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CONVERGENCE OF DOUBLE SERIES OF RANDOM

ELEMENTS IN BANACH SPACES

Nguyen Duy Tien and Le Van Dung

Abstract. For a double array of random elements {Xmn;m ≥ 1, n ≥ 1}
in a p-uniformly smooth Banach space, {bmn;m ≥ 1, n ≥ 1} is an array of
positive numbers, convergence of double random series

∑∞
m=1

∑∞
n=1Xmn,∑∞

m=1

∑∞
n=1 b

−1
mnXmn and strong law of large numbers

b−1
mn

m∑
i=1

n∑
j=1

Xij → 0 as m ∧ n → ∞

are established.

1. Introduction

Consider a double array {Xmn;m ≥ 1, n ≥ 1} of random elements de-
fined on a probability space (Ω,F , P ) taking values in a real separable Banach
space X with norm ∥ · ∥, {bmn;m ≥ 1, n ≥ 1} is an array of positive num-
bers. In the current work, we establish convergence a.s of double random series∑∞

m=1

∑∞
n=1 Xmn and

∑∞
m=1

∑∞
n=1 b

−1
mnXmn, and since the convergence of dou-

ble random series
∑∞

m=1

∑∞
n=1 b

−1
mnXmn we obtain strong laws of large numbers

b−1
mn

∑m
i=1

∑n
j=1 Xij → 0 as m ∧ n → ∞.

Strong law of larger number for double array of random element in Banach
spaces have studied by many authors. For example, Dung et al. [1], Dung and
Tien [2], Quang et al. [8], Roralsky and Thanh [9], Stadtmuller and Thanh
[11]. The three-series theorem for martingale in Banach spaces in case of single
series was established by Tien [13]. However, convergence of double random
series has not been studied. In this paper we not only extend some results of
Su and Tong [12] and Hong and Tsay [4] but also establish the convergence of
double random series.
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2. Preliminaries

Technical definitions relevant to the current work will be discussed in this
section.

For a, b ∈ R, min {a, b} and max {a, b} will be denoted, respectively, by a∧ b
and a∨b. Denote N be the set of all positive integers, for (i, j) and (m,n) ∈ N2,
(i, j) ≺ (m,n) means that i ≤ m and j ≤ n. Throughout this paper, the symbol
C will denote a generic constant (0 < C < ∞) which is not necessarily the same
one in each appearance.

Scalora [10] introduced the idea of the conditional expectation of a random
element in a Banach space. For a random element V and sub σ-algebra G of
F , the conditional expectation E(V |G) is defined analogously to that in the
random variable case and enjoys similar properties.

A real separable Banach space X is said to be p-uniformly smooth (1 ≤ p ≤
2) if there exists a finite positive constant C such that such that for any Lp

integrable X -valued martingale difference sequence {Xn, n ≥ 1},

E∥
n∑

i=1

Xn∥p ≤ C
n∑

i=1

E∥Xi∥p.

Clearly every real separable Banach space is of 1-uniformly smooth and the
real line (the same as any Hilbert space) is of 2-uniformly smooth. If a real
separable Banach space of p-uniformly smooth for some 1 < p ≤ 2, then it is
of r-uniformly smooth for all r ∈ [1, p). For more details, the reader may refer
to Pisier [7].

To prove the main result we need the following lemmas.

Lemma 2.1. Let {Smn;m ≥ 1, n ≥ 1} be an array of random elements taking
values in Banach space X . Then, Smn converges a.s. as m ∧ n → ∞ if only if
for all ε > 0,

(2.1) lim
N→∞

P

 sup
N≤m≤p
N≤n≤q

∥Spq − Smn∥ > ε

 = 0.

Proof. Omitted. □

Remark 2.2. Since inequalities

sup
m≤p
n≤q

∥Spq − Smn∥ ≤ sup
m∧n≤p′≤p

m∧n≤q′≤q

∥Sp′q′ − Spq∥ ≤ 2 sup
m≤p
n≤q

∥Spq − Smn∥,

we have that the condition (2.1) is equivalent with

lim
m∧n→∞

P

 sup
m≤p
n≤q

∥Spq − Smn∥ > ε

 = 0.
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Lemma 2.3. Let {amnij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} be an array of positive
constants such that

sup
m≥1,n≥1

m∑
i=1

n∑
j=1

amnij ≤ C < ∞ and lim
m∧n→∞

amnij = 0 for fixed i, j.

