• Title/Summary/Keyword: wedge spaces

검색결과 17건 처리시간 0.016초

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES

  • Jeong, Myung-Hwa
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.111-117
    • /
    • 2010
  • For a based, 1-connected, finite CW-complex X, we denote by $\varepsilon(X)$ the group of homotopy classes of self-homotopy equivalences of X and by $\varepsilon_#\;^{dim+r}(X)$ the subgroup of homotopy classes which induce the identity on the homotopy groups of X in dimensions $\leq$ dim X+r. In this paper, we calculate the subgroups $\varepsilon_#\;^{dim+r}(X)$ when X is a wedge of two Moore spaces determined by cyclic groups and in consecutive dimensions.

MINIMAL BASICALLY DISCONNECTED COVERS OF PRODUCT SPACES

  • Kim Chang-Il
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.347-353
    • /
    • 2006
  • In this paper, we show that if the minimal basically disconnected cover ${\wedge}X_\imath\;of\;X_\imath$ is given by the space of fixed a $Z(X)^#$-ultrafilters on $X_\imath\;(\imath=1,2)\;and\;{\wedge}X_1\;{\times}\;{\wedge}X_2$ is a basically disconnected space, then ${\wedge}X_1\;{\times}\;{\wedge}X_2$ is the minimal basically disconnected cover of $X_1\;{\times}\;X_2$. Moreover, observing that the product space of a P-space and a countably locally weakly Lindelof basically disconnected space is basically disconnected, we show that if X is a weakly Lindelof almost P-space and Y is a countably locally weakly Lindelof space, then (${\wedge}X\;{\times}\;{\wedge}Y,\;{\wedge}_X\;{\times}\;{\wedge}_Y$) is the minimal basically disconnected cover of $X\;{\times}\;Y$.

CANCELLATION OF LOCAL SPHERES WITH RESPECT TO WEDGE AND CARTESIAN PRODUCT

  • Hans Scheerer;Lee, Hee-Jin
    • 대한수학회지
    • /
    • 제33권1호
    • /
    • pp.15-23
    • /
    • 1996
  • Let C be a category of (pointed) spaces. For $X, Y \in C$ we denote the wedge (or one point union) by $X \vee Y$ and the cartesian product by $X \times Y$. Let $Z \in C$; we say that Z cancels with respect to wedge (resp. cartesian product) and C, if for all $X, Y \in C$ the existence of a homotopy equivalence $X \vee Z \to Y \vee Z$ implies the existence of a homotopy equivalence $X \to Y$ (resp. for cartesian product). If this does not hold, we say that there is a non-cancellation phenomenon involving Z (and C).

  • PDF

Decomposable right half smash product spaces

  • Yoon, Yeon-Soo;Yu, Jung-Ok
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.225-233
    • /
    • 1996
  • It is shown that for any space A, the cofibration X \to X \Join \sumA \to \sumA \wedge X$ decomposable when X is a co-T-space. It is also obtain necessary and sufficient conditions for the cofibration $X \to X \Join A \to A \wedge X$ is trivial, in the sense of cofibre homotopy type.

  • PDF

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES II.

  • Jeong, Myung-Hwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권2호
    • /
    • pp.193-198
    • /
    • 2009
  • In the previous work [5] we have determined the group ${{\varepsilon}_{\sharp}}^{dim+r}^{dim+r}(X)$ for $X\;=\;M(Z_q,\;n+1){\vee}M(Z_q,\;n)$ for all integers q > 1. In this paper, we investigate the group ${{\varepsilon}_{\sharp}}^{dim+r}(X)$ for $X\;=\;M(Z{\oplus}Z_q,\;n+1){\vee}M(Z{\oplus}Z_q,\;n)$ for all odd numbers q > 1.

  • PDF

기하광학 반복적용에 의한 회절파 계산 (Successive Iteration of Geometrical-Optics for Diffracted Fields)

  • 황철규;김세윤;나정웅
    • 대한전자공학회논문지
    • /
    • 제26권2호
    • /
    • pp.41-55
    • /
    • 1989
  • 기하 광학(GO)의 반복에 의한 회절파 계산을 제안하였다. 쐐기형 산란체에 전원이 주어졌을때, 그 GO해는 반공간 문제의 해에 명암 경계를 결정하여 얻어진다. 또한, 이러한 GO해의 명암경계를 따라 나타나는 불연소계와 등가인 전원을 계산하여 이를 그 전원으로 하는 새로운 쐐기문제를 생각할 수 있다. 이때, 이 등가전원 문제의 해가 바로 GO해가 필료로 하는 회절파와 같음을 보였다. 또한, 등가전원이 무한공간에서 만드는 파 즉 새로운 쐐기문제이 입사파는 물리광학으로 계산한 회절파와 같은 것임을 보였다. 새로운 쐐기문제에 다시 GO를 적용하여 회절파에 대한 하나의 근사해를 얻었으며 이것을 물리광학에 의한 것과 비교하였다. 또한, 이와 같은 GO반복 적용의 타당성을 보기 위하여 정확한 해가 이미알려져 있는 완전도체쐐기의 GO무한 반복해를 구하여 그 수렴여부를 살폈다.

