• Title/Summary/Keyword: weak integral

Search Result 98, Processing Time 0.026 seconds

THE WEAK DENJOY* EXTENSION OF THE BOCHNER, DUNFORD, PETTIS AND MCSHANE INTEGRALS

  • Park, Chun-Kee;Oh, Mee Na;Kim, Woung Kyun
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.137-146
    • /
    • 2003
  • In this paper we introduce the concepts of the weak $Denjoy_*$ integral of real-valued functions and the weak $Denjoy_*$-Dunford, weak $Denjoy_*$-Pettis, weak $Denjoy_*$-Bochner, weak $Denjoy_*$-McShane integrals of Banach-valued functions and then investigate some of their properties.

  • PDF

WEIGHTED INTEGRAL INEQUALITIES FOR MODIFIED INTEGRAL HARDY OPERATORS

  • Chutia, Duranta;Haloi, Rajib
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.757-780
    • /
    • 2022
  • In this article, we study the weak and extra-weak type integral inequalities for the modified integral Hardy operators. We provide suitable conditions on the weights ω, ρ, φ and ψ to hold the following weak type modular inequality $${\mathcal{U}}^{-1}\({\int_{{\mid}{\mathcal{I}}f{\mid}>{\gamma}}}\;{\mathcal{U}}({\gamma}{\omega}){\rho}\){\leq}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}(C{\mid}f{\mid}{\phi}){\psi}\),$$ where ${\mathcal{I}}$ is the modified integral Hardy operators. We also obtain a necesary and sufficient condition for the following extra-weak type integral inequality $${\omega}\(\{{\left|{\mathcal{I}}f\right|}>{\gamma}\}\){\leq}{\mathcal{U}}{\circ}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}\(\frac{C{\mid}f{\mid}{\phi}}{{\gamma}}\){\psi}\).$$ Further, we discuss the above two inequalities for the conjugate of the modified integral Hardy operators. It will extend the existing results for the Hardy operator and its integral version.

ON THE PETTIS INTEGRAL OF FUZZY MAPPINGS IN BANACH SPACES

  • Park, Chun-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.535-545
    • /
    • 2007
  • In this paper, we introduce the Pettis integral of fuzzy mappings in Banach spaces using the Pettis integral of closed set-valued mappings. We investigate the relations between the Pettis integral, weak integral and integral of fuzzy mappings in Banach spaces and obtain some properties of the Pettis integral of fuzzy mappings in Banach spaces.

A Characterization of the Weak*-Integral

  • Rhie, Gil-Seob;Park, Hi-Kyo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.2 no.1
    • /
    • pp.45-49
    • /
    • 1989
  • The main goal of the present paper is to characterize the $weak^*$-integral, which is a $weak^*$ analogy of Geitz[4].

  • PDF

WEAK FACTORIZATIONS OF H1 (ℝn) IN TERMS OF MULTILINEAR FRACTIONAL INTEGRAL OPERATOR ON VARIABLE LEBESGUE SPACES

  • Zongguang Liu;Huan Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1439-1451
    • /
    • 2023
  • This paper provides a constructive proof of the weak factorizations of the classical Hardy space H1(ℝn) in terms of multilinear fractional integral operator on the variable Lebesgue spaces, which the result is new even in the linear case. As a direct application, we obtain a new proof of the characterization of BMO(ℝn) via the boundedness of commutators of the multilinear fractional integral operator on the variable Lebesgue spaces.

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

TWO ZAGIER-LIFTS

  • Kang, Soon-Yi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.183-200
    • /
    • 2017
  • Zagier lift gives a relation between weakly holomorphic modular functions and weakly holomorphic modular forms of weight 3/2. Duke and Jenkins extended Zagier-lifts for weakly holomorphic modular forms of negative-integral weights and recently Bringmann, Guerzhoy and Kane extended them further to certain harmonic weak Maass forms of negative-integral weights. New Zagier-lifts for harmonic weak Maass forms and their relation with Bringmann-Guerzhoy-Kane's lifts were discussed earlier. In this paper, we give explicit relations between the two different lifts via direct computation.

APPLICATION OF GENERALIZED WEAK CONTRACTION IN INTEGRAL EQUATION

  • Amrish Handa
    • The Pure and Applied Mathematics
    • /
    • v.30 no.3
    • /
    • pp.249-267
    • /
    • 2023
  • This manuscript is divided into three segments. In the first segment, we prove a unique common fixed point theorem satisfying generalized weak contraction on partially ordered metric spaces and also give an example to support our results presented here. In the second segment of the article, some common coupled fixed point results are derived from our main results. In the last segment, we investigate the solution of integral equation as an application. Our results generalize, extend and improve several well-known results of the existing literature.

THE EMPIRICAL LIL FOR THE KAPLAN-MEIER INTEGRAL PROCESS

  • Bae, Jong-Sig;Kim, Sung-Yeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.269-279
    • /
    • 2003
  • We prove an empirical LIL for the Kaplan-Meier integral process constructed from the random censorship model under bracketing entropy and mild assumptions due to censoring effects. The main method in deriving the empirical LIL is to use a weak convergence result of the sequential Kaplan-Meier integral process whose proofs appear in Bae and Kim [2]. Using the result of weak convergence, we translate the problem of the Kaplan Meier integral process into that of a Gaussian process. Finally we derive the result using an empirical LIL for the Gaussian process of Pisier [6] via a method adapted from Ossiander [5]. The result of this paper extends the empirical LIL for IID random variables to that of a random censorship model.

Numerical Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for a Half-Immersed Cylinder in Wave and Current

  • Hong, Do-Chun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.184-188
    • /
    • 2000
  • The improved Green integral equation of overdetermined type applied to the radiation problem for an oscillating cylinder in the presence of weak current is presented. A two-dimensional Green function for the weak current is also presented. The present numerical solution of the Improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the usual Green integral equation.

  • PDF