If {xmn;m ≥ 1, n ≥ 1} is a double array of positive real numbers satisfying

lim
m∨n→∞

xmn = 0,

then

lim
m∧n→∞

m∑
i=1

n∑
j=1

amnijxij = 0.

Proof. For proof is similar that of Lemma 2.2 of Stadtmuller and Thanh [11].
□

Lemma 2.4 ([1]). Let 1 ≤ p ≤ 2. Let {Xij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a
collection of mn random elements in a real separable Banach space p-uniformly
smooth X . Set Fij is a σ-algebra generated by the family of random elements
{Xkl; k < i or l < j} and F1,1 = {∅; Ω}. If E(Xij |Fij) = 0 for all (i, j) ≺
(m,n), then

E max
1≤k≤m
1≤l≤n

∥∥∥∥∥∥
k∑

i=1

l∑
j=1

Xij

∥∥∥∥∥∥
p

≤ C

m∑
i=1

n∑
j=1

E∥Xij∥p,

where the constant C is independent of m and n.

Let {bmn;m ≥ 1, n ≥ 1} be an array of positive numbers. We define

N(x) = card{(m,n) : bmn ≤ x},

and suppose that N(x) < ∞, ∀x > 0.
Now we define two other functions L(x) and Rp(x) which are little different

from that of Su and Tong [12]:

L(x) =

∫ x

0

N(t) log+ N(t)

t2
dt and Rp(x) =

∫ ∞

x

N(t) log+ N(t)

tp+1
dt

for x > 0 and p > 0. We have following lemma.

Lemma 2.5. Let {bmn;m ≥ 1, n ≥ 1} be an array of positive numbers satisfy-
ing for each m ≥ 1 and n ≥ 1, bij ≤ bmn for all (i, j) ≺ (m,n) and bmn → ∞
as m ∧ n → ∞. Let X be a non-negative real-valued random variables.

(i) If EXL(X) < ∞, then

(2.2)
∞∑

m=1

∞∑
n=1

P (X > bmn) < ∞,
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and

(2.3)
∞∑

m=1

∞∑
n=1

1

bmn

∫ ∞

bmn

P (X > s)ds < ∞.

(ii) If EXpRp(X) < ∞ for some p > 0, then

(2.4)
∞∑

m=1

∞∑
n=1

1

bpmn

∫ bmn

0

sp−1P (X > s)ds < ∞.

Proof. First we prove (i). Suppose that EXL(X) < ∞, denote dk be the
number of divisors of k and noting that N(x) is non-decreasing we have

∞∑
m=1

∞∑
n=1

P (X > bmn) ≤
∞∑

m=1

∞∑
n=1

P (N(X) > N(bmn))

≤
∞∑

m=1

∞∑
n=1

P (N(X) > mn)

≤
∞∑
k=1

dkP (N(X) > k)

≤ C

∞∑
k=1

log (k)P (N(X) > k)

≤ C
∞∑
k=1

[(k + 1) log(k + 1)− k log(k)]P (N(X) > k)

= C

∞∑
k=1

k log(k)[P (N(X) ≤ k + 1)− P (N(X) ≤ k)]

= C
∞∑
k=1

k log(k)

∫ k+1

k

dP (N(X) ≤ x)

≤ C
∞∑
k=1

∫ k+1

k

x log xdP (N(X) ≤ x)

= C

∫ ∞

1

x log xdP (N(X) ≤ x)

= CEN(X) log+ N(X) ≤ CEXL(X) < ∞.

Next we prove (2.3). Let s = bmnt. Then we have

k∑
m=1

l∑
n=1

1

bmn

∫ ∞

bmn

P (X > s)ds =
k∑

m=1

l∑
n=1

∫ ∞

1

P (
X

t
> bmn)dt

=

∫ ∞

1

k∑
m=1

l∑
n=1

P (
X

t
> bmn)dt
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≤
∫ ∞

1

∞∑
m=1

∞∑
n=1

P (
X

t
> bmn)dt

≤
∫ ∞

1

EN(
X

t
) log+ N(

X

t
)dt

=

∫ ∞

0

(∫ x

1

N(
x

t
) log+ N(

x

t
)dt

)
dP (X ≤ x)

=

∫ ∞

0

x

(∫ x

1

N(y) log+ N(y)

y2
dy

)
dP (X ≤ x)

= EXL(X) < ∞.

