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CANCELLATION OF LOCAL SPHERES WITH
RESPECT TO WEDGE AND CARTESIAN PRODUCT

HANS SCHEERER AND HEE-JIN LEE

0. Introduction

Let C be a category of (pointed) spaces. For X,¥ € C we denote
the wedge (or one point union) by X VY and the cartesian product
by X x Y. Let Z € C; we say that Z cancels with respect to wedge
(resp. cartesian product) and C, if for all X,Y € C the existence of
a homotopy equivalence X V Z — Y V Z implies the existence of a
homotopy equivalence X — Y (resn. for cartesian product). If this
does not hold, we say that there is a non-cancellation phenomenon
involving Z (and C).

Non-cancellation phenomena are studied in various papers. We refer
to [5], [8] and [9] for further information in the case of the wedge and to
[6], [13] for the case of the product. For C the category of 1-connected
rational CW-spaces the question has been studied in [2], [3], [4]. But
even in this case it seems not to be known whether cancellation always
holds.

Let R C Q be a subring. A space X is called R-local, if its reduced
homology H «(X;Z) is an R-module. Any simply connected C W -space
X has an R-localization denoted by X (see [7]). Let C be the category
of spaces of the homotopy type of CW-complexes; let 1 — C (resp.
1—Cr) be the subcategory of simply connected (resp. simply connected
R-local) spaces.

In the present paper we shall in particular prove the following results
in a rather elementary way:
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Resurt 1. Let R = Z,, the localization of Z away from {p}, p a
pritie.
(1) Then S}, n > 2, cancles with respect to the wedge and 1 — Cg.

product and the subcategory of 1 - Cp of spaces of finite type over R.

ResvLt 11, Denote by p the smallest prime not invertable in R.
Then the local sphere S}, n > 2. cances] with respect to cartesian

product and the subcategory of 1 — (g of R - CW-spaces X which
have finitely generated homology H.(X; R) and R-dimension(X) <
n 4 2p — 4, provided

(a) either nis odd and R = Zyp.

(b) or n Is even.

Partially these results were first found by applying algebraizations
of tame homotopy theory (in the form of [10] in case of the cartesian
product and in the forn of [11] in case of the wedg=). For the product
such an approach is pursued in [[]. In fact, sorie of the technical
calculations below are adapted froru [1]. We also note that Result 11 is
still in the spirit of tame homotopy theory.

In Section 1 we shall give a basic simple lemma. In Section 2 we
shall more generally discuss wedge cancellation of Moore spaces (resp.
cartestan product cancellation of Eilenberg-MacLaie spaces) to obtain
Result [ as a special case. Result I will be proved in Section 3.

1. A basic lemma

monogenic, c.g. U = R or U = Z/p*Z for some k, n case R = Z,.
Assume that an isomorphism ¢ - AU — B U is given. We then
do not only want to know that A and B are isomorphic, we would like
to construct an isomorphism ¢ : A — B from ¢ i such a way that
in the applications the construction can be realized geometrically. We

paraphrase this as follows:

LEMMA. There is a “good 7 way to construct an isomorphism ¢ :
A~ B from .

Proof. Let u € U be a generator. We write:
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(1) p(Au+a) =u, A€ R, a € 4;
(i1) o(u) =Tu+b, T€R, be B.

Case 1. Let 7 € R*, the set of unit of R.

Define §: BoU — B®U by setting (8] B) the inclusion B — BaU
and B(u) = —77'b+ r~'u. (Note that u and —7~'b + 7~ 1u have the
same order). Then 8 is an isomorphism and 3 o ¢(u) = u. Hence the
composition A «— ApU Bog BaU 25 B(where pr is the projection) is
an isomorphism, because foy induces an isomorphism on the quotients

(A®U)/U > (BaU)/U.

Case 2. Let A € R*.

In this case ¢ := (pr o ¢)|A is already an isomorphism. To see this
define a : AQU — AU by setting a|A the inclusion A —» A@U and
a(u) = Mu + a. Then a is an isomorphism and ¢ 0 a(u) = u. Then, as
above, A - AU 3 BoU 25 Bisan 1somorphism, it coincides
with (pr o ¢)|A.

