar way as in the proof of Proposition 3.11 in [6].

Proposition 2.2. Let u be a fixed analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Suppose that uC_{φ} is bounded on B_1 . Then uC_{φ} is compact on B_1 if and only if $||uC_{\varphi}f_n||_{B_1} \to 0$ as $n \to \infty$ for every sequence $\{f_n\}_n$ in B_1 with $||f_n||_{B_1} \leq 1$ satisfying $f_n \to 0$ uniformly on compact subsets of \mathbb{D} .

Thus we could characterize the compactness.

Theorem 2.3. Let u be a fixed analytic function on \mathbb{D} and φ an analytic selfmap of \mathbb{D} with $\|\varphi\|_{\infty} = 1$. Suppose that uC_{φ} is bounded on B_1 . Then the following are equivalent.

- (i) uC_{φ} is compact on B_1 . (ii) $\lim_{|\lambda| \to 1} ||uC_{\varphi}(\alpha_{\lambda} \lambda)||_{B_1} = 0$.
- (iii) $\lim_{|\lambda| \to 1} ||(C_{\varphi}^u + D_{\varphi}^u)(\alpha_{\lambda} \lambda)||_{B_1} = 0.$
- (iv) $\lim_{r \to 1} \sup_{\lambda \in \mathbb{D}} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}(\alpha_{\lambda} \lambda))''(z)| dA(z) = 0.$

1190 S. OHNO

Proof. At first, by the boundedness we can note that $u'', 2u'\varphi' + u\varphi''$ and $u(\varphi')^2$ are $L^1(\mathbb{D})$ -summable since $uC_{\varphi}1, uC_{\varphi}z$ and $uC_{\varphi}z^2$ are in B_1 .

The implication (i) \Rightarrow (ii) is shown because $\alpha_{\lambda} - \lambda$ converges to 0 uniformly on compact subsets of \mathbb{D} as $|\lambda| \to 1$. The equivalence of (ii) and (iii) is implied since $(uC_{\varphi}(\alpha_{\lambda} - \lambda))'' = ((C_{\varphi}^u + D_{\varphi}^u)(\alpha_{\lambda} - \lambda))''$.

Next we will prove the implication (ii) \Rightarrow (iv). By (ii), for any $\varepsilon > 0$, there exists a constant δ , $0 < \delta < 1$, such that

$$\sup_{|\lambda|>\delta}\int_{\mathbb{D}}|(uC_{\varphi}(\alpha_{\lambda}-\lambda))''(z)|dA(z)<\varepsilon.$$

Moreover for all r, 0 < r < 1.

$$\sup_{|\lambda| > \delta} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}(\alpha_{\lambda} - \lambda))''(z)| dA(z) < \varepsilon.$$

On the other hand

$$\sup_{|\lambda| \le \delta} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}(\alpha_{\lambda} - \lambda))''(z)| dA(z)$$

$$= \sup_{|\lambda| \le \delta} \int_{\{|\varphi(z)| > r\}} |u''(z)(\alpha_{\lambda}(\varphi(z)) - \lambda)$$

$$+ 2u'(z)\alpha'_{\lambda}(\varphi(z))\varphi'(z) + u(z)\alpha''_{\lambda}(\varphi(z))(\varphi'(z))^{2}$$

$$+ u(z)\alpha'_{\lambda}(\varphi(z))\varphi''(z)| dA(z)$$

$$\le C \Big(\int_{\{|\varphi(z)| > r\}} |u''(z)| dA(z) \Big)$$

$$+ \int_{\{|\varphi(z)| > r\}} |2u'(z)\varphi'(z) + u(z)\varphi''(z)| dA(z) \Big)$$

$$+ \int_{\{|\varphi(z)| > r\}} |u(z)(\varphi'(z))^{2}| dA(z) \Big),$$

where $C=\max\{2,\sup\{|\alpha_\lambda'(\varphi(z))|: |\lambda|\leq \delta, z\in\mathbb{D}\}, \sup\{|\alpha_\lambda''(\varphi(z))|: |\lambda|\leq \delta, z\in\mathbb{D}\}\}$. Considering that $u'', 2u'\varphi'+u\varphi''$ and $u(\varphi')^2$ are $L^1(\mathbb{D})$ -summable,

$$\lim_{r \to 1} \sup_{|\lambda| \le \delta} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}(\alpha_{\lambda} - \lambda))''(z)| dA(z) = 0.$$

Consequently,

$$\begin{split} & \lim_{r \to 1} \sup_{\lambda \in \mathbb{D}} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}\alpha_{\lambda})''(z)| dA(z) \\ & \leq \lim_{r \to 1} \sup_{|\lambda| \leq \delta} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}\alpha_{\lambda})''(z)| dA(z) \\ & + \lim_{r \to 1} \sup_{|\lambda| > \delta} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}\alpha_{\lambda})''(z)| dA(z) \\ & < \varepsilon. \end{split}$$

As ε is arbitrary,

$$\lim_{r \to 1} \sup_{\lambda \in \mathbb{D}} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}\alpha_{\lambda})''(z)| dA(z) = 0.$$

So we obtain condition (iv).