Letting k ∧ l → ∞ we obtain (2.3).
Finally, we easily prove (ii) by using method of the proof is similar to that

of (2.3). □

The array of random elements {Xmn;m ≥ 1, n ≥ 1} is said to be weakly
mean dominated by the random element X if, for some 0 < C < ∞,

P{∥Xmn∥ ≥ x} ≤ CP{∥X∥ ≥ x}
for all m ≥ 1, n ≥ 1 and x > 0.

3. Main results

With the preliminaries accounted for, the main results may now be estab-
lished. In the following we let {Xmn;m ≥ 1, n ≥ 1} be an array of ran-
dom elements defined on a probability (Ω,F , P ) and taking values in a real
separable Banach space X with norm ∥ · ∥, Fkl be a σ-algebra generated by
{Xij ; i < k or j < l}, F1,1 = {∅; Ω}. Suppose that E(Xmn|Fmn) = 0 for all
m ≥ 1, n ≥ 1.

Theorem 3.1. Let X be a p-uniformly smooth Banach space for some 1 ≤ p ≤
2. If

(3.1)

∞∑
m=1

∞∑
n=1

E∥Xmn∥p < ∞,

then

(3.2)

∞∑
m=1

∞∑
n=1

Xmn converges a.s.,

(3.3)

∞∑
n=1

Xmn converges a.s. for every m ≥ 1 and

(3.4)
∞∑

m=1

Xmn converges a.s. and for every n ≥ 1.
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Proof. Set Smn =
∑m

i=1

∑n
j=1 Xij .

For an arbitrary ε > 0,

P

(
max

m≤p≤k
n≤q≤l

∥Spq − Smn∥ > ε

)
≤ P

 max
1≤m≤k
n≤q≤l

∥
m∑
i=1

q∑
j=n

Xij∥ > ε/2


+ P

 max
m≤p≤k
1≤n≤l

∥
m∑
i=1

q∑
j=n

Xij∥ > ε/2

 .(3.5)

If Gmq is the σ-algebra generated by the family of random elements {Xij ; (1 ≤
i ≤ k and n ≤ j < q) or (1 ≤ i < m and n ≤ j ≤ k)} for 1 ≤ m ≤ k and
n ≤ q ≤ l, G1n = {∅; Ω}, then Gmq ⊂ Fmq for all 1 ≤ m ≤ k, n ≤ q ≤ l, which
imply that E(Xmq|Gmq) = 0 for all 1 ≤ m ≤ k, n ≤ q ≤ l.

Applying Markov inequality and Lemma 2.3 we obtain

P

 max
1≤m≤k
n≤q≤l

∥
m∑
i=1

q∑
j=n

Xij∥ > ε/2

 ≤ 2p

εp
E

 max
1≤m≤k
n≤q≤l

∥
m∑
i=1

q∑
j=n

Xij∥p


≤ C

εp

k∑
i=1

l∑
j=n

E∥Xij∥p.(3.6)

It is the same (3.6) we also have

P

 max
m≤p≤k
1≤q≤l

∥
m∑
i=1

q∑
j=n

Xij∥ > ε/2

 ≤ C

εp

k∑
i=m

l∑
j=1

E∥Xij∥p.(3.7)

It follows from (3.5), (3.6) and (3.7) that

P

(
max

m≤p≤k
n≤q≤l

∥Spq − Smn∥ > ε

)
≤ C

εp

k∑
i=1

l∑
j=n

E∥Xij∥p +
C

εp

k∑
i=m

l∑
j=1

E∥Xij∥p.

This implies, by letting k ∧ l → ∞, that

P

 sup
m≤p
n≤q

∥Spq − Smn∥ > ε

 ≤ C

εp

∞∑
i=1

∞∑
j=n

E∥Xij∥p +
C

εp

∞∑
i=m

∞∑
j=1

E∥Xij∥p.