  • PDF

H-FUZZY SEMITOPOGENOUS PREOFDERED SPACES

  • Chung, S.H.
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.687-700
    • /
    • 1994
  • Throughout this paper we will let H denote the complete Heyting algebra ($H, \vee, \wedge, *$) with order reversing involution *. 0 and 1 denote the supermum and the infimum of $\emptyset$, respectively. Given any set X, any element of $H^X$ is called H-fuzzy set (or, simply f.set) in X and will be denoted by small Greek letters, such as $\mu, \nu, \rho, \sigma$. $H^X$ inherits a structure of H with order reversing involution in natural way, by definding $\vee, \wedge, *$ pointwise (sam notations of H are usual). If $f$ is a map from a set X to a set Y and $\mu \in H^Y$, then $f^{-1}(\mu)$ is the f.set in X defined by f^{-1}(\mu)(x) = \mu(f(x))$. Also for $\sigma \in H^X, f(\sigma)$ is the f.set in Y defined by $f(\sigma)(y) = sup{\sigma(x) : f(x) = y}$ ([4]). A preorder R on a set X is reflexive and transitive relation on X, the pair (X,R) is called preordered set. A map $f$ from a preordered set (X, R) to another one (Y,T) is said to be preorder preserving (inverting) if for $x,y \in X, xRy$ implies $f(x)T f(y) (resp. f(y)Tf(x))$. For the terminology and notation, we refer to [10, 11, 13] for category theory and [7] for H-fuzzy semitopogenous spaces.

  • PDF

CONVERGENCE OF DOUBLE SERIES OF RANDOM ELEMENTS IN BANACH SPACES

  • Tien, Nguyen Duy;Dung, Le Van
    • 대한수학회지
    • /
    • 제49권5호
    • /
    • pp.1053-1064
    • /
    • 2012
  • For a double array of random elements $\{X_{mn};m{\geq}1,n{\geq}1\}$ in a $p$-uniformly smooth Banach space, $\{b_{mn};m{\geq}1,n{\geq}1\}$ is an array of positive numbers, convergence of double random series ${\sum}^{\infty}_{m=1}{\sum}^{\infty}_{n=1}X_{mn}$, ${\sum}^{\infty}_{m=1}{\sum}^{\infty}_{n=1}b^{-1}_{mn}X_{mn}$ and strong law of large numbers $$b^{-1}_{mn}\sum^m_{i=1}\sum^n_{j=1}X_{ij}{\rightarrow}0$$ as $$m{\wedge}n{\rightarrow}{\infty}$$ are established.

ON FACTORIZATIONS OF THE SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES

  • Shi, Yi-Yun;Zhao, Hao
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.1089-1100
    • /
    • 2008
  • For a pointed space X, the subgroups of self-homotopy equivalences $Aut_{\sharp}_N(X)$, $Aut_{\Omega}(X)$, $Aut_*(X)$ and $Aut_{\Sigma}(X)$ are considered, where $Aut_{\sharp}_N(X)$ is the group of all self-homotopy classes f of X such that $f_{\sharp}=id\;:\;{\pi_i}(X){\rightarrow}{\pi_i}(X)$ for all $i{\leq}N{\leq}{\infty}$, $Aut_{\Omega}(X)$ is the group of all the above f such that ${\Omega}f=id;\;Aut_*(X)$ is the group of all self-homotopy classes g of X such that $g_*=id\;:\;H_i(X){\rightarrow}H_i(X)$ for all $i{\leq}{\infty}$, $Aut_{\Sigma}(X)$ is the group of all the above g such that ${\Sigma}g=id$. We will prove that $Aut_{\Omega}(X_1{\times}\cdots{\times}X_n)$ has two factorizations similar to those of $Aut_{\sharp}_N(X_1{\times}\cdots{\times}\;X_n)$ in reference [10], and that $Aut_{\Sigma}(X_1{\vee}\cdots{\vee}X_n)$, $Aut_*(X_1{\vee}\cdots{\vee}X_n)$ also have factorizations being dual to the former two cases respectively.