• Title/Summary/Keyword: upper-triangular matrix

Search Result 36, Processing Time 0.025 seconds

GENERALIZED CAYLEY GRAPH OF UPPER TRIANGULAR MATRIX RINGS

  • Afkhami, Mojgan;Hashemifar, Seyed Hosein;Khashyarmanesh, Kazem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1017-1031
    • /
    • 2016
  • Let R be a commutative ring with the non-zero identity and n be a natural number. ${\Gamma}^n_R$ is a simple graph with $R^n{\setminus}\{0\}$ as the vertex set and two distinct vertices X and Y in $R^n$ are adjacent if and only if there exists an $n{\times}n$ lower triangular matrix A over R whose entries on the main diagonal are non-zero such that $AX^t=Y^t$ or $AY^t=X^t$, where, for a matrix B, $B^t$ is the matrix transpose of B. ${\Gamma}^n_R$ is a generalization of Cayley graph. Let $T_n(R)$ denote the $n{\times}n$ upper triangular matrix ring over R. In this paper, for an arbitrary ring R, we investigate the properties of the graph ${\Gamma}^n_{T_n(R)}$.

STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

  • Chen, Zhengxin;Zhao, Yu'e
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.973-981
    • /
    • 2021
  • Let R be a commutative ring with identity 1, n ≥ 3, and let 𝒯n(R) be the linear Lie algebra of all upper triangular n × n matrices over R. A linear map 𝜑 on 𝒯n(R) is called to be strong commutativity preserving if [𝜑(x), 𝜑(y)] = [x, y] for any x, y ∈ 𝒯n(R). We show that an invertible linear map 𝜑 preserves strong commutativity on 𝒯n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on 𝒯n(R).

ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

  • ZHU, SEN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1271-1286
    • /
    • 2015
  • An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.

ON COMMUTATIVITY OF REGULAR PRODUCTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Yeonsook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1713-1726
    • /
    • 2018
  • We study the one-sided regularity of matrices in upper triangular matrix rings in relation with the structure of diagonal entries. We next consider a ring theoretic condition that ab being regular implies ba being also regular for elements a, b in a given ring. Rings with such a condition are said to be commutative at regular product (simply, CRP rings). CRP rings are shown to be contained in the class of directly finite rings, and we prove that if R is a directly finite ring that satisfies the descending chain condition for principal right ideals or principal left ideals, then R is CRP. We obtain in particular that the upper triangular matrix rings over commutative rings are CRP.

ON A GENERALIZATION OF THE MCCOY CONDITION

  • Jeon, Young-Cheol;Kim, Hong-Kee;Kim, Nam-Kyun;Kwak, Tai-Keun;Lee, Yang;Yeo, Dong-Eun
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1269-1282
    • /
    • 2010
  • We in this note consider a new concept, so called $\pi$-McCoy, which unifies McCoy rings and IFP rings. The classes of McCoy rings and IFP rings do not contain full matrix rings and upper (lower) triangular matrix rings, but the class of $\pi$-McCoy rings contain upper (lower) triangular matrix rings and many kinds of full matrix rings. We first study the basic structure of $\pi$-McCoy rings, observing the relations among $\pi$-McCoy rings, Abelian rings, 2-primal rings, directly finite rings, and ($\pi-$)regular rings. It is proved that the n by n full matrix rings ($n\geq2$) over reduced rings are not $\pi$-McCoy, finding $\pi$-McCoy matrix rings over non-reduced rings. It is shown that the $\pi$-McCoyness is preserved by polynomial rings (when they are of bounded index of nilpotency) and classical quotient rings. Several kinds of extensions of $\pi$-McCoy rings are also examined.

