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THE EMPIRICAL LIL FOR THE
KAPLAN-MEIER INTEGRAL PROCESS

JONGSIG BAE AND SUNGYEUN KIM

ABSTRACT. We prove an empirical LIL for the Kaplan-Meier inte-
gral process constructed from the random censorship model under
bracketing entropy and mild assumptions due to censoring effects.
The main method in deriving the empirical LIL is to use a weak
convergence result of the sequential Kaplan-Meier integral process
whose proofs appear in Bae and Kim [2]. Using the result of weak
convergence, we translate the problem of the Kaplan Meier integral
process into that of a Gaussian process. Finally we derive the re-
sult using an empirical LIL for the Gaussian process of Pisier [6]
via a method adapted from Ossiander [5]. The result of this paper
extends the empirical LIL for IID random variables to that of a
random censorship model.

1. Introduction

In the present paper we investigate an empirical law of the iterated
logarithm(LIL) for the Kaplan-Meier integral process constructed from
the incomplete data of the usual random censorship model under the
integrability assumption of metric entropy with bracketing and the as-
sumptions due to censoring effects.

We review a weak convergence result for the sequential Kaplan-Meier
integral process where the process is regarded as random elements of a
Banach space of bounded functions defined on a product space.

We translate the problem of the Kaplan-Meier integral process into
that of a Gaussian process and derive the main result via a method
adapted from Ossiander [5] where the empirical LIL for the IID random
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variables is dealt with. By specializing our result of the random censor-
ship model into the case of no censoring at all, we will regain an integral
version of the empirical LIL for the IID model. In Section 2, we review
a weak convergence result for the sequential Kaplan-Meier integral pro-
cess and translate the problem of the Kaplan-Meier integral process into
that of a Gaussian process. In Section 3, we deal with the proofs of the
empirical LIL for the Kaplan-Meier integral process using a result for a
Gaussian process of Pisier [6].

Let X be a random variable defined on a probability space (2,7, P)
and let {X; : i > 1} be a sequence of independent copies of X. Con-
sider a class F C L2(P) of real valued measurable functions defined on a
measurable space (R, B). Consider an empirical process {S,(f) : f € F}
defined by

Sulf) = <= > (%) for f € .
i=1

It is known that F satisfies an empirical LIL of Strassen type (see, for ex-
ample, Kuelbs and Dudley [4]) under certain metric entropy integrability
conditions. This problem consists of showing the relative compactness

of
(Zaf00 cp sl
V2nloglogn - T
and specifying the set of its limit points. An approach to solve the
problem is to use the weak convergence of the process of following types

[nt]

(1.1) Salt, f) : \/_Zf ) for (¢, f) € [0,1] @ F

to a Gaussian process. The weak convergence of {S,(t,f) : (¢, f) €
[0,1)®F} to a Gaussian process {W(¢, f) : (¢, f) € [0, 1]@F} essentially
means that L(S,(t, f): (¢, f) € [0,1]®@F) — LW(t, f): (¢, f) €[0,1]®
F), where the processes are indexed by [0,1] ® F and are considered as
random elements in B([0, 1] ® F), the space of the bounded real-valued
functions on [0, 1]® F. The process (W (¢, f) : (¢, f) € [0,1]®F), known
as Kiefer-Muller process, will be mean zero Gaussian and covariance
function

(1.2) coo(W(t, f), W(s,g)) = (t A s)(Pfg — PfPg).

See Ossiander [5] for the invariance principle approach to solve an em-
pirical LIL problem. See also Bae [1] for the problem of stationary
martingale differences.
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In this paper we solve the problem of an empirical LIL for the Kaplan-
Meier integral process by considering the weak convergence results of an
integral process. We begin with considering an integral process, instead
of (1.1), {Sn(t, f) : (t, f) € R® F} defined by

(1.3) Sp(t, f) = \/ﬁ/_ f(x)(P, — P)(dz) for (t,f) e R® F,

where P,,(-) =n~!' Y1, 6x,(-) denotes the empirical measure.

REMARK 1. The two processes of (1.1) and (1.3) are slightly different.
For instance, the limiting Gaussian process of (1.3) is given by

Cov(W(t, f), W (s, g))
tAs s

= [ f(@)g(x)P(dz) - / f(2)P(dz) / 9(x) P(dz),

—0oC

which is different from (1.2).