Case 3. Let \,7 ¢ R* (e.g. A\=71 =0in case R = Z/pZ).

Then we have p := 7(1 - A)+ 1 € R* and (1 — A\) € R*. Define
B:B&U — B by B|B = idp and setting f(u) = —p~ (1 — A)b; set
¢ = (Boyp)A

We claim that ¢ is an isomorphism.

Injectivity: Let z € A with $(z) = 0. The kernel of 3 is generated
by b+ p(1 — A)7'u. Hence ¢(z) = k(b+ p(1 — A)~1u) for some k € R.
On the other hand

pluta)=r1u+b+u—ATu+bd)
= pu+(1-X)b

Hence, o(k(1 — A)"!(u + a)) = ¢(z). Since ¢ is injective, we have
k(1 — X)~Y(u + a) = z; this implies k = 0, if the order of u is infinite,
and k a multiple of order(u) in the other case; in both cases it follows
z = 0 (because order (a) is not larger than order (u)).

Surjectivity: Let w € B and choose k € R,v € A such that
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@(ku +v) = w. Then

olv —ka) = w - plku) — @(ku)
=w - p(k(u+ a))
= w - kpu — k(1 —A}b.

It follows $(v—ka) = fop(v—ka) = wt+kpp= (1= A)b—k{(1-A)b = w.

2. Proof of Result 1

We first fix some more notation.

Amap f: X — Y is called an “R-homology equivalence” (resp.
“R-cohomology equivalence”), if H,(f; R) (resp. H*(f;R)) is an iso-
morphism. For X,Y € 1 —Cg (resp. X,Y € 1 —Cp of finite type over
R) f is then a homotopy equivalence by the Whitehead theorem.

Let V be an abelian group. A Moore space M{V.n), n > 2, 1s a
simply connected space with reduced homology H{(M(V.,n);Z) = 0 for
i #nand H(M(V,n),Z) = V.

THEOREM 1. Let R = Z,), let V be a finitely generated R-module
and set M = M(V.n),n > 2. Let X,Y € 1 —C and suppose that an
R-homology equivalence

o XVAM-YVM

is given. Then there exists an R-homology equivalence X — Y.

COROLLARY. The spaces S and M(Z/p*Z,n1,n > 2, cancel with
respect to the wedge and 1 — Cp.

Proof of Theorem 1. Note that R is a principal ideal ring, hence V' is
a finite direct sum of monogenic R-modules. Without loss of generality
we may therefore assume that V is monogenic, ie. cither V = R or
V = Z/p*Z for some k.

Recall that H(X vV M; R) = H.(M;R)® H','(M ; R) for all «. There-
fore, for 7 # n. the isomorphisms H;(¢; R) can be identiﬁed with the

homomorphisms induced by the composition X — XVM Ly VM —
Y. We now want to derive er X — Y from ¢, such that H,(¢: R)
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is an isomorphism by realizing the constructions in the Basic Lemma
geometrically and keeping Hi(¢; R) = H;(¢; R) for i # n.

For convenience, we set A := H,(X;R),B := H,(Y;R),U :=
Hn(M;R) (note that U is canonically isomorphic to V) and ¢ :=
H,(¢; R). Denote by u a generator of U and write

(e(Au+a) =u,) € R,a € A,

(ii) p(u) = Tu+b,7 € R,b € B.

For the sake of simplicity we discuss only Case 3.

For any pointed space Z, let [M, Z] denote the group of pointed
homotopy classes of pointed maps M — Z. Define a homomorphism
h:[M,Z] - Hno(Z,R) by [¢] = ¥u(u) for [¢] € [M,Z),u € H,(M, R)
as above. Note that [M, M] is a (nilpotent) R-local group, because M
1s an R-local suspension. Hence image (k) is an R-module for all Z.

Since u € H,(X V M; R) is in the image of h, sois p(u) = Tu + b €
H,(Y VM; R) by naturality of h. Moreover, u and 7u € H,(Y VM; R)
lie in the image of k. hence we have b € image (k). Choose [)] € [M,Y]
such that h([{y]) = b. Define : Y VM — Y by §|Y =idy and §|M :=
—p 71 = X)ep; set é:=f0o #|X. We then have B,(u) = —p~ (1 — A)b
and the construction in the Basic Lemma implies that H,(¢; R) is an
isomorphism; in degrees i # n we have H,(¢; R) = H,(¢; R), hence

1s an R-homology equivalence.