We have by (3.1) that

∞∑
i=1

∞∑
j=n

E∥Xij∥p → 0 as n → ∞

and
∞∑

i=m

∞∑
j=1

E∥Xij∥p → 0 as m → ∞,
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hence,

P

 sup
m≤p
n≤q

∥Spq − Smn∥ > ε

→ 0 as m ∧ n → ∞,

which implies Smn converges a.s. as m ∧ n → ∞ (by Lemma 2.1).
We now prove (3.3). For each m ≥ 1, set Hm,1 = {Ω; ∅} and Hmn is the

σ-algebra generated by the family of random elements {Xmj ; 1 ≤ j < n} for
n ≥ 1, we have that {Sm

n =
∑n

j=1 Xmj ,Hmn;n ≥ 1} is a martingale satisfying∑∞
n=1 E∥Sm

n+1 − Sm
n ∥p < ∞ (by (3.1)). Applying Theorem 2.2 of Woyczyński

[14] we obtain the conclusion (3.3).
For proof of (3.4) is similar to that of (3.3). The proof is completed. □

Remark 3.2. Noting that (3.2), (3.3) and (3.4) imply Xmn → 0 a.s. as m∨n →
∞. Hence, under the condition (3.1) we obtain limm∨n→∞ ∥Xmn∥ = 0 a.s. This
remark will be used in Theorem 3.4 and Theorem 3.6.

Theorem 3.1 can be applied to obtain a version of the three-series theorem
for double random series.

Theorem 3.3. Let X be a p-uniformly smooth Banach space for some 1 ≤ p ≤
2 and c be a positive constant. Set Ymn = XmnI(∥Xmn∥ > c). Suppose that
E(Yij |Fij) is measurable with respect to Fmn for all i ≤ m or j ≤ n. If

(i)
∑∞

m=1

∑∞
n=1 P (∥Xmn∥ > c) < ∞,

(ii)
∑∞

m=1

∑∞
n=1 E(Ymn|Fmn) converges a.s., and

(iii)
∑∞

m=1

∑∞
n=1 E∥(Ymn − E(Ymn|Fmn)∥p < ∞,

then
∑∞

m=1

∑∞
n=1 Xmn converges a.s.

Proof. We have by (i) that

∞∑
m=1

∞∑
n=1

P (Xmn ̸= Ymn) ≤
∞∑

m=1

∞∑
n=1

P (∥Xmn∥ > c) < ∞.

By virtue of Borel-Cantelli lemma, we have

P (Xmn ̸= Ymni.o.) = 0.

So, to prove theorem, it suffices to show

(3.8)
∞∑

m=1

∞∑
n=1

Ymn converges a.s.

In view of Theorem 3.1, we have by (iii) that

(3.9)

∞∑
m=1

∞∑
n=1

(Ymn − E(Ymn|Fmn)) converges a.s.

Combining (ii) and (3.9) yields (3.8) holds.
The proof is completed. □
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The following theorem is a version of Theorem 4.2 of Su and Tong [12] for
double arrays of random elements in p-uniformly smooth Banach spaces.

Theorem 3.4. Let X be a p-uniformly smooth Banach space for some 1 ≤
p ≤ 2 and let {bmn;m ≥ 1, n ≥ 1} be an array of positive numbers satisfying
for each m ≥ 1 and n ≥ 1, bij ≤ bmn for all (i, j) ≺ (m,n) and bmn → ∞ as
m ∧ n → ∞. Suppose that Suppose that E(Yij |Fij) is measurable with respect
to Fmn for all i ≤ m or j ≤ n. Set

N(x) = card{(m,n) : bmn ≤ x} ∀x > 0.

If {Xmn;m ≥ 1, n ≥ 1} is weakly mean dominated by random element X such
that

(3.10) E(∥X∥pRp(∥X∥)) < ∞

and

(3.11) E(∥X∥L(∥X∥)) < ∞,

then

(3.12)
∞∑

m=1

∞∑
n=1

Xmn

bmn
converges a.s.

