CANCELLATION OF LOCAL SPHERES WITH RESPECT TO WEDGE AND CARTESIAN PRODUCT

HANS SCHEERER AND HEE-JIN LEE

0. Introduction

Let \mathcal{C} be a category of (pointed) spaces. For $X,Y\in\mathcal{C}$ we denote the wedge (or one point union) by $X\vee Y$ and the cartesian product by $X\times Y$. Let $Z\in\mathcal{C}$; we say that Z cancels with respect to wedge (resp. cartesian product) and \mathcal{C} , if for all $X,Y\in\mathcal{C}$ the existence of a homotopy equivalence $X\vee Z\to Y\vee Z$ implies the existence of a homotopy equivalence $X\to Y$ (resp. for cartesian product). If this does not hold, we say that there is a non-cancellation phenomenon involving Z (and \mathcal{C}).

Non-cancellation phenomena are studied in various papers. We refer to [5], [8] and [9] for further information in the case of the wedge and to [6], [13] for the case of the product. For \mathcal{C} the category of 1-connected rational CW-spaces the question has been studied in [2], [3], [4]. But even in this case it seems not to be known whether cancellation always holds.

Let $R \subseteq \mathbb{Q}$ be a subring. A space X is called R-local, if its reduced homology $\tilde{H}_{\star}(X;Z)$ is an R-module. Any simply connected CW-space X has an R-localization denoted by X_R (see [7]). Let \mathcal{C} be the category of spaces of the homotopy type of CW-complexes; let $1-\mathcal{C}$ (resp. $1-\mathcal{C}_R$) be the subcategory of simply connected (resp. simply connected R-local) spaces.

In the present paper we shall in particular prove the following results in a rather elementary way:

Received June 30, 1994. Revised February 19, 1995.

AMS Classification: Primary 90A12; Secondary 54C65.

Key words and phrases: Cancellation of local spheres, wedge cancellation of Moor space, product cancellation of Eilenberg-Maclane space.

This paper was partially supported by KOSEF in 1992 and 1994.

RESULT I. Let $R = \mathbb{Z}_{(p)}$ the localization of \mathbb{Z} away from $\{p\}$, p a prime.

- (1) Then S_R^n , $n \geq 2$, cancles with respect to the wedge and $1 \mathcal{C}_R$.
- (2) Then K(R,n), $n \geq 2$, cancels with respect to the cartesian product and the subcategory of $1 C_R$ of spaces of finite type over R.

RESULT II. Denote by p the smallest prime not invertable in R. Then the local sphere S_R^n , $n \geq 2$, cances with respect to cartesian product and the subcategory of $1 - \mathcal{C}_R$ of R - CW-spaces X which have finitely generated homology $H_*(X;R)$ and R-dimension(X) $\leq n + 2p - 4$, provided

- (a) either n is odd and $R = \mathbb{Z}_{(p)}$.
- (b) or n is even.

Partially these results were first found by applying algebraizations of tame homotopy theory (in the form of [10] in case of the cartesian product and in the form of [11] in case of the wedge). For the product such an approach is pursued in [1]. In fact, some of the technical calculations below are adapted from [1]. We also note that Result II is still in the spirit of tame homotopy theory.

In Section 1 we shall give a basic simple lemma. In Section 2 we shall more generally discuss wedge cancellation of Moore spaces (resp. cartesian product cancellation of Eilenberg-MacLane spaces) to obtain Result I as a special case. Result II will be proved in Section 3.

1. A basic lemma

Let $R = \mathbb{Z}_{(p)}$ (resp. $R = \mathbb{Z}/p\mathbb{Z}$), let A, B, U be R-modules and U monogenic, e.g. $U \cong R$ or $U \cong \mathbb{Z}/p^k\mathbb{Z}$ for some k, in case $R = \mathbb{Z}_{(p)}$.

Assume that an isomorphism $\varphi:A\oplus U\to B\oplus U$ is given. We then do not only want to know that A and B are isomorphic, we would like to construct an isomorphism $\hat{\varphi}:A\to B$ from φ in such a way that in the applications the construction can be realized geometrically. We paraphrase this as follows:

LEMMA. There is a "good" way to construct an isomorphism $\tilde{\varphi}$: $A \to B$ from φ .