We define the metric entropy with bracketing. See, for example, van
der Vaart and Wellner [9].

DEFINITION 1. For a metric space (F,d) and § > 0 we define the
covering number with bracketing N (6, F, d) as the smallest n for which

there exists {f(l),é’ fosi ’fvlz,é’ fa s} so that for every f € F there exist
some 0 < i < n satisfying fi’ﬁ < f< fis and d(fil’é, +5) < 0. Define
the metric entropy with bracketing to be log N (6, F, d). We also define
the associated integral of the metric entropy with bracketing to be

8
J(6) := / [logN[](u,]:,d)]%du for0 <4 <1.
0
For a function ¢ : F — R, we let ||¢||x = supsex [¥(f)] denote the

sup of [¢| over F. We write || - || in stead of || - || when there is no risk
of ambiguity. We define

Mz{fec‘?(P):/fdP:O}.

It is easy to see that M is a closed subspace of the Hilbert space £2(P),
and hence M is also a Hilbert space. Let U be the unit ball of M,

U={96M=llgl|2=/92dP§l}-
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Then U defines a set U(F) of functions on F:
U(f)={f—>/f-gdP:f€.7:,g€U}.

The Ossiander’s result states that if J(1) < oo, then

Do f(Xi)
{Gle rerin>s)

is relatively compact with respect to || - || with probability 1, and the
set of its limit points is U (F).

2. The empirical LIL for the Kaplan-Meier integral process

Let X be a random variable defined on a probability space (2,7, P)
with distribution function F' and let {X; : i > 1} be a sequence of
independent copies of X. Consider the random censorship model where
one observes the incomplete data {Z;,d;}. The {Z;} are independent
copies of Z whose distribution is H. The {Z;,d;} are obtained by the
equations Z; = min(X;,Y;) and 6; = {X; < Y;} where the {¥;} are
independent copies of the censoring random variable Y with distribution
G which is also assumed to be independent of F, the distribution of IID
random variables {X;} of original interest in a statistical inference. Let
F{a} = F(a) — F(a—) denote the jump size of F at a and let A be
the set of all atoms of H which is an empty set when H is continuous.
Let 7y = inf{a : H(z) = 1} denote the supremum of the support of H.
In order to describe the minimal assumptions due to censoring effects
which are originated by Stute [8], we need to consider the following sub
distribution functions

() = PZ 58=0)= [ (1= Fw)Glay),

and
HY2)=P(Z<z6=1)= /_z (1-G(y—))F(dy), z € R.
Define
z~ §70 -
¥(e) = exp{ [ 1—’{—}}%}

nd

) o) = [
—oo (L= H@)I[1 - G(y)]
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Notice that v(z) does not depend on f.

Let F C L2(P) be a class of functions which are real-valued measur-
able defined on R. The following two assumptions will be imposed on
the main result of the paper.

(2.4) / F(2)r2 () B (dx) = / [F(Z)4(2)8]? dP < oo for cach f € F

(2.5) /If )| CM?(2)F(dz) < oo for each f € F.

Recall that H° and H?! are sub-distribution functions which repre-
sent censoring effects. Throughout the paper events are identified with
their indicator functions when there is no risk of ambiguity. In order to
consider the dependence of 3 and 7y on f we let

(@) = 1 [ o < b)) du),
and

//{v <z,v< w}[ )7(:;]) HO(dv)H* (dw).

We consider the sequential Kaplan-Meier integral process {Uy(t, f) :
(t,f) € R® F} defined by

(2.6)  Up(t, f) =n!/? / t f(x)(E, — F)(dz) for (t,f) eR® F ,

where ﬁ’n is the usual Kaplaq—Meier estimator constructed from the ran-
dom censorship model and F is a sub-distribution function defined by

F(2) = F(z){z <y} + [F(rg—) + {ra € AYF{rg}}{z > TH }.

The index (¢, f) ranges over R ® F. We rewrite Uy, (¢, f) in (2.6) using
the Kaplan-Meier empirical measure as follow. See Pollard [7] for a
construction of the Kaplan-Meier empirical measures.