And if {bmn;m ≥ 1, n ≥ 1} is an array of positive numbers satisfying for
each m ≥ 1 and n ≥ 1, bij < bmn for all (i, j) ≺ (m,n) and (i, j) ̸= (m,n),
bmn → ∞ as m ∧ n → ∞, then

(3.13) lim
m∧n→∞

b−1
mn

m∑
i=1

n∑
j=1

Xij = 0 a.s.

Proof. For each m, n, set Ymn = XmnI(∥Xmn∥ ≤ bmn), Zmn = XmnI(∥Xmn∥
> bmn), Umn = Ymn−E(Ymn|Fmn), Vmn = Zmn−E(Zmn|Fmn). It is clear that
Xmn = Umn + Vmn. Moreover, E(Umn|Fmn) = E(Vmn|Fmn) = 0 for m ≥ 1,
n ≥ 1. If G′

kl and G′′
kl are the σ-algebras generated by the family of random

elements {Uij : i < k or j < l} and {Vl : i < k or j < l}, respectively, then
G′
kl ⊂ Fkl and G′′

kl ⊂ Fkl for all (k, l) ≺ (m,n), which imply that E(Ukl|G′
kl) =

E(Vkl|G′′
kl) = 0 for all (k, l) ≺ (m,n). Hence, in order to prove (3.12) we prove

∞∑
m=1

∞∑
n=1

Umn

bmn
and

∞∑
m=1

∞∑
n=1

Vmn

bmn
converge a.s.

Applying the strangle inequality and inequality (1.6) of Lemma 1.2 [3] we have

∞∑
m=1

∞∑
n=1

E∥Vmn∥
bmn

≤ 2
∞∑

m=1

∞∑
n=1

E∥Zmn∥
bmn

≤ 2
∞∑

m=1

∞∑
n=1

1

bmn

∫ ∞

bmn

P (∥Xmn∥ > s)ds
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+ 2

∞∑
m=1

∞∑
n=1

P (∥Xmn∥ > bmn)

≤ C
∞∑

m=1

∞∑
n=1

1

bmn

∫ ∞

bmn

P (∥X∥ > s)ds

+ C
∞∑

m=1

∞∑
n=1

P (∥X∥ > bmn)

< ∞ (by Lemma 2.4)

which implies by Theorem 3.1 that

(3.14)

∞∑
m=1

∞∑
n=1

Vmn

bmn
converges a.s.

Again applying the strangle inequality and equality (1.5) of Lemma 1.2 [3]
we have

∞∑
m=1

∞∑
n=1

E∥Umn∥p

bpmn
≤ C

∞∑
m=1

∞∑
n=1

E∥Ymn∥p

bpmn

= C
∞∑

m=1

∞∑
n=1

1

bpmn

∫ ∞

bmn

sp−1P (∥Xmn∥ > s)ds

− C

∞∑
m=1

∞∑
n=1

P (∥Xmn∥ > bmn)

≤ C

∞∑
m=1

∞∑
n=1

1

bpmn

∫ ∞

bmn

sp−1P (∥X∥ > s)ds

− C
∞∑

m=1

∞∑
n=1

P (∥X∥ > bmn)

< ∞ (by Lemma 2.4)

which implies by Theorem 3.1 that

(3.15)
∞∑

m=1

∞∑
n=1

Umn

bmn
converges a.s.

Now we prove (3.13). Since (3.14) and (3.15) we have by Theorem 3.1 that
b−1
mnVmn → 0 a.s. and b−1

mnUmn → 0 a.s. as m ∨ n → ∞. Hence,

lim
m∨n→∞

b−1
mn∥Xmn∥ = 0 a.s.

Applying Lemma 2.2 with amnij =
bij
bmn

we have

lim
m∧n→∞

b−1
mn

m∑
i=1

n∑
j=1

∥Xij∥ → 0 a.s.,
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and using the strangle inequality

∥b−1
mn

m∑
i=1

n∑
j=1

Xij∥ ≤ b−1
mn

m∑
i=1

n∑
j=1

∥Xij∥

we obtain (3.13). □

Corollary 3.5. Let X be a p-uniformly smooth Banach space for some 1 ≤ p ≤
2. Let {amn;m ≥ 1, n ≥ 1} be an array of real numbers such that amn ̸= 0, let
{bmn;m ≥ 1, n ≥ 1} be an array of positive numbers satisfying for each m ≥ 1
and n ≥ 1, bij < bmn and bij/|aij | < bmn/|amn| for all (i, j) ≺ (m,n) and
(i, j) ̸= (m,n), bmn/|amn| → ∞ as m∧n → ∞. Suppose that E(XijI(∥Xij∥ ≤
bij)|Fij) is measurable with respect to Fmn for all i ≤ m or j ≤ n. Set

N(x) = card{(m,n) :
bmn

|amn|
≤ x} ∀x > 0.