Proof. Let $u \in U$ be a generator. We write:

(i)
$$\varphi(\lambda u + a) = u, \ \lambda \in R, \ a \in A;$$

(ii)
$$\varphi(u) = \tau u + b, \ \tau \in R, \ b \in B.$$

Case 1. Let $\tau \in R^*$, the set of unit of R.

Define $\beta: B \oplus U \to B \oplus U$ by setting $(\beta|B)$ the inclusion $B \to B \oplus U$ and $\beta(u) = -\tau^{-1}b + \tau^{-1}u$. (Note that u and $-\tau^{-1}b + \tau^{-1}u$ have the same order). Then β is an isomorphism and $\beta \circ \varphi(u) = u$. Hence the composition $A \hookrightarrow A \oplus U \xrightarrow{\beta \circ \varphi} B \oplus U \xrightarrow{pr} B$ (where pr is the projection) is an isomorphism, because $\beta \circ \varphi$ induces an isomorphism on the quotients $(A \oplus U)/U \rightarrow (B \oplus U)/U$.

Case 2. Let $\lambda \in R^*$.

In this case $\tilde{\varphi} := (pr \circ \varphi)|A$ is already an isomorphism. To see this define $\alpha: A \oplus U \to A \oplus U$ by setting $\alpha|A$ the inclusion $A \to A \oplus U$ and $\alpha(u) = \lambda u + a$. Then α is an isomorphism and $\varphi \circ \alpha(u) = u$. Then, as above, $A \hookrightarrow A \oplus U \xrightarrow{\varphi \circ \alpha} B \oplus U \xrightarrow{pr} B$ is an isomorphism, it coincides with $(pr \circ \varphi)|A$.

Case 3. Let $\lambda, \tau \notin R^*$ (e.g. $\lambda = \tau = 0$ in case $R = \mathbb{Z}/p\mathbb{Z}$).

Then we have $\mu := \tau(1-\lambda) + 1 \in \mathbb{R}^*$ and $(1-\lambda) \in \mathbb{R}^*$. Define $\beta: B \oplus U \to B$ by $\beta|B = id_B$ and setting $\beta(u) = -\mu^{-1}(1-\lambda)b$; set $\tilde{\varphi} := (\beta \circ \varphi)|A.$

We claim that $\tilde{\varphi}$ is an isomorphism.

Injectivity: Let $z \in A$ with $\tilde{\varphi}(z) = 0$. The kernel of β is generated by $b + \mu(1-\lambda)^{-1}u$. Hence $\varphi(z) = k(b + \mu(1-\lambda)^{-1}u)$ for some $k \in R$. On the other hand

$$\varphi(u+a) = \tau u + b + u - \lambda(\tau u + b)$$
$$= \mu u + (1 - \lambda)b$$

Hence, $\varphi(k(1-\lambda)^{-1}(u+a)) = \varphi(z)$. Since φ is injective, we have $k(1-\lambda)^{-1}(u+a)=z$; this implies k=0, if the order of u is infinite, and k a multiple of order(u) in the other case; in both cases it follows z = 0 (because order (a) is not larger than order (u)).

Surjectivity: Let $w \in B$ and choose $k \in R, v \in A$ such that

 $\varphi(ku+v)=w$. Then

$$\varphi(v - ka) = w - \varphi(ku) - \varphi(ku)$$

$$= w - \varphi(k(u + a))$$

$$= w - k\mu u - k(1 - \lambda)b.$$

It follows $\tilde{\varphi}(v-ka) = \beta \circ \varphi(v-ka) = w + k\mu\mu^{-1}(1-\lambda)b - k(1-\lambda)b = w$.

2. Proof of Result I

We first fix some more notation.

A map $f: X \to Y$ is called an "R-homology equivalence" (resp. "R-cohomology equivalence"), if $H_*(f;R)$ (resp. $H^*(f;R)$) is an isomorphism. For $X,Y \in 1 - \mathcal{C}_R$ (resp. $X,Y \in 1 - \mathcal{C}_R$ of finite type over R) f is then a homotopy equivalence by the Whitehead theorem.

Let V be an abelian group. A Moore space $M(V,n), n \geq 2$, is a simply connected space with reduced homology $\tilde{H}_i(M(V,n);\mathbb{Z}) = 0$ for $i \neq n$ and $H_n(M(V,n);\mathbb{Z}) \cong V$.