IDEMPOTENCE PRESERVING MAPS ON SPACES OF TRIANGULAR MATRICES

  • Sheng, Yu-Qiu;Zheng, Bao-Dong;Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.17-33
    • /
    • 2007
  • Suppose F is an arbitrary field. Let ${\mid}F{\mid}$ be the number of the elements of F. Let $T_{n}(F)$ be the space of all $n{\times}n$ upper-triangular matrices over F. A map ${\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is said to preserve idempotence if $A-{\lambda}B$ is idempotent if and only if ${\Psi}(A)-{\lambda}{\Psi}(B)$ is idempotent for any $A,\;B\;{\in}\;T_{n}(F)$ and ${\lambda}\;{\in}\;F$. It is shown that: when the characteristic of F is not 2, ${\mid}F{\mid}\;>\;3$ and $n\;{\geq}\;3,\;{\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is a map preserving idempotence if and only if there exists an invertible matrix $P\;{\in}\;T_{n}(F)$ such that either ${\Phi}(A)\;=\;PAP^{-1}$ for every $A\;{\in}\;T_{n}(F)\;or\;{\Psi}(A)=PJA^{t}JP^{-1}$ for every $P\;{\in}\;T_{n}(F)$, where $J\;=\;{\sum}^{n}_{i-1}\;E_{i,n+1-i}\;and\;E_{ij}$ is the matrix with 1 in the (i,j)th entry and 0 elsewhere.

Extensions of Strongly α-semicommutative Rings

  • Ayoub, Elshokry;Ali, Eltiyeb;Liu, ZhongKui
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.203-219
    • /
    • 2018
  • This paper is devoted to the study of strongly ${\alpha}-semicommutative$ rings, a generalization of strongly semicommutative and ${\alpha}-rigid$ rings. Although the n-by-n upper triangular matrix ring over any ring with identity is not strongly ${\bar{\alpha}}-semicommutative$ for $n{\geq}2$, we show that a special subring of the upper triangular matrix ring over a reduced ring is strongly ${\bar{\alpha}}-semicommutative$ under some additional conditions. Moreover, it is shown that if R is strongly ${\alpha}-semicommutative$ with ${\alpha}(1)=1$ and S is a domain, then the Dorroh extension D of R by S is strongly ${\bar{\alpha}}-semicommutative$.

Efficient Sampling of Graph Signals with Reduced Complexity (저 복잡도를 갖는 효율적인 그래프 신호의 샘플링 알고리즘)

  • Kim, Yoon Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.367-374
    • /
    • 2022
  • A sampling set selection algorithm is proposed to reconstruct original graph signals from the sampled signals generated on the nodes in the sampling set. Instead of directly minimizing the reconstruction error, we focus on minimizing the upper bound on the reconstruction error to reduce the algorithm complexity. The metric is manipulated by using QR factorization to produce the upper triangular matrix and the analytic result is presented to enable a greedy selection of the next nodes at iterations by using the diagonal entries of the upper triangular matrix, leading to an efficient sampling process with reduced complexity. We run experiments for various graphs to demonstrate a competitive reconstruction performance of the proposed algorithm while offering the execution time about 3.5 times faster than one of the previous selection methods.

Colourings and the Alexander Polynomial

  • Camacho, Luis;Dionisio, Francisco Miguel;Picken, Roger
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.1017-1045
    • /
    • 2016
  • Using a combination of calculational and theoretical approaches, we establish results that relate two knot invariants, the Alexander polynomial, and the number of quandle colourings using any finite linear Alexander quandle. Given such a quandle, specified by two coprime integers n and m, the number of colourings of a knot diagram is given by counting the solutions of a matrix equation of the form AX = 0 mod n, where A is the m-dependent colouring matrix. We devised an algorithm to reduce A to echelon form, and applied this to the colouring matrices for all prime knots with up to 10 crossings, finding just three distinct reduced types. For two of these types, both upper triangular, we found general formulae for the number of colourings. This enables us to prove that in some cases the number of such quandle colourings cannot distinguish knots with the same Alexander polynomial, whilst in other cases knots with the same Alexander polynomial can be distinguished by colourings with a specific quandle. When two knots have different Alexander polynomials, and their reduced colouring matrices are upper triangular, we find a specific quandle for which we prove that it distinguishes them by colourings.