Un(t, f) = n'/? /t f@)(K, — P)(dz) for (t,f) e RQ F,

where K, is the Kaplan-Meier empirical measure and P is the measure
induced by the sub-distinction F.

Write § := R® F. We use the following definition of weak conver-
gence.
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DEFINITION 2. A sequence of B(S)-valued random functions {¥,}
converges in law to a B(S)-valued random function ¥ whose law con-
centrates on a separable subset of B(S) if

Eg(Y) = lim E*g(Yn) V g € C(B(S),|l-|lx),

where C(B(S),][| - ||s) is the set of all bounded, continuous functions
from (B(S), || ||s) into R. Here E* denotes the upper expectation with
respect to the outer probability P*. We denote this convergence by
Y.=Y.

Write for each t € Rand f € F
€0.1) = 1212 <4125 - [ @) {o < }dF (o)
+'71(t7 f)(Z)(l - 5) - ’72(ta f)(Z)7

where
W@ = Ty [ {8 <wAL ) ) ),

Yolt, f(z) = //{v<x,v<w/\t}hﬂ_—w§(%

Notice that F£(t, f) = 0 for each t € R and f € F. With no censoring
present, all ’s equal 1 so that each £(%, f) collapses to

OO X <8} - [ @) o < 1} dF (o)

We will use the following weak convergence result for the sequential
Kaplan-Meier integral process whose proofs appear in Bae and Kim [2].

H(dv)H(dw).

PROPOSITION 1. Suppose that J(1) < co. Assume that (2.4) and
(2.5). Then

U, = W, as random elements of B(R® F),

where {W (t, f) : (¢, f) € R® F} is a Gaussian process with the mean
EW (t, f) = 0 and the covariance function is given by

cov(W(t, f), W(s,g)) = cov({(t, f),&(s, 9))-

The Gaussian process W has uniformly continuous sample path with
respect to the metric p defined by

p((t, f)7 (S)g)) = max{lt - 3|7 d(f, g)}>
where £* metric d defined by d(f,g) = [[(f — 9)?dP] 12
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We need the following

DEFINITION 3. A sequence of B(S)-valued random functions {Y;, :
n > 1} converges in probability to 0, denoted Y5, —FP o, if

lim P*{|]Y,| > €} =0 for every € > 0.
n—oo

Let (W(f): f € F) be a Gaussian process which has mean zero and
the covariance function

cov(W(f), W(g)) = cov(§(f),£(9)),

where £(f) := &(o0, f) for each f € F.

The following Theorem 1 is a restatement of Proposition 1. See The-
orem 1.3 of Dudley and Philipp [3]. See also Theorem 4.1 of Ossiander
[5]. We will use this restated result in the proof of Theorem 2.

THEOREM 1. Under the assumptions of Proposition 1, there exists a
sequence W1, Wy, ... IID copies of {W(f): f € F} with
W, — W1+W2+"'+Wn

n

n
such that

¢
n? supsup'/ f(:c)(Kn—P—Wn)(d:r)’ —F0, as n — co.
teR feF ' J—oo

The W;’s can also be chosen such that, with probability 1 for some
measurable Y,

1
nz sup

/f(a:)(Kn —P— Wn)(dx)‘ <Y, = o(y/loglogn).
feF

Consider the process {Wy(f) : f € F} defined by
2.7) Wa(f) = /2 / F@)W,(dz) for f € F .

Then {W,(f) : f € F} is a Gaussian process with mean zero and the
covariance function is given by

cov(Wn(f),Wn(Q)) = cov(§(f),&(9))-

The following corollary easily follows from the above proposition.

COROLLARY 1. Consider the Kaplan-Meier integral process {Un(f) :
f € F} given by

Un(f) = nl/Z/f(x)(Kn — P)(dg) for f € F .
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Then, under the assumptions of Theorem 1, there exists a sequence
{Wn : n > 1}, with bounded and continuous sample paths, of copies
of a Gaussian process {W(f) : f € F} defined on (Q, 7T, P) such that
|Un—Wo,|| —F 0 asn — co. The W's can also be chosen such that, with
probability 1 for some measurable Yy, ||U, — W,|| < Y, = o(v/Iog logn).