THEOREM 1. Let $R = \mathbb{Z}_{(p)}$, let V be a finitely generated R-module and set $M := M(V, n), n \geq 2$. Let $X, Y \in 1 - \mathcal{C}$ and suppose that an R-homology equivalence

$$\phi: X \vee M \to Y \vee M$$

is given. Then there exists an R-homology equivalence $X \to Y$.

COROLLARY. The spaces S_R^n and $M(\mathbb{Z}/p^k\mathbb{Z}, n), n \geq 2$, cancel with respect to the wedge and $1 - \mathcal{C}_R$.

Proof of Theorem 1. Note that R is a principal ideal ring, hence V is a finite direct sum of monogenic R-modules. Without loss of generality we may therefore assume that V is monogenic, i.e. either $V \cong R$ or $V \cong \mathbb{Z}/p^k\mathbb{Z}$ for some k.

Recall that $\tilde{H}_i(X \vee M; R) \cong \tilde{H}_i(M; R) \oplus \tilde{H}_i(M; R)$ for all i. Therefore, for $i \neq n$, the isomorphisms $H_i(\phi; R)$ can be identified with the homomorphisms induced by the composition $X \to X \vee M \xrightarrow{\phi} Y \vee M \to Y$. We now want to derive $\tilde{\phi}: X \to Y$ from ϕ , such that $H_n(\tilde{\phi}; R)$

is an isomorphism by realizing the constructions in the Basic Lemma geometrically and keeping $H_i(\phi; R) = H_i(\phi; R)$ for $i \neq n$.

For convenience, we set $A := H_n(X; R), B := H_n(Y; R), U :=$ $H_n(M;R)$ (note that U is canonically isomorphic to V) and $\varphi :=$ $H_n(\phi; R)$. Denote by u a generator of U and write

 $(i)\varphi(\lambda u + a) = u, \lambda \in R, a \in A,$

(ii) $\varphi(u) = \tau u + b, \tau \in R, b \in B$.

For the sake of simplicity we discuss only Case 3.

For any pointed space Z, let [M, Z] denote the group of pointed homotopy classes of pointed maps $M \to Z$. Define a homomorphism $h: [M, Z] \to H_n(Z, R)$ by $[\psi] \mapsto \psi_*(u)$ for $[\psi] \in [M, Z], u \in H_n(M, R)$ as above. Note that [M, M] is a (nilpotent) R-local group, because M is an R-local suspension. Hence image (h) is an R-module for all Z.

Since $u \in H_n(X \vee M; R)$ is in the image of h, so is $\varphi(u) = \tau u + b \in$ $H_n(Y \vee M; R)$ by naturality of h. Moreover, u and $\tau u \in H_n(Y \vee M; R)$ lie in the image of h. hence we have $b \in \text{image } (h)$. Choose $[\psi] \in [M, Y]$ such that $h([\psi]) = b$. Define $\bar{\beta}: Y \vee M \to Y$ by $\bar{\beta}|Y = id_Y$ and $\bar{\beta}|M :=$ $-\mu^{-1}(1-\lambda)\psi$; set $\tilde{\phi}:=\tilde{\beta}\circ\phi|X$. We then have $\bar{\beta}_*(u)=-\mu^{-1}(1-\lambda)b$ and the construction in the Basic Lemma implies that $H_n(\tilde{\phi}; R)$ is an isomorphism; in degrees $i \neq n$ we have $H_i(\tilde{\phi}; R) = H_i(\phi; R)$, hence $\tilde{\phi}$ is an R-homology equivalence.

THEOREM 2. Let $R = \mathbb{Z}_{(p)}$, let V be a finitely generated R-module and let $X,Y \in 1-\mathcal{C}$ be of finite type over R. Assume that an Rcohomology equivalence $X \times K(V,n) \to Y \times K(V,n)$ is given. Then there exists an R-cohomology equivalence $X \to Y$.

As a corollary we obtain part (2) of Result I.