If {Xmn;m ≥ 1, n ≥ 1} is weakly mean dominated by random element X such
that (3.10) and (3.11) hold, then

lim
m∧n→∞

b−1
mn

m∑
i=1

n∑
j=1

aijXij = 0 a.s.

Finally, we extend Theorem 2.1 of Hong and Tsay [4] to double array of
random elements. It is the same Theorem 3.4, we establish convergence of
double random series before obtaining strong laws of large numbers.

Theorem 3.6. Let X be a p-uniformly smooth Banach space for some 1 ≤
p ≤ 2 and let {bmn;m ≥ 1, n ≥ 1} be an array of positive numbers. Suppose
that E(Yij |Fij) is measurable with respect to Fmn for all i ≤ m or j ≤ n. Let
{Φmn;m ≥ 1, n ≥ 1} be an array of positive Borel functions and let Cmn ≥ 1,
Dmn ≥ 1, bmn ≥ 1, 0 < βmn ≤ p be constants satisfying for u ≥ v > 0,

Cmn
ubmn

vbmn
≤ Φmn(u)

Φmn(v)
≤ Dmn

uβmn

vβmn
.

If
∞∑

m=1

∞∑
n=1

Amn
EΦmn(∥Xmn∥)

Φmn(bmn)
< ∞,

where Amn = max{ 1
Cmn

, Dmn}, then (3.12) holds. And if {bmn;m ≥ 1, n ≥ 1}
is an array of positive numbers satisfying for each m ≥ 1 and n ≥ 1, bij ≤ bmn

for all (i, j) ≺ (m,n) and bmn → ∞ as m ∧ n → ∞, then (3.13) holds.

Proof. Set the same Ymn, Zmn, Umn and Vmn as in the proof of Theorem 3.4.
It is similar to the proof of Theorem 3.4, we show that

(3.16)
∞∑

m=1

∞∑
n=1

E∥Vmn∥
bmn

< ∞
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and

(3.17)
∞∑

m=1

∞∑
n=1

E
∥Umn∥p

bpmn
< ∞.

First we prove (3.16).

∞∑
m=1

∞∑
n=1

E∥Vmn∥
bmn

≤ 2

∞∑
m=1

∞∑
n=1

E
∥Zmn∥
bmn

≤ 2

∞∑
m=1

∞∑
n=1

E

(
∥Zmn∥
bmn

)αmn

≤ 2
∞∑

m=1

∞∑
n=1

1

Cmn
E
Φmn(∥Zmn∥)
Φmn(bmn)

≤ 2
∞∑

m=1

∞∑
n=1

AmnE
Φmn(∥Zmn∥)
Φmn(bmn)

≤ 2
∞∑

m=1

∞∑
n=1

AmnE
Φmn(∥Xmn∥)
Φmn(bmn)

< ∞.

Finally we prove (3.17).

∞∑
m=1

∞∑
n=1

E
∥Umn∥p

bpmn
≤ 2p

∞∑
m=1

∞∑
n=1

E
∥Ymn∥p

bpmn

≤ C
∞∑

m=1

∞∑
n=1

E

(
∥Ymn∥
bmn

)βmn

≤ C
∞∑

m=1

∞∑
n=1

DmnE
Φmn(∥Ymn∥)
Φmn(bmn)

≤ C
∞∑

m=1

∞∑
n=1

AmnE
Φmn(∥Ymn∥)
Φmn(bmn)

≤ C

∞∑
m=1

∞∑
n=1

AmnE
Φmn(∥Xmn∥)
Φmn(bmn)

< ∞.

The proof is completed. □
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