THEOREM 2. Let R = Z(;), let V be a finitely generated R-module
and let X,Y € 1 — C be of finite type over R. Assume that an R-
cohomology equivalence X x K(V,n) = Y x K(V,n) is given. Then
there exists an R-cohomology equivalence X — Y.

As a corollary we obtain part (2) of Result I.

Proof. As above we may suppose that V is monogenic . Let ¢ :
X x K(V,n) =Y x K(V,n) be an R-cohomology equivalence. (Note
that ¢ is then also an R-homology equivalence and that all 7;(#)®R are
isomorphisms(7]). For 7 # n we may identify the isomorphisms m;(¢) ®
R with the corresponding induced homomorphisms of the composition
X = X xK(V,n) 2 Y x K(V,n) 25 Y. From ¢ we will now
construct a map ¢ : X — Y such that 7i(¢) ® R = mi(¢) @ R for
¢ # n and such that Hi(<1;; Z/pZ) is an isomorphism for : < n; then,
in particular, T,(¢) ® R is surjective (see [7]). From m,(X)® R =
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ma(Y) © R it then follows that m,(¢) > R is an iscmorphism; hence é
is an R-homology equivalence.

Set ¢ = H"(¢;Z/pZ),A := H"(Y,Z/pZ),B = H"(X;Z/pZ), U
= H"(K(V,n),Z/pZ) with generator v € U. Note that H"(X x
K(Vin); Z/pZ) = B o U HYY <= K(V.n); Z/pZ) 2 A U. Write

(1) plAu+a) =u X € ZfpZ.a € A,

(i) plu) =Tu+b,76e Z/pZ,be B.

Let us again only consider Case 3 ; note that the base ring is now
Z/pZ, hence we have \ = 7 = (. Define amap 4: X — X < K(V.n)
such that the first component /3; = ¢dy and seccnd component 3, :
X — K(V,n) satisfies #5(u) = —b. Such a map [ exists by the fol-
lowing reasoning : Let r : V' — Z/pZ be reduction mod p. Clearly,
w o= (i) h(’ru e H'(K(V,n); V) is the fundainental class. Hence
elu) = b =1, (H"(¢; V(1)) Observe that H™(X x K(V,n); V') admits
a canonical d]fu t sum decomposition as H™(X; V 6 H"(N(V.n): V).
Writing correspondingly H™(¢; V) 1) = @ + 4y ve have ry(iy) = b
and 7. (i) = 0. Choose 3, as the map X — K{V.n) in(']uding - Uy,
Then, according to the Basic Lenuna ¢ = pro ol — Y induces

an isomorphism H" (¢; Z/pZ) whercas H* ($:Z/pZ: = H (¢;Z)p) for

i < n. Thus ¢ is as required above

3. Proof of Result I1

We first recall shortly the notion of R-dimension. A I-connected
R-local CW-complex of R-dimension m is built from a point by suc-
cessivly attmhm;, reduced cones on R-local spheres Sp, 1 << n < m.

Let n be odd, n > 3 and let R = Z,,. For any X ¢ 1 - Cg denote
by P*¥(X) the l;»th Postnikov section of X. Note that P™(S%) is an
Eilenberg-MacLane space K(R,n) for m = n + 2p - 4 by [12].

Let XY be l-connected R-local C\N'(‘,omplexm of finite type over
R and with R-dimension{ X ), R-dimension(Y) < . Let X x S% and
Y < Sp be homot()])v equivalent. Then P’"(’( : “}}) o P"MX) x
P™(SE) «~ PT(Y x s%)  P(Y) x P™(SE). By Theorern 2 P™(X)
and P™(Y) are honmtopy equvalent. It then follows X « Y (by the
condition on the dimensions).

Thus part (1) is proved.
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Let now n be even, n > 2, and let a homotopy equivalence ¢ :

X xS =Y x SE begiven, X,Y € 1—Cp.