Proof. As above we may suppose that V is monogenic. Let ϕ : $X \times K(V,n) \to Y \times K(V,n)$ be an R-cohomology equivalence. (Note that ϕ is then also an R-homology equivalence and that all $\pi_i(\phi) \otimes R$ are isomorphisms [7]). For $i \neq n$ we may identify the isomorphisms $\pi_i(\phi) \otimes$ R with the corresponding induced homomorphisms of the composition $X \to X \times K(V,n) \xrightarrow{\phi} Y \times K(V,n) \xrightarrow{pr} Y$. From ϕ we will now construct a map $\tilde{\phi}: X \to Y$ such that $\pi_i(\tilde{\phi}) \otimes R = \pi_i(\phi) \otimes R$ for $i \neq n$ and such that $H^i(\tilde{\phi}; \mathbb{Z}/p\mathbb{Z})$ is an isomorphism for $i \leq n$; then, in particular, $\pi_n(\tilde{\phi}) \otimes R$ is surjective (see [7]). From $\pi_n(X) \otimes R \cong$ $\pi_n(Y) \otimes R$ it then follows that $\pi_n(\tilde{\phi}) \otimes R$ is an isomorphism; hence $\tilde{\phi}$ is an R-homology equivalence.

Set $\varphi := H^n(\phi; \mathbb{Z}/p\mathbb{Z}), A := H^n(Y; \mathbb{Z}/p\mathbb{Z}), B := H^n(X; \mathbb{Z}/p\mathbb{Z}), U := H^n(K(V,n); \mathbb{Z}/p\mathbb{Z})$ with generator $u \in U$. Note that $H^n(X \times K(V,n); \mathbb{Z}/p\mathbb{Z}) \cong B \oplus U, H^n(Y \times K(V,n); \mathbb{Z}/p\mathbb{Z}) \cong A \oplus U$. Write

- (i) $\varphi(\lambda u + a) = u, \lambda \in \mathbb{Z}/p\mathbb{Z}, a \in A$,
- (ii) $\varphi(u) = \tau u + b, \tau \in \mathbb{Z}/p\mathbb{Z}, b \in B$.

Let us again only consider Case 3; note that the base ring is now $\mathbb{Z}/p\mathbb{Z}$, hence we have $\lambda = \tau = 0$. Define a map $\tilde{\beta}: X \to X \times K(V,n)$ such that the first component $\beta_1 = id_X$ and second component $\beta_2: X \to K(V,n)$ satisfies $\tilde{\beta}_2^*(u) = -b$. Such a map β_2 exists by the following reasoning: Let $r: V \to \mathbb{Z}/p\mathbb{Z}$ be reduction mod p. Clearly, $u = r_*(\tilde{u})$ where $\tilde{u} \in H^n(K(V,n);V)$ is the fundamental class. Hence $\varphi(u) = b = r_*(H^n(\phi;V)(\tilde{u}))$. Observe that $H^n(X \times K(V,n);V)$ admits a canonical direct sum decomposition as $H^n(X;V) \oplus H^n(K(V,n);V)$. Writing correspondingly $H^n(\phi;V)(\tilde{u}) = \tilde{u}_1 + \tilde{u}_2$ we have $r_*(\tilde{u}_1) = b$ and $r_*(\tilde{u}_2) = 0$. Choose β_2 as the map $X \to K(V,n)$ including $-\tilde{u}_1$. Then, according to the Basic Lemma $\tilde{\phi} := pr \circ \phi \circ \tilde{\beta}: X \to Y$ induces an isomorphism $H^n(\tilde{\phi};\mathbb{Z}/p\mathbb{Z})$ whereas $H^i(\tilde{\phi};\mathbb{Z}/p\mathbb{Z}) = H^i(\tilde{\phi};\mathbb{Z}/p\mathbb{Z})$ for i < n. Thus $\tilde{\phi}$ is as required above

3. Proof of Result II

We first recall shortly the notion of R-dimension. A 1-connected R-local CW-complex of R-dimension m is built from a point by successively attaching reduced cones on R-local spheres $S_R^n, 1 \leq n < m$.

Let n be odd, $n \geq 3$ and let $R = \mathbb{Z}_{(p)}$. For any $X \in 1 - \mathcal{C}_R$ denote by $P^k(X)$ the k-th Postnikov section of X. Note that $P^m(S_R^n)$ is an Eilenberg-MacLane space K(R, n) for $m = n + 2\tilde{p} - 4$ by [12].

Let X,Y be 1-connected R-local CW-complexes of finite type over R and with R-dimension(X), R-dimension(Y) $\leq m$. Let $X \times S_R^n$ and $Y \times S_R^n$ be homotopy equivalent. Then $P^m(X \times S_R^n) \hookrightarrow P^m(X) \times P^m(S_R^n) \hookrightarrow P^m(Y \times S_R^n) \hookrightarrow P^m(Y) \times P^m(S_R^n)$. By Theorem 2 $P^m(X)$ and $P^m(Y)$ are homotopy equivalent. It then follows $X \hookrightarrow Y$ (by the condition on the dimensions).