Proof. Define W, as in (2.7) whose existence is guaranteed by Theo-
rem 1. Observe that U, = W as a random elements of B(F). Observe
also that

[|Un — Wn|| —=n? sup
fexr

[ ratn - -

Since the Gaussian processes W and W have the same mean and covari-
ance structure, they have the same distribution. Proposition 1 implies
the results. O

{fe£2 /g f)dP = o}

Notice that M is a Hilbert space. Let G be the unit ball of M,
6= {oe M lls@)IP = [ eto2ap < 1.
Then G defines a set G(F) of functions on F:

{ /§ g)dP : fe]-"geg}

We are ready to state an empirical LIL for the Kaplan-Meier integral
process.

We define

THEOREM 2. (An Empirical LIL for the Kaplan-Meier integral pro-
cess) Suppose that J(1) < co. Assume that (2.4) and (2.5). Then

{na J$@®n = P)do) o 3}

v2loglogn

is relatively compact with respect to || - ||z with probability 1, and the
set of its limit points is G(F).

The following restatement of Theorem 4.2 of Ossiander [5] will be a
special case of Theorem 1.
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COROLLARY 2. (An Empirical LIL for IID Random Variables) Sup-
pose that J(1) < co. Then

1
n: [ f(z)(Pn — P)(dz)
feF,n>3
{ v2loglogn f ne
is relatively compact with respect to || - || with probability 1, and the

set of its limit points is U(F), where

{ /f fe}"geu}
U= {gEL2P)/ d:c)<1}

Proof. When there is no censoring at all, we may formally set G =
doc = Dirac at infinity. In this case, all §’s equal to 1. Furthermore,

A°=0, H =H=F, y=1and~} =0.

with

Consequently, the Kaplan-Meier integral process [ f(z)(K, — P)(dm)
collapses to the empirical process [ f(z)(P, — P)(dz) and the limit set
G(F) boils down to U(F). Conditions (2.4) and (2.5) automatically
satisfied because F C L2(P). Apply Theorem 2 to complete the proof
of Corollary 2. O

The following corollary can be considered as a log log law for the
Kaplan-Meier integral for the random censorship model.

COROLLARY 3. (A log log law for the Kaplan-Meier integral) Assume

[le@n(@)92ap < oo
and
[ 16(@)]02() F(da) < oo
Then the set of limit points of

{n% [ o@)Kn ~ P)(dz) 3}

v2loglogn

is, with probability 1, the closed interval [— (E§2(<p))1/ z (E€%(p)) Y 2] i
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Proof. Apply Theorem 2 to the class F = {¢}, a singleton class to
get the result. O

3. Proof of Theorem 2

In the proof of Theorem 2 we will use the following Proposition.

PROPOSITION 2. (Theorem 4.3 of Pisier [6]) Suppose J(1) < co. Let
{W, : i > 1} be a sequence of IID copies of a Gaussian process {W(f) :
f € F} defined on (2,7, P). Suppose {W(f) : f € F} has bounded
and continuous sample paths with EW (f) = 0 and E||W||? < co. Then
W satisfies the empirical LIL. That is,

W
{—21;\/—1—%1—% feF,n> 3}
is relatively compact with respect to ||- || with probability 1, and the set
of its limit points is
GF)={f > EW()W(9): feF,ged},
where G = {g € L2(P) : EW?(g) < 1}.
REMARK 2. W takes values in C(F), the bounded and continuous

functions from F to R, forms a separable Banach space with the sup-
norm || - |[.

Proof of Theorem 2. Let {W(f) : f € F} be a Gaussian process
with bounded and continuous sample paths whose mean is zero and
covariance function is

(3.8) EW(f)W(g) = E(£(f) - £(9))-

Apply Corollary 1 to choose a sequence {W; : ¢ > 1} of IID copies
of {W(f) : f € F} and a measurable sequence Y, s such that, with

probability 1,

Notice that
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By Proposition 2, W satisfies the empirical LIL. That is,

> i1 Wi(f)
{\/inoglogn feFnz 3}

is relatively compact with respect to || - || with probability 1, and the set
of its limit points is

G(F)={f - EW()W(9): feF,geG},

where G = {g € L?(P) : EW?2(g) < 1}. This, together with (3.8) and
(3.9), completes the proof of Theorem 2. O
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