Hilfssatz: Let u € H"(S%; R) be a generator. Write H"(¢, R)
(Au+b)=uwithAe Robe H*(Y; R) and H™(¢; R)(u) = Tu+a,7 €
R,a € H'(X,R). Then, if A # 0 (resp. 7 # 0) we have A\ € R* (resp.
T € RB*) and H"(¢; R)(u) = ou with o € R*.

Proof. Assume A # 0 (the case 7 # 0 is similar). Then 0 =
H?*"(¢; R)(Au+b)2 = H™(¢; R)(N2u? 42 ub+b?) = H?™($; R)(2 ub+
b?). Hence 2\ub + b% = 0; this implies 2Ab = 0 and 4% = 0. As a con-
sequence H"(¢; R)(2A\%u) = 2 u — H™(¢; R)(2Ab) = 2 u. We deduce
A€ R* and H"(¢; R)(u) = ou with o € R*.

PROPOSITION. Let in addition H*(X; R) and H*(Y; R) be finitely
generated R-modules. Suppose that the situation of the Hilfssatz ap-
plies for a homotopy equivalence ¢ : X x S§ — Y x S§. Then there is
a homotopy equivalence X — Y,

Proof. We have H*(X x S§) = H*(X;R)® H*(X; R) - v and simi-
larly for H*(Y x S§; R). We assume H*(¢; R)(u) = owu. It follows that
H*(¢; R) maps H*(Y; R)-u into H*(X; R)-u. As R-modules H*(X; R)
and H*(X; R) - u are isomorphic. Hence H*(¢; i) induces an isomor-
phism of quotient modules H*(Y; R) =2 H*(Y x S})/H*(Y; R) - u and
H*(X;R) =2 H*(X x S§)/H*(X;R) - u. Therefore the map X —

X x S 2, ¥ x Sk ', Y is an R-cohomology equivalence.

It remains to study the case A = r = 0, that is

(i) H™(¢; R)(b) = u,b € H™(Y: R),

(i1) H*(¢; R)(u) = a,a € H"(X; R).

Note that the Basic Lemma, Case 3, can be applied here without the
assumption R = Z,), because 2 = (1 — X) = 1 in this simple situation.
But we still have to check geometric realizability. Here we need the
assumption R-dimension(X), R-dimension(Y) < m =n + 25 — 4.

Suppose first m < 2n—1; then P™(SE) « K (R, n) and the argument
can be completed as in the proof of part (1).
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Assume now m > 2n — 1. Then P™(S}y) fits into the fibre square

])m( ;1{ ) ey E

l J

2z

K(R,n) — - K(R,2n)

where E — K(R,2n) is the path fibration (see [12]) and where .2
denotes the map inducing the square of the fundamental class in
H™"(K(R.,n)); R).

Define a map 4 = (3,,42) : & — X x S% by setting 5, = 1dx
and choosing A, such that H"(#,; R)(v) = —a. Such a map exists,
because a? = 0 and R-dimension(X') is restricted, We claim that the
composition ¢ : X — ¥ of X X x Sk Loy R LY is an R-
cohomology egivalence. (In the following we will omit the coefficients
R from the notation).

Injectivity of *:

Let = € HYY) with ¢*(Z) = 0. Set ¢*(z) = cu + ¢ with ¢, €
H*(X); then ¢*(z2) = ~ca+ ¢ =0 and ¢’ = ca.

Recall that ¢*(u + b) = a + u.

Set ¢ = ¢*(cutc'), c,e! € H*(Y ). Then ¢*(2) = c{a+u) = ¢*({eu+
e"V(u+ b)) = o (eub+ c'u + €'b), Le.

z=cub+e'u+'h=ulbe +e') + €'b.
It follows be +¢' = 0, hence z = e'b = —b%e = (), because b = (.
Thus HY(y) is injective as long as H'(#) is.
Surjectivity of ¢* :
Let w € HY(X). Assume ¢*(zu +v) = w for z,0 € H*(Y"), then

¢ (v — b)) = w -~ §*(xu) — ¢*(xb)
=w - ¢"(x(u+b))
w - (@¢"(x))a+ u;.

i

Hence

Vv~ ab) = 3% ¢ (v — xb) = B (w — (¢*(x))(a + u))
- (,ﬁ*cb*(-f))(” — a) = .
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