Thus part (1) is proved.

Let now n be even, $n \geq 2$, and let a homotopy equivalence ϕ : $X \times S_R^n \to Y \times S_R^n$ be given, $X, Y \in 1 - \mathcal{C}_R$.

Hilfssatz: Let $u \in H^n(S_R^n; R)$ be a generator. Write $H^n(\phi, R)$ $(\lambda u + b) = u$ with $\lambda \in R, b \in H^n(Y; R)$ and $H^n(\phi; R)(u) = \tau u + a, \tau \in R$ $R, a \in H^n(X, R)$. Then, if $\lambda \neq 0$ (resp. $\tau \neq 0$) we have $\lambda \in R^*$ (resp. $\tau \in R^*$) and $H^n(\phi; R)(u) = \sigma u$ with $\sigma \in R^*$.

Proof. Assume $\lambda \neq 0$ (the case $\tau \neq 0$ is similar). Then 0 = 0 $H^{2n}(\phi;R)(\lambda u+b)^2 = H^{2n}(\phi;R)(\lambda^2 u^2 + 2\lambda ub + b^2) = H^{2n}(\phi;R)(2\lambda ub + b^2)$ b^2). Hence $2\lambda ub + b^2 = 0$; this implies $2\lambda b = 0$ and $b^2 = 0$. As a consequence $H^n(\phi;R)(2\lambda^2u) = 2\lambda u - H^n(\phi;R)(2\lambda b) = 2\lambda u$. We deduce $\lambda \in R^*$ and $H^n(\phi; R)(u) = \sigma u$ with $\sigma \in R^*$.

PROPOSITION. Let in addition $H^*(X;R)$ and $H^*(Y;R)$ be finitely generated R-modules. Suppose that the situation of the Hilfssatz applies for a homotopy equivalence $\phi: X \times S_R^n \to Y \times S_R^n$. Then there is a homotopy equivalence $X \to Y$.

Proof. We have $H^*(X \times S_R^n) \cong H^*(X;R) \oplus H^*(X;R) \cdot u$ and similarly for $H^*(Y \times S_R^n; R)$. We assume $H^*(\phi; R)(u) = \sigma u$. It follows that $H^*(\phi;R)$ maps $H^*(Y;R)\cdot u$ into $H^*(X;R)\cdot u$. As R-modules $H^*(X;R)$ and $H^*(X;R) \cdot u$ are isomorphic. Hence $H^*(\phi;R)$ induces an isomorphism of quotient modules $H^*(Y;R) \cong H^*(Y \times S_R^n)/H^*(Y;R) \cdot u$ and $H^*(X;R) \cong H^*(X \times S_R^n)/H^*(X;R) \cdot u$. Therefore the map $X \hookrightarrow$ $X \times S_R^n \xrightarrow{\phi} Y \times S_R^n \xrightarrow{pr} Y$ is an R-cohomology equivalence.

It remains to study the case $\lambda = \tau = 0$, that is

- (i) $H^n(\phi; R)(b) = u, b \in H^n(Y; R),$
- (ii) $H^n(\phi; R)(u) = a, a \in H^n(X; R)$.

Note that the Basic Lemma, Case 3, can be applied here without the assumption $R = \mathbb{Z}_{(p)}$, because $\mu = (1 - \lambda) = 1$ in this simple situation. But we still have to check geometric realizability. Here we need the assumption R-dimension(X), R-dimension(Y) $\leq m = n + 2\bar{p} - 4$.

Suppose first m < 2n-1; then $P^m(S_R^n) \backsim K(R,n)$ and the argument can be completed as in the proof of part (1).

Assume now $m \geq 2n - 1$. Then $P^m(S_R^n)$ fits into the fibre square

$$\begin{array}{ccc} P^m(S_R^n) & \longrightarrow & E \\ & \downarrow & & \downarrow \\ K(R,n) & \stackrel{\epsilon^*}{\longrightarrow} & K(R,2n) \end{array}$$

where $E \to K(R, 2n)$ is the path fibration (see [12]) and where ι^2 denotes the map inducing the square of the fundamental class in $H^n(K(R, n)); R$).