Finally we show the implication (iv) \Rightarrow (i). By condition (iv) and the $L^1(\mathbb{D})$ -summability of u'', for any $\varepsilon > 0$, there is a constant r, 0 < r < 1, such that

$$\int_{\{|\varphi(z)|>r\}} |(uC_{\varphi}(\alpha_{\lambda}-\lambda))''(z)|dA(z) < \varepsilon$$

and

$$\int_{\{|\varphi(z)|>r\}} |u''(z)| dA(z) < \varepsilon.$$

Let $\{f_n\}_n$ be a sequence of functions in B_1 with $||f_n||_{B_1} \le 1$ satisfying $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . Then we have

$$f_n(z) = \sum_{k=1}^{\infty} a_{n,k} \alpha_{\lambda_{n,k}}(z), \quad \lambda_{n,k} \in \mathbb{D},$$

with

$$||f_n||_{B_1} \le \sum_{k=1}^{\infty} |a_{n,k}| \le 2.$$

Trivially $|(uC_{\varphi}f_n)(0)| + |(uC_{\varphi}f_n)'(0)| \to 0$ as $n \to \infty$.

Then

$$||uC_{\varphi}f_{n}||_{B_{1}}$$

$$= \int_{\mathbb{D}} |(uC_{\varphi}f_{n})''(z)| dA(z)$$

$$= \int_{\{|\varphi(z)| \leq r\}} |(uC_{\varphi}f_{n})''(z)| dA(z) + \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}f_{n})''(z)| dA(z).$$

Here

$$\begin{split} \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}f_{n})''(z)| dA(z) \\ & \leq \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}(\sum_{k=1}^{\infty} a_{n,k}(\alpha_{\lambda_{n,k}} - \lambda_{n,k})))''(z)| dA(z) \\ & + \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}(\sum_{k=1}^{\infty} a_{n,k}\lambda_{n,k}))''(z)| dA(z) \\ & \leq \sum_{k=1}^{\infty} |a_{n,k}| \int_{\{|\varphi(z)| > r\}} |(uC_{\varphi}(\alpha_{\lambda_{n,k}} - \lambda_{n,k}))''(z)| dA(z) \\ & + \sum_{k=1}^{\infty} |a_{n,k}| \int_{\{|\varphi(z)| > r\}} |u''(z)| dA(z) \end{split}$$

1192 S. OHNO

 $< 4\varepsilon$.

So

$$\lim_{n \to \infty} \|uC_{\varphi}f_n\|_{B_1} \le \lim_{n \to \infty} \int_{\{|\varphi(z)| \le r\}} |(uC_{\varphi}f_n)''(z)| dA(z) + 4\varepsilon$$

$$= 4\varepsilon.$$

As ε is arbitrary,

$$\lim_{n \to \infty} \|uC_{\varphi}f_n\|_{B_1} = 0.$$

By Proposition 2.2, uC_{φ} is compact on B_1 .

Lastly we add some comment in the unweighted case. Since functions in B_1 extend continuously to the boundary of \mathbb{D} , a result of [7] characterizes the compactness of C_{φ} on B_1 , so that C_{φ} is compact on B_1 if and only if $\varphi \in B_1$ and $\|\varphi\|_{\infty} < 1$.

By noticing that α'_{λ} and α''_{λ} converge uniformly to 0 on compact subsets of \mathbb{D} , we obtain the following ([10]).

Corollary 2.4. For an analytic self-map φ of \mathbb{D} , C_{φ} is compact on B_1 if and only if $\varphi \in B_1$ and

$$\lim_{|\lambda|\to 1}\int_{\mathbb{D}}|\left(C_{\varphi}(\alpha_{\lambda}-\lambda)\right)''(z)|dA(z)=\lim_{|\lambda|\to 1}\int_{\mathbb{D}}|(\alpha_{\lambda}\circ\varphi)''(z)|dA(z)=0.$$

Acknowledgement. We would like to thank the referee for careful reading and honest suggestions that helped correcting some of the proof.

References

- J. Arazy, S. D. Fisher, and J. Peetre, Möbious invariant function spaces, J. Reine Angew. Math. 363 (1985), 110–145.
- [2] G. Bao and H. Wulan, The minimal Möbious invariant spaces, Complex Var. Elliptic Equ. 59 (2014), no. 2, 190–203.
- [3] O. Blasco, Composition operators on the minimal space invariant under Möbious transformations, Complex and harmonic analysis, 157–166, DEStech Publ. Inc., Lancaster, PA, 2007.
- [4] F. Colonna and S. Li, Weighted composition operators from the minimal Möbious invariant space into the Bloch space, Mediterr. J. Math. 10 (2013), no. 1, 395–409.
- [5] ______, Weighted composition operators from the Besov spaces into the Bloch spaces, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 4, 1027–1039.
- [6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- [7] J. H. Shapiro, Compact composition operators on spaces of boundary-regular holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 1, 49–57.
- [8] _____, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
- [9] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4683–4698.
- [10] H. Wulan and C. Xiong, Composition operators on the minimal Möbious invariant space, Hilbert spaces of analytic functions, 203–209, CRM Proc. Lecture Notes, 51, Amer. Math. Soc., Providence, RI, 2010.

- [11] R. Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl. 233 (1999), no. 2, 749–766.
- [12] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990; Second Edition, Amer. Math. Soc., Providence, 2007.
- [13] ______, Analytic Besov spaces, J. Math. Anal. Appl. **157** (1991), no. 2, 318–336.

NIPPON INSTITUTE OF TECHNOLOGY MIYASHIRO, MINAMI-SAITAMA 345-8501, JAPAN $E\text{-}mail\ address:}$ ohno@nit.ac.jp