Define a map $\bar{\beta} = (\bar{\beta}_1, \bar{\beta}_2) : X \to X \times S_R^n$ by setting $\bar{\beta}_1 = id_X$ and choosing β_2 such that $H^n(\bar{\beta}_2; R)(u) = -a$. Such a map exists, because $a^2 = 0$ and R-dimension(X) is restricted. We claim that the composition $\psi : X \to Y$ of $X \xrightarrow{\bar{\beta}} X \times S_R^n \xrightarrow{\phi} Y \times S_R^n \xrightarrow{pr} Y$ is an R-cohomology eqivalence. (In the following we will omit the coefficients R from the notation).

Injectivity of ψ^* :

Let $z \in H^{l}(Y)$ with $\psi^{*}(Z) = 0$. Set $\phi^{*}(z) = cu + c'$ with $c, c' \in H^{*}(X)$; then $\psi^{*}(z) = -ca + c' = 0$ and c' = ca.

Recall that $\phi^*(u+b) = a+u$.

Set $c = \phi^*(eu + e'), e, e' \in H^*(Y)$. Then $\phi^*(z) = c(a + u) = \phi^*((eu + e').(u + b)) = \phi^*(eub + e'u + e'b)$, i.e.

$$z = eub + e'u + e'b = u(be + e') + e'b.$$

It follows be +e'=0, hence $z=e'b=-b^2e=0$, because $b^2=0$. Thus $H^l(\psi)$ is injective as long as $H^l(\phi)$ is.

Surjectivity of ψ^* :

Let $\omega \in H^l(X)$. Assume $\phi^*(xu+v) = \omega$ for $x, v \in H^*(Y)$, then

$$\phi^*(v - xb) = \omega - \phi^*(xu) - \phi^*(xb)$$
$$= \omega - \phi^*(x(u+b))$$
$$= \omega - (\phi^*(x))(a+u).$$

Hence

$$\psi^*(v - xb) = \beta^*\phi^*(v - xb) = \bar{\beta}^*(\omega - (\phi^*(x))(a + u))$$
$$= \omega - (\bar{\beta}^*\phi^*(x))(a - a) = \omega.$$

References

- 1. Bierbrauer, G., Quasi-minimale Modelle und Kürzen von Homotopieäquiva lenzen, Doctoral Dissertation, Fachbereich Mathematik der Universität Gesam thochschule Siegen, 1978. (Zbl. Math. 642.55006).
- 2. Body, R., Douglas, R., Rational homotopy and unique factorization, Pacific J. Math. 75 (1978), 331-338.
- 3. _____, Unique factorization of rational homotopy types, Pacific J. Math. 90 (1980), 21-26.
- 4. Douglas, R., Renner, L., Uniqueness of product and coproduct decompositions in rational homotopy theory, Transactions Amer. Math. Soc. 264 (1981), 165-180.
- 5. Molnar, E. A., Relation between wedge cancellation and localization for complexes with two cells, J. Pure Appl. Algebra 3 (1973), 141-158.
- 6. Hilton, P., Mislin, G., Roitberg, J., Sphere bundles over spheres and noncancellation phenomena, J. Lond. Math. Soc. 6 (1972), 15-23.
- 7. _____, Localization of nilpotent groups and spaces, Math. Studies 15 North Holland Publishing Company (1975).
- 8. Llerena, I., Wedge cancellation of certain mapping cones, Compositio Math. 81 (1992), 1-17.
- 9. _____, Power-cancellation of CW-complexes with few cells. Publications Mat ematiques. To aggear.
- 10. Scheerer, H., Report on tame homotopy theory via differential forms, In Algebraic Topology, Rational Homotopy. Proceedings, Louvain-La-Neuve 1986; Lecture Notes in Mathematics 1318, Springer-Verlag, (1988), 192-207.
- 11. Scheerer, H., Tanré, D., R-local homotopy theory as part of tame homotopy theory, Bull. London Math. Soc. 22 (1990), 591-598.
- 12. Serre, J. P., Groupes d'homotopie et classes de groupes abéliens., Ann. of Math. **58** (1953), 258-294.
- 13. Zabrodsky, A., Hopf spaces, Mathematics Studies 22 North-Holland Publishing Company, 1976.

Hans Scheerer Mathematisches Institut Freie Universität Berlin Arnimallee 3-5, 14195 Berlin, Germany

Hee-Jin Lee Department of Mathematics Education Chonbuk National University Chonju, Chonbuk 561